3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 01:25:31 +00:00

Rewrite hyp-reducer

This is a new version that conceptually addresses the bugs in
all previous version. However, it had a hard-to-debug memory
corruption. The bug appeared only in optimized compilation under
Linux with GCC.

This code is suspect and should be reviewed and further tested
This commit is contained in:
Bernhard Gleiss 2017-12-19 15:28:53 +01:00 committed by Arie Gurfinkel
parent 85c58e344c
commit 295d16bfae
2 changed files with 220 additions and 160 deletions

View file

@ -18,12 +18,14 @@ Revision History:
#include "muz/spacer/spacer_proof_utils.h"
#include "ast/ast_util.h"
#include "ast/ast_pp.h"
#include "ast/proof_checker/proof_checker.h"
#include <unordered_map>
#include "params.h"
#include "muz/spacer/spacer_iuc_proof.h"
#include "muz/base/dl_util.h"
namespace spacer {
@ -355,7 +357,7 @@ proof* ProofIteratorPostOrder::next()
{
bool dirty = false; // proof is dirty, if a subproof of one of its premises has been transformed
ptr_buffer<proof> args;
ptr_buffer<expr> args;
for (unsigned i = 0, sz = m.get_num_parents(p); i < sz; ++i)
{
proof* pp = m.get_parent(p, i);
@ -376,7 +378,7 @@ proof* ProofIteratorPostOrder::next()
}
else // otherwise create new step with the corresponding proofs of the premises
{
if (m.has_fact(p)) { args.push_back(to_app(m.get_fact(p))); }
if (m.has_fact(p)) { args.push_back(m.get_fact(p)); }
SASSERT(p->get_decl()->get_arity() == args.size());
proof* res = m.mk_app(p->get_decl(), args.size(), (expr * const*)args.c_ptr());
m_pinned.push_back(res);
@ -400,59 +402,103 @@ proof* ProofIteratorPostOrder::next()
{
m_cache.reset();
m_units.reset();
m_hyps.reset();
m_hypmark.reset();
m_active_hyps.reset();
m_parent_hyps.reset();
m_pinned_active_hyps.reset();
m_pinned_parent_hyps.reset();
m_pinned.reset();
}
void hypothesis_reducer::compute_hypmarks_and_hyps(proof* pr)
void hypothesis_reducer::compute_hypsets(proof* pr)
{
proof *p;
ProofIteratorPostOrder pit(pr, m);
while (pit.hasNext()) {
p = pit.next();
if (m.is_hypothesis(p))
ptr_vector<proof> todo;
todo.push_back(pr);
while (!todo.empty())
{
proof* p = todo.back();
if (m_active_hyps.contains(p))
{
m_hypmark.mark(p, true);
m_hyps.insert(m.get_fact(p));
SASSERT(m_parent_hyps.contains(p));
todo.pop_back();
}
// if we haven't already visited the current unit
else
{
compute_hypmark_from_parents(p);
}
}
}
bool hypothesis_reducer::compute_hypmark_from_parents(proof *pr)
{
bool hyp_mark = false;
if (!m.is_lemma(pr)) // lemmas clear all hypotheses
{
for (unsigned i = 0, sz = m.get_num_parents(pr); i < sz; ++i)
{
if (m_hypmark.is_marked(m.get_parent(pr, i)))
bool existsUnvisitedParent = false;
// add unprocessed premises to stack for DFS. If there is at least one unprocessed premise, don't compute the result
// for p now, but wait until those unprocessed premises are processed.
for (unsigned i = 0; i < m.get_num_parents(p); ++i) {
SASSERT(m.is_proof(p->get_arg(i)));
proof* premise = to_app(p->get_arg(i));
// if we haven't visited the premise yet
if (!m_active_hyps.contains(premise))
{
SASSERT(!m_parent_hyps.contains(premise));
// add it to the stack
todo.push_back(premise);
existsUnvisitedParent = true;
}
}
// if we already visited all premises, we can visit p too
if (!existsUnvisitedParent)
{
hyp_mark = true;
break;
todo.pop_back();
// create active_hyps-set and parent_hyps-set for step p
proof_set* active_hyps = alloc(proof_set);
m_pinned_active_hyps.insert(active_hyps);
m_active_hyps.insert(p, active_hyps);
expr_set* parent_hyps = alloc(expr_set);
m_pinned_parent_hyps.insert(parent_hyps);
m_parent_hyps.insert(p, parent_hyps);
// fill both sets
if (m.is_hypothesis(p))
{
active_hyps->insert(p);
parent_hyps->insert(m.get_fact(p));
}
else
{
for (unsigned i = 0, sz = m.get_num_parents(p); i < sz; ++i)
{
proof* pp = m.get_parent(p, i);
datalog::set_union(*parent_hyps, *m_parent_hyps.find(pp));
if (!m.is_lemma(p)) // lemmas clear all hypotheses
{
datalog::set_union(*active_hyps, *m_active_hyps.find(pp));
}
}
}
}
}
}
m_hypmark.mark(pr, hyp_mark);
return hyp_mark;
}
// collect all units that are hyp-free and are used as hypotheses somewhere
// requires that m_hypmarks and m_hyps have been computed
// requires that m_active_hyps and m_parent_hyps have been computed
void hypothesis_reducer::collect_units(proof* pr)
{
expr_set* all_hyps = m_parent_hyps.find(pr);
SASSERT(all_hyps != nullptr);
ProofIteratorPostOrder pit(pr, m);
while (pit.hasNext()) {
proof* p = pit.next();
if (!m.is_hypothesis(p))
{
// collect units that are hyp-free and are used as hypotheses somewhere
if (!m_hypmark.is_marked(p) && m.has_fact(p) && m_hyps.contains(m.get_fact(p)))
proof_set* active_hyps = m_active_hyps.find(p);
SASSERT(active_hyps != nullptr);
// collect units that are hyp-free and are used as hypotheses in the proof pr
if (active_hyps->empty() && m.has_fact(p) && all_hyps->contains(m.get_fact(p)))
{
m_units.insert(m.get_fact(p), p);
}
@ -462,8 +508,9 @@ proof* ProofIteratorPostOrder::next()
proof_ref hypothesis_reducer::reduce(proof* pr)
{
compute_hypmarks_and_hyps(pr);
compute_hypsets(pr);
collect_units(pr);
proof* res = compute_transformed_proof(pr);
SASSERT(res != nullptr);
@ -481,156 +528,162 @@ proof* ProofIteratorPostOrder::next()
{
proof *res = NULL;
m_todo.reset();
m_todo.push_back(pf);
ptr_vector<proof> todo;
todo.push_back(pf);
ptr_buffer<proof> args;
bool dirty = false;
while (!m_todo.empty()) {
proof *p, *tmp, *tmp2, *pp;
while (!todo.empty()) {
proof *p, *tmp, *pp;
unsigned todo_sz;
p = m_todo.back();
p = todo.back();
if (m_cache.find(p, tmp)) {
res = tmp;
m_todo.pop_back();
res = tmp; // TODO: shouldn't this line be removed?
todo.pop_back();
continue;
}
dirty = false;
args.reset();
todo_sz = m_todo.size();
todo_sz = todo.size();
for (unsigned i = 0, sz = m.get_num_parents(p); i < sz; ++i) {
pp = m.get_parent(p, i);
if (m_cache.find(pp, tmp)) {
args.push_back(tmp);
dirty = dirty || pp != tmp;
} else {
m_todo.push_back(pp);
todo.push_back(pp);
}
}
if (todo_sz < m_todo.size()) { continue; }
else { m_todo.pop_back(); }
if (todo_sz < todo.size()) { continue; }
else { todo.pop_back(); }
// here the transformation begins
// INV: for each premise of p, we have computed the transformed proof.
// here the proof transformation begins
// INV: whenever we visit p, active_hyps and parent_hyps have been computed for the args.
if (m.is_hypothesis(p))
{
// hyp: replace by a corresponding unit
if (m_units.find(m.get_fact(p), tmp))
{
// if the transformed subproof ending in the unit has already been computed, use it
if (m_cache.find(tmp,tmp2))
// look up the proof of the unit:
// if there is a transformed proof use that one
// otherwise use the original proof
proof* proof_of_unit;
if (!m_cache.find(tmp,proof_of_unit))
{
res = tmp2;
proof_of_unit = tmp;
}
// otherwise first compute the transformed subproof ending in the unit
// compute hypsets (have not been computed in general, since the unit can be anywhere in the proof)
compute_hypsets(proof_of_unit);
// if the transformation doesn't create a cycle, perform it
SASSERT(m_parent_hyps.contains(proof_of_unit));
expr_set* parent_hyps = m_parent_hyps.find(proof_of_unit);
if (!parent_hyps->contains(p))
{
res = proof_of_unit;
// hypsets have already been computed for proof_of_unit
}
// otherwise don't transform the proof and just use the hypothesis
else
{
m_todo.push_back(tmp);
continue;
res = p;
// hypsets have already been computed for p
}
} else { res = p; }
}
else
{
res = p;
// hypsets have already been computed for p
}
}
else if (!dirty) { res = p; }
else if (m.is_lemma(p)) {
else if (m.is_lemma(p))
{
//lemma: reduce the premise; remove reduced consequences from conclusion
SASSERT(args.size() == 1);
res = mk_lemma_core(args.get(0), m.get_fact(p));
compute_hypmark_from_parents(res);
} else if (m.is_unit_resolution(p)) {
res = mk_lemma_core(args[0], m.get_fact(p));
compute_hypsets(res);
}
else if (m.is_unit_resolution(p))
{
// unit: reduce untis; reduce the first premise; rebuild unit resolution
res = mk_unit_resolution_core(args.size(), args.c_ptr());
compute_hypmark_from_parents(res);
} else {
// if any literal is false, we don't need a step
bool has_empty_clause_premise = false;
for (unsigned i = 0; i < args.size(); ++i)
{
if (m.is_false(m.get_fact(args[i])))
{
has_empty_clause_premise = true;
res = args[i];
}
}
// otherwise:
if (!has_empty_clause_premise)
{
// other: reduce all premises; reapply
if (m.has_fact(p)) { args.push_back(to_app(m.get_fact(p))); }
SASSERT(p->get_decl()->get_arity() == args.size());
res = m.mk_app(p->get_decl(), args.size(), (expr * const*)args.c_ptr());
m_pinned.push_back(res);
compute_hypmark_from_parents(res);
}
res = mk_unit_resolution_core(args);
compute_hypsets(res);
}
else
{
res = mk_step_core(p, args);
compute_hypsets(res);
}
SASSERT(res);
m_cache.insert(p, res);
if (!m_hypmark.is_marked(res) && m.has_fact(res) && m.is_false(m.get_fact(res)))
m_cache.insert(p, res);
SASSERT(m_active_hyps.contains(res));
proof_set* active_hyps = m_active_hyps.find(res);
if (active_hyps->empty() && m.has_fact(res) && m.is_false(m.get_fact(res)))
{
return res;
}
}
}
// returns true if (hypothesis (not a)) would be reduced
bool hypothesis_reducer::is_reduced(expr *a)
{
expr_ref e(m);
if (m.is_not(a)) { e = to_app(a)->get_arg(0); }
else { e = m.mk_not(a); }
return m_units.contains(e);
UNREACHABLE();
return nullptr;
}
proof* hypothesis_reducer::mk_lemma_core(proof *pf, expr *fact)
proof* hypothesis_reducer::mk_lemma_core(proof* premise, expr *fact)
{
ptr_buffer<expr> args;
expr_ref lemma(m);
SASSERT(m.is_false(m.get_fact(premise)));
SASSERT(m_active_hyps.contains(premise));
proof_set* active_hyps = m_active_hyps.find(premise);
if (m.is_or(fact)) {
for (unsigned i = 0, sz = to_app(fact)->get_num_args(); i < sz; ++i) {
expr *a = to_app(fact)->get_arg(i);
if (!is_reduced(a))
{ args.push_back(a); }
// if there is no active hypothesis return the premise
if (active_hyps->empty())
{
return premise;
}
// otherwise build disjunction of the negated active hypothesis' and add lemma step.
else
{
expr_ref_buffer args(m);
for (auto hyp : *active_hyps)
{
expr* hyp_fact = m.get_fact(hyp);
expr_ref negated_hyp_fact(m);
negated_hyp_fact = m.is_not(hyp_fact) ? to_app(hyp_fact)->get_arg(0) : m.mk_not(hyp_fact);
args.push_back(negated_hyp_fact);
}
} else if (!is_reduced(fact))
{ args.push_back(fact); }
if (args.size() == 0) { return pf; }
else if (args.size() == 1) {
lemma = args.get(0);
} else {
lemma = m.mk_or(args.size(), args.c_ptr());
expr_ref lemma(m);
if (args.size() == 1)
{
lemma = args[0];
}
else
{
lemma = m.mk_or(args.size(), args.c_ptr());
}
proof_ref res(m);
res = m.mk_lemma(premise, lemma);
m_pinned.push_back(res);
return res;
}
proof* res = m.mk_lemma(pf, lemma);
m_pinned.push_back(res);
// XXX this is wrong because lemma is a proof and m_hyps only
// XXX contains expressions.
// XXX Not sure this is ever needed.
if (m_hyps.contains(lemma)) {
m_units.insert(lemma, res);
}
return res;
}
proof* hypothesis_reducer::mk_unit_resolution_core(unsigned num_args, proof* const *args)
proof* hypothesis_reducer::mk_unit_resolution_core(ptr_buffer<proof>& args)
{
ptr_buffer<proof> pf_args;
pf_args.push_back(args [0]);
ptr_buffer<proof> pf_args; // the arguments of the transformed unit resolution step
pf_args.push_back(args [0]); // the first element of args is the clause to resolve with
// if any literal is false, we don't need a unit resolution step
for (unsigned i = 1; i < num_args; ++i)
// could be the case due to transformations which already have been done
for (unsigned i = 1; i < args.size(); ++i)
{
if (m.is_false(m.get_fact(args[i])))
{
@ -638,7 +691,7 @@ proof* ProofIteratorPostOrder::next()
}
}
app *cls_fact = to_app(m.get_fact(args[0]));
app *cls_fact = to_app(m.get_fact(args[0])); // BUG: I guess this shouldn't work with quantifiers (since they are no apps)
ptr_buffer<expr> cls;
if (m.is_or(cls_fact)) {
for (unsigned i = 0, sz = cls_fact->get_num_args(); i < sz; ++i)
@ -651,7 +704,7 @@ proof* ProofIteratorPostOrder::next()
// XXX quadratic
for (unsigned i = 0, sz = cls.size(); i < sz; ++i) {
found = false;
for (unsigned j = 1; j < num_args; ++j) {
for (unsigned j = 1; j < args.size(); ++j) {
if (m.is_complement(cls.get(i), m.get_fact(args [j]))) {
found = true;
pf_args.push_back(args [j]);
@ -674,9 +727,30 @@ proof* ProofIteratorPostOrder::next()
}
else
{
proof *res = m.mk_unit_resolution(pf_args.size(), pf_args.c_ptr(), new_fact);
proof* res = m.mk_unit_resolution(pf_args.size(), pf_args.c_ptr(), new_fact);
m_pinned.push_back(res);
return res;
}
}
proof* hypothesis_reducer::mk_step_core(proof* old_step, ptr_buffer<proof>& args)
{
// if any of the literals is false, we don't need a step
for (unsigned i = 0; i < args.size(); ++i)
{
if (m.is_false(m.get_fact(args[i])))
{
return args[i];
}
}
// otherwise build step
args.push_back(to_app(m.get_fact(old_step))); // BUG: I guess this doesn't work with quantifiers (since they are no apps)
SASSERT(old_step->get_decl()->get_arity() == args.size());
proof* res = m.mk_app(old_step->get_decl(), args.size(), (expr * const*)args.c_ptr());
m_pinned.push_back(res);
return res;
}
};

View file

@ -77,41 +77,27 @@ private:
private:
typedef obj_hashtable<expr> expr_set;
typedef obj_hashtable<proof> proof_set;
ast_manager &m;
// tracking all created expressions
expr_ref_vector m_pinned;
// maps each proof of a clause to the transformed subproof of that clause
obj_map<proof, proof*> m_cache;
// maps each unit literals to the transformed subproof of that unit
obj_map<expr, proof*> m_units;
// -- all hypotheses in the the proof
obj_hashtable<expr> m_hyps;
// marks hypothetical proofs
ast_mark m_hypmark;
std::vector<expr_set> m_pinned_hyp_sets; // tracking all created sets of hypothesis
obj_map<expr, expr_set*> m_hyp_anchestor; // maps each proof to the set of hypothesis it contains, needed to avoid creating cycles in the proof.
// stack
ptr_vector<proof> m_todo;
expr_ref_vector m_pinned; // tracking all created expressions
ptr_vector<proof_set> m_pinned_active_hyps; // tracking all created sets of active hypothesis
ptr_vector<expr_set> m_pinned_parent_hyps; // tracking all created sets of parent hypothesis
obj_map<proof, proof*> m_cache; // maps each proof of a clause to the transformed subproof of that clause
obj_map<expr, proof*> m_units; // maps each unit literal to the subproof of that unit
obj_map<proof, proof_set*> m_active_hyps; // maps each proof of a clause to the set of proofs of active hypothesis' of the clause
obj_map<proof, expr_set*> m_parent_hyps; // maps each proof of a clause to the hypothesis-fact, which are transitive parents of that clause, needed to avoid creating cycles in the proof.
void reset();
void compute_hypsets(proof* pr); // compute active_hyps and parent_hyps for pr
void collect_units(proof* pr); // compute m_units
proof* compute_transformed_proof(proof* pf);
void compute_hypmarks_and_hyps(proof* pr);
bool compute_hypmark_from_parents(proof *pr);
void collect_units(proof* pr);
// returns true if (hypothesis (not a)) would be reduced
bool is_reduced(expr *a);
proof* mk_lemma_core(proof *pf, expr *fact);
proof* mk_unit_resolution_core(unsigned num_args, proof* const *args);
proof* mk_unit_resolution_core(ptr_buffer<proof>& args);
proof* mk_step_core(proof* old_step, ptr_buffer<proof>& args);
};
}
#endif