3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-11-05 22:06:03 +00:00

logging support for theory axioms

This commit is contained in:
nilsbecker 2019-02-21 19:29:35 +01:00
parent 279413412d
commit 28c03ed1de
26 changed files with 508 additions and 127 deletions

View file

@ -1038,9 +1038,14 @@ public:
expr_ref rem(a.mk_rem(dividend, divisor), m);
expr_ref mod(a.mk_mod(dividend, divisor), m);
expr_ref mmod(a.mk_uminus(mod), m);
literal dgez = mk_literal(a.mk_ge(divisor, zero));
mk_axiom(~dgez, th.mk_eq(rem, mod, false));
mk_axiom( dgez, th.mk_eq(rem, mmod, false));
expr_ref degz_expr(a.mk_ge(divisor, zero), m);
literal dgez = mk_literal(degz_expr);
literal pos = th.mk_eq(rem, mod, false);
literal neg = th.mk_eq(rem, mmod, false);
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_ite(degz_expr, ctx().bool_var2expr(pos.var()), ctx().bool_var2expr(neg.var())));
mk_axiom(~dgez, pos);
mk_axiom( dgez, neg);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
// q = 0 or q * (p div q) = p
@ -1048,7 +1053,9 @@ public:
if (a.is_zero(q)) return;
literal eqz = th.mk_eq(q, a.mk_real(0), false);
literal eq = th.mk_eq(a.mk_mul(q, a.mk_div(p, q)), p, false);
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(m.mk_not(ctx().bool_var2expr(eqz.var())), ctx().bool_var2expr(eq.var())));
mk_axiom(eqz, eq);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
// to_int (to_real x) = x
@ -1057,14 +1064,20 @@ public:
expr* x = nullptr, *y = nullptr;
VERIFY (a.is_to_int(n, x));
if (a.is_to_real(x, y)) {
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_eq(n, y));
mk_axiom(th.mk_eq(y, n, false));
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
else {
expr_ref to_r(a.mk_to_real(n), m);
expr_ref lo(a.mk_le(a.mk_sub(to_r, x), a.mk_real(0)), m);
expr_ref hi(a.mk_ge(a.mk_sub(x, to_r), a.mk_real(1)), m);
if (m.has_trace_stream()) th.log_axiom_instantiation(lo);
mk_axiom(mk_literal(lo));
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_not(hi));
mk_axiom(~mk_literal(hi));
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
}
@ -1074,8 +1087,10 @@ public:
VERIFY(a.is_is_int(n, x));
literal eq = th.mk_eq(a.mk_to_real(a.mk_to_int(x)), x, false);
literal is_int = ctx().get_literal(n);
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_iff(n, ctx().bool_var2expr(eq.var())));
mk_axiom(~is_int, eq);
mk_axiom(is_int, ~eq);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
// create axiom for
@ -1127,17 +1142,32 @@ public:
k = rational::zero();
}
context& c = ctx();
if (!k.is_zero()) {
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(m.mk_not(m.mk_eq(q, zero)), c.bool_var2expr(eq.var())));
mk_axiom(eq);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(m.mk_not(m.mk_eq(q, zero)), c.bool_var2expr(mod_ge_0.var())));
mk_axiom(mod_ge_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(m.mk_not(m.mk_eq(q, zero)), a.mk_le(mod, upper)));
mk_axiom(mk_literal(a.mk_le(mod, upper)));
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (k.is_pos()) {
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(m.mk_and(a.mk_gt(q, zero), c.bool_var2expr(p_ge_0.var())), c.bool_var2expr(div_ge_0.var())));
mk_axiom(~p_ge_0, div_ge_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(m.mk_and(a.mk_gt(q, zero), c.bool_var2expr(p_le_0.var())), c.bool_var2expr(div_le_0.var())));
mk_axiom(~p_le_0, div_le_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
else {
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(m.mk_and(a.mk_lt(q, zero), c.bool_var2expr(p_ge_0.var())), c.bool_var2expr(div_le_0.var())));
mk_axiom(~p_ge_0, div_le_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(m.mk_and(a.mk_lt(q, zero), c.bool_var2expr(p_le_0.var())), c.bool_var2expr(div_ge_0.var())));
mk_axiom(~p_le_0, div_ge_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
}
else {
@ -1149,26 +1179,46 @@ public:
// q >= 0 or (p mod q) < -q
literal q_ge_0 = mk_literal(a.mk_ge(q, zero));
literal q_le_0 = mk_literal(a.mk_le(q, zero));
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(m.mk_not(m.mk_eq(q, zero)), c.bool_var2expr(eq.var())));
mk_axiom(q_ge_0, eq);
mk_axiom(q_le_0, eq);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(m.mk_not(m.mk_eq(q, zero)), c.bool_var2expr(mod_ge_0.var())));
mk_axiom(q_ge_0, mod_ge_0);
mk_axiom(q_le_0, mod_ge_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(a.mk_lt(q, zero), a.mk_lt(a.mk_sub(mod, q), zero)));
mk_axiom(q_le_0, ~mk_literal(a.mk_ge(a.mk_sub(mod, q), zero)));
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(a.mk_lt(q, zero), a.mk_lt(a.mk_add(mod, q), zero)));
mk_axiom(q_ge_0, ~mk_literal(a.mk_ge(a.mk_add(mod, q), zero)));
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(m.mk_and(a.mk_gt(q, zero), c.bool_var2expr(p_ge_0.var())), c.bool_var2expr(div_ge_0.var())));
mk_axiom(q_le_0, ~p_ge_0, div_ge_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(m.mk_and(a.mk_gt(q, zero), c.bool_var2expr(p_le_0.var())), c.bool_var2expr(div_le_0.var())));
mk_axiom(q_le_0, ~p_le_0, div_le_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(m.mk_and(a.mk_lt(q, zero), c.bool_var2expr(p_ge_0.var())), c.bool_var2expr(div_le_0.var())));
mk_axiom(q_ge_0, ~p_ge_0, div_le_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(m.mk_and(a.mk_lt(q, zero), c.bool_var2expr(p_le_0.var())), c.bool_var2expr(div_ge_0.var())));
mk_axiom(q_ge_0, ~p_le_0, div_ge_0);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
if (m_arith_params.m_arith_enum_const_mod && k.is_pos() && k < rational(8)) {
unsigned _k = k.get_unsigned();
literal_buffer lits;
ptr_vector<expr> exprs;
for (unsigned j = 0; j < _k; ++j) {
literal mod_j = th.mk_eq(mod, a.mk_int(j), false);
lits.push_back(mod_j);
exprs.push_back(c.bool_var2expr(mod_j.var()));
ctx().mark_as_relevant(mod_j);
}
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_or(exprs.size(), exprs.c_ptr()));
ctx().mk_th_axiom(get_id(), lits.size(), lits.begin());
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
}
}
@ -1603,8 +1653,12 @@ public:
literal p_ge_r1 = mk_literal(a.mk_ge(p, a.mk_numeral(lo, true)));
literal n_le_div = mk_literal(a.mk_le(n, a.mk_numeral(div_r, true)));
literal n_ge_div = mk_literal(a.mk_ge(n, a.mk_numeral(div_r, true)));
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(ctx().bool_var2expr(p_le_r1.var()), ctx().bool_var2expr(n_le_div.var())));
mk_axiom(~p_le_r1, n_le_div);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(ctx().bool_var2expr(p_ge_r1.var()), ctx().bool_var2expr(n_ge_div.var())));
mk_axiom(~p_ge_r1, n_ge_div);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
all_divs_valid = false;
@ -1643,8 +1697,12 @@ public:
literal pq_rhs = ~mk_literal(a.mk_ge(pqr, zero));
literal n_le_div = mk_literal(a.mk_le(n, divc));
literal n_ge_div = mk_literal(a.mk_ge(n, divc));
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(ctx().bool_var2expr(pq_lhs.var()), ctx().bool_var2expr(n_le_div.var())));
mk_axiom(pq_lhs, n_le_div);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_implies(ctx().bool_var2expr(pq_rhs.var()), ctx().bool_var2expr(n_ge_div.var())));
mk_axiom(pq_rhs, n_ge_div);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
TRACE("arith",
literal_vector lits;
lits.push_back(pq_lhs);
@ -1759,6 +1817,8 @@ public:
case lp::lia_move::branch: {
TRACE("arith", tout << "branch\n";);
app_ref b = mk_bound(m_lia->get_term(), m_lia->get_offset(), !m_lia->is_upper());
if (m.has_trace_stream()) th.log_axiom_instantiation(m.mk_or(b, m.mk_not(b)));
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
IF_VERBOSE(2, verbose_stream() << "branch " << b << "\n";);
// branch on term >= k + 1
// branch on term <= k
@ -1772,6 +1832,8 @@ public:
++m_stats.m_gomory_cuts;
// m_explanation implies term <= k
app_ref b = mk_bound(m_lia->get_term(), m_lia->get_offset(), !m_lia->is_upper());
if (m.has_trace_stream()) th.log_axiom_instantiation(b);
if (m.has_trace_stream()) m.trace_stream() << "[end-of-instance]\n";
IF_VERBOSE(2, verbose_stream() << "cut " << b << "\n");
TRACE("arith", dump_cut_lemma(tout, m_lia->get_term(), m_lia->get_offset(), m_lia->get_explanation(), m_lia->is_upper()););
m_eqs.reset();