mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
Merge branch 'master' of https://github.com/Z3Prover/Z3
This commit is contained in:
commit
284436aa5a
|
@ -187,6 +187,7 @@ endif()
|
|||
# Note for some reason we have to leave off ``-D`` here otherwise
|
||||
# we get ``-D-DZ3DEBUG`` passed to the compiler
|
||||
list(APPEND Z3_COMPONENT_CXX_DEFINES $<$<CONFIG:Debug>:Z3DEBUG>)
|
||||
list(APPEND Z3_COMPONENT_CXX_DEFINES $<$<CONFIG:Debug>:LEAN_DEBUG>)
|
||||
list(APPEND Z3_COMPONENT_CXX_DEFINES $<$<CONFIG:Release>:_EXTERNAL_RELEASE>)
|
||||
list(APPEND Z3_COMPONENT_CXX_DEFINES $<$<CONFIG:RelWithDebInfo>:_EXTERNAL_RELEASE>)
|
||||
|
||||
|
@ -212,6 +213,16 @@ endif()
|
|||
################################################################################
|
||||
include(${CMAKE_SOURCE_DIR}/cmake/z3_add_cxx_flag.cmake)
|
||||
|
||||
################################################################################
|
||||
# C++ language version
|
||||
################################################################################
|
||||
# FIXME: Use CMake's own mechanism for selecting language version
|
||||
if (("${CMAKE_CXX_COMPILER_ID}" MATCHES "GNU") OR ("${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang"))
|
||||
z3_add_cxx_flag("-std=c++11" REQUIRED)
|
||||
else()
|
||||
message(AUTHOR_WARNING "Not setting C++ language version for compiler")
|
||||
endif()
|
||||
|
||||
################################################################################
|
||||
# Platform detection
|
||||
################################################################################
|
||||
|
@ -244,6 +255,7 @@ else()
|
|||
message(FATAL_ERROR "Platform \"${CMAKE_SYSTEM_NAME}\" not recognised")
|
||||
endif()
|
||||
|
||||
list(APPEND Z3_COMPONENT_EXTRA_INCLUDE_DIRS "${CMAKE_SOURCE_DIR}/src")
|
||||
|
||||
################################################################################
|
||||
# GNU multiple precision library support
|
||||
|
@ -287,6 +299,7 @@ if (USE_OPENMP)
|
|||
message(WARNING "OpenMP support was requested but your compiler doesn't support it")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (OPENMP_FOUND)
|
||||
list(APPEND Z3_COMPONENT_CXX_FLAGS ${OpenMP_CXX_FLAGS})
|
||||
# GCC and Clang need to have additional flags passed to the linker.
|
||||
|
@ -325,6 +338,8 @@ if (("${TARGET_ARCHITECTURE}" STREQUAL "x86_64") OR ("${TARGET_ARCHITECTURE}" ST
|
|||
unset(SSE_FLAGS)
|
||||
endif()
|
||||
|
||||
|
||||
|
||||
# FIXME: Remove "x.." when CMP0054 is set to NEW
|
||||
if ("x${CMAKE_CXX_COMPILER_ID}" STREQUAL "xMSVC")
|
||||
# This is the default for MSVC already but to replicate the
|
||||
|
|
|
@ -35,6 +35,7 @@ endforeach()
|
|||
# raised if you try to declare a component is dependent on another component
|
||||
# that has not yet been declared.
|
||||
add_subdirectory(util)
|
||||
add_subdirectory(util/lp)
|
||||
add_subdirectory(math/polynomial)
|
||||
add_subdirectory(sat)
|
||||
add_subdirectory(nlsat)
|
||||
|
|
|
@ -27,6 +27,7 @@ add_executable(shell
|
|||
opt_frontend.cpp
|
||||
smtlib_frontend.cpp
|
||||
z3_log_frontend.cpp
|
||||
lp_frontend.cpp
|
||||
# FIXME: shell should really link against libz3 but it can't due to requiring
|
||||
# use of some hidden symbols. Also libz3 has the ``api_dll`` component which
|
||||
# we don't want (I think).
|
||||
|
|
|
@ -55,9 +55,11 @@ z3_add_component(smt
|
|||
theory_dl.cpp
|
||||
theory_dummy.cpp
|
||||
theory_fpa.cpp
|
||||
theory_lra.cpp
|
||||
theory_opt.cpp
|
||||
theory_pb.cpp
|
||||
theory_seq.cpp
|
||||
theory_str.cpp
|
||||
theory_utvpi.cpp
|
||||
theory_wmaxsat.cpp
|
||||
uses_theory.cpp
|
||||
|
@ -68,6 +70,7 @@ z3_add_component(smt
|
|||
euclid
|
||||
fpa
|
||||
grobner
|
||||
lp
|
||||
macros
|
||||
normal_forms
|
||||
parser_util
|
||||
|
|
|
@ -8,6 +8,7 @@ z3_add_component(smt_params
|
|||
theory_array_params.cpp
|
||||
theory_bv_params.cpp
|
||||
theory_pb_params.cpp
|
||||
theory_str_params.cpp
|
||||
COMPONENT_DEPENDENCIES
|
||||
ast
|
||||
bit_blaster
|
||||
|
|
|
@ -117,6 +117,7 @@ add_executable(test-z3
|
|||
upolynomial.cpp
|
||||
var_subst.cpp
|
||||
vector.cpp
|
||||
lp.cpp
|
||||
${z3_test_extra_object_files}
|
||||
)
|
||||
z3_add_install_tactic_rule(${z3_test_deps})
|
||||
|
@ -128,3 +129,14 @@ target_link_libraries(test-z3 PRIVATE ${Z3_DEPENDENT_LIBS})
|
|||
target_include_directories(test-z3 PRIVATE ${Z3_COMPONENT_EXTRA_INCLUDE_DIRS})
|
||||
z3_append_linker_flag_list_to_target(test-z3 ${Z3_DEPENDENT_EXTRA_CXX_LINK_FLAGS})
|
||||
z3_add_component_dependencies_to_target(test-z3 ${z3_test_expanded_deps})
|
||||
|
||||
add_executable(lp_tst lp_main.cpp lp.cpp $<TARGET_OBJECTS:util> $<TARGET_OBJECTS:lp>)
|
||||
target_compile_definitions(lp_tst PRIVATE ${Z3_COMPONENT_CXX_DEFINES})
|
||||
target_compile_options(lp_tst PRIVATE ${Z3_COMPONENT_CXX_FLAGS})
|
||||
target_include_directories(lp_tst PRIVATE ${Z3_COMPONENT_EXTRA_INCLUDE_DIRS})
|
||||
target_link_libraries(lp_tst PRIVATE ${Z3_DEPENDENT_LIBS})
|
||||
z3_append_linker_flag_list_to_target(lp_tst ${Z3_DEPENDENT_EXTRA_CXX_LINK_FLAGS})
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
35
contrib/cmake/src/util/lp/CMakeLists.txt
Normal file
35
contrib/cmake/src/util/lp/CMakeLists.txt
Normal file
|
@ -0,0 +1,35 @@
|
|||
z3_add_component(lp
|
||||
SOURCES
|
||||
lp_utils.cpp
|
||||
binary_heap_priority_queue_instances.cpp
|
||||
binary_heap_upair_queue_instances.cpp
|
||||
bound_propagator.cpp
|
||||
core_solver_pretty_printer_instances.cpp
|
||||
dense_matrix_instances.cpp
|
||||
eta_matrix_instances.cpp
|
||||
indexed_vector_instances.cpp
|
||||
lar_core_solver_instances.cpp
|
||||
lp_core_solver_base_instances.cpp
|
||||
lp_dual_core_solver_instances.cpp
|
||||
lp_dual_simplex_instances.cpp
|
||||
lp_primal_core_solver_instances.cpp
|
||||
lp_primal_simplex_instances.cpp
|
||||
lp_settings_instances.cpp
|
||||
lp_solver_instances.cpp
|
||||
lu_instances.cpp
|
||||
matrix_instances.cpp
|
||||
permutation_matrix_instances.cpp
|
||||
quick_xplain.cpp
|
||||
row_eta_matrix_instances.cpp
|
||||
scaler_instances.cpp
|
||||
sparse_matrix_instances.cpp
|
||||
square_dense_submatrix_instances.cpp
|
||||
static_matrix_instances.cpp
|
||||
random_updater_instances.cpp
|
||||
COMPONENT_DEPENDENCIES
|
||||
util
|
||||
PYG_FILES
|
||||
lp_params.pyg
|
||||
)
|
||||
|
||||
include_directories(${src_SOURCE_DIR})
|
|
@ -11,6 +11,7 @@ from mk_util import *
|
|||
def init_project_def():
|
||||
set_version(4, 5, 1, 0)
|
||||
add_lib('util', [])
|
||||
add_lib('lp', ['util'], 'util/lp')
|
||||
add_lib('polynomial', ['util'], 'math/polynomial')
|
||||
add_lib('sat', ['util'])
|
||||
add_lib('nlsat', ['polynomial', 'sat'])
|
||||
|
@ -52,7 +53,7 @@ def init_project_def():
|
|||
add_lib('smt_params', ['ast', 'simplifier', 'pattern', 'bit_blaster'], 'smt/params')
|
||||
add_lib('proto_model', ['model', 'simplifier', 'smt_params'], 'smt/proto_model')
|
||||
add_lib('smt', ['bit_blaster', 'macros', 'normal_forms', 'cmd_context', 'proto_model',
|
||||
'substitution', 'grobner', 'euclid', 'simplex', 'proof_checker', 'pattern', 'parser_util', 'fpa'])
|
||||
'substitution', 'grobner', 'euclid', 'simplex', 'proof_checker', 'pattern', 'parser_util', 'fpa', 'lp'])
|
||||
add_lib('bv_tactics', ['tactic', 'bit_blaster', 'core_tactics'], 'tactic/bv')
|
||||
add_lib('fuzzing', ['ast'], 'test/fuzzing')
|
||||
add_lib('smt_tactic', ['smt'], 'smt/tactic')
|
||||
|
|
|
@ -774,8 +774,13 @@ def extract_c_includes(fname):
|
|||
linenum = 1
|
||||
for line in f:
|
||||
m1 = std_inc_pat.match(line)
|
||||
if m1:
|
||||
result.append(m1.group(1))
|
||||
if m1:
|
||||
root_file_name = m1.group(1)
|
||||
slash_pos = root_file_name.rfind('/')
|
||||
if slash_pos >= 0 and root_file_name.find("..") < 0 : #it is a hack for lp include files that behave as continued from "src"
|
||||
print(root_file_name)
|
||||
root_file_name = root_file_name[slash_pos+1:]
|
||||
result.append(root_file_name)
|
||||
elif not system_inc_pat.match(line) and non_std_inc_pat.match(line):
|
||||
raise MKException("Invalid #include directive at '%s':%s" % (fname, line))
|
||||
linenum = linenum + 1
|
||||
|
@ -999,6 +1004,7 @@ class Component:
|
|||
out.write('%s =' % include_defs)
|
||||
for dep in self.deps:
|
||||
out.write(' -I%s' % get_component(dep).to_src_dir)
|
||||
out.write(' -I%s' % os.path.join(REV_BUILD_DIR,"src"))
|
||||
out.write('\n')
|
||||
mk_dir(os.path.join(BUILD_DIR, self.build_dir))
|
||||
if VS_PAR and IS_WINDOWS:
|
||||
|
|
|
@ -305,6 +305,7 @@ public:
|
|||
MATCH_UNARY(is_uminus);
|
||||
MATCH_UNARY(is_to_real);
|
||||
MATCH_UNARY(is_to_int);
|
||||
MATCH_UNARY(is_is_int);
|
||||
MATCH_BINARY(is_sub);
|
||||
MATCH_BINARY(is_add);
|
||||
MATCH_BINARY(is_mul);
|
||||
|
@ -377,6 +378,9 @@ public:
|
|||
app * mk_real(int i) {
|
||||
return mk_numeral(rational(i), false);
|
||||
}
|
||||
app * mk_real(rational const& r) {
|
||||
return mk_numeral(r, false);
|
||||
}
|
||||
app * mk_le(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_LE, arg1, arg2); }
|
||||
app * mk_ge(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_GE, arg1, arg2); }
|
||||
app * mk_lt(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_LT, arg1, arg2); }
|
||||
|
|
|
@ -7,6 +7,7 @@ The following classes implement theory specific rewriting rules:
|
|||
- array_rewriter
|
||||
- datatype_rewriter
|
||||
- fpa_rewriter
|
||||
- seq_rewriter
|
||||
|
||||
Each of them provide the method
|
||||
br_status mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result)
|
||||
|
|
|
@ -1434,6 +1434,7 @@ br_status seq_rewriter::mk_re_star(expr* a, expr_ref& result) {
|
|||
* (re.range c_1 c_n) = (re.union (str.to.re c1) (str.to.re c2) ... (str.to.re cn))
|
||||
*/
|
||||
br_status seq_rewriter::mk_re_range(expr* lo, expr* hi, expr_ref& result) {
|
||||
return BR_FAILED;
|
||||
TRACE("seq", tout << "rewrite re.range [" << mk_pp(lo, m()) << " " << mk_pp(hi, m()) << "]\n";);
|
||||
zstring str_lo, str_hi;
|
||||
if (m_util.str.is_string(lo, str_lo) && m_util.str.is_string(hi, str_hi)) {
|
||||
|
|
|
@ -26,6 +26,7 @@ Notes:
|
|||
#include "theory_diff_logic.h"
|
||||
#include "theory_dense_diff_logic.h"
|
||||
#include "theory_pb.h"
|
||||
#include "theory_lra.h"
|
||||
#include "ast_pp.h"
|
||||
#include "ast_smt_pp.h"
|
||||
#include "pp_params.hpp"
|
||||
|
@ -143,6 +144,9 @@ namespace opt {
|
|||
else if (typeid(smt::theory_dense_si&) == typeid(*arith_theory)) {
|
||||
return dynamic_cast<smt::theory_dense_si&>(*arith_theory);
|
||||
}
|
||||
else if (typeid(smt::theory_lra&) == typeid(*arith_theory)) {
|
||||
return dynamic_cast<smt::theory_lra&>(*arith_theory);
|
||||
}
|
||||
else {
|
||||
UNREACHABLE();
|
||||
return dynamic_cast<smt::theory_mi_arith&>(*arith_theory);
|
||||
|
@ -401,6 +405,14 @@ namespace opt {
|
|||
return th.mk_ge(m_fm, v, val);
|
||||
}
|
||||
|
||||
|
||||
if (typeid(smt::theory_lra) == typeid(opt)) {
|
||||
smt::theory_lra& th = dynamic_cast<smt::theory_lra&>(opt);
|
||||
SASSERT(val.is_finite());
|
||||
return th.mk_ge(m_fm, v, val.get_numeral());
|
||||
}
|
||||
|
||||
// difference logic?
|
||||
if (typeid(smt::theory_dense_si) == typeid(opt) &&
|
||||
val.get_infinitesimal().is_zero()) {
|
||||
smt::theory_dense_si& th = dynamic_cast<smt::theory_dense_si&>(opt);
|
||||
|
|
|
@ -66,7 +66,7 @@ namespace smt2 {
|
|||
|
||||
scoped_ptr<bv_util> m_bv_util;
|
||||
scoped_ptr<arith_util> m_arith_util;
|
||||
scoped_ptr<seq_util> m_seq_util;
|
||||
scoped_ptr<seq_util> m_seq_util;
|
||||
scoped_ptr<pattern_validator> m_pattern_validator;
|
||||
scoped_ptr<var_shifter> m_var_shifter;
|
||||
|
||||
|
|
111
src/shell/lp_frontend.cpp
Normal file
111
src/shell/lp_frontend.cpp
Normal file
|
@ -0,0 +1,111 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson 2016-10-27
|
||||
|
||||
--*/
|
||||
|
||||
#include "lp_params.hpp"
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/lp/mps_reader.h"
|
||||
#include "timeout.h"
|
||||
#include "cancel_eh.h"
|
||||
#include "scoped_timer.h"
|
||||
#include "rlimit.h"
|
||||
#include "gparams.h"
|
||||
#include <signal.h>
|
||||
|
||||
static lean::lp_solver<double, double>* g_solver = 0;
|
||||
|
||||
static void display_statistics() {
|
||||
if (g_solver && g_solver->settings().print_statistics) {
|
||||
// TBD display relevant information about statistics
|
||||
}
|
||||
}
|
||||
|
||||
static void STD_CALL on_ctrl_c(int) {
|
||||
signal (SIGINT, SIG_DFL);
|
||||
#pragma omp critical (g_display_stats)
|
||||
{
|
||||
display_statistics();
|
||||
}
|
||||
raise(SIGINT);
|
||||
}
|
||||
|
||||
static void on_timeout() {
|
||||
#pragma omp critical (g_display_stats)
|
||||
{
|
||||
display_statistics();
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
struct front_end_resource_limit : public lean::lp_resource_limit {
|
||||
reslimit& m_reslim;
|
||||
|
||||
front_end_resource_limit(reslimit& lim):
|
||||
m_reslim(lim)
|
||||
{}
|
||||
|
||||
virtual bool get_cancel_flag() { return !m_reslim.inc(); }
|
||||
};
|
||||
|
||||
void run_solver(lp_params & params, char const * mps_file_name) {
|
||||
|
||||
reslimit rlim;
|
||||
unsigned timeout = gparams::get().get_uint("timeout", 0);
|
||||
unsigned rlimit = gparams::get().get_uint("rlimit", 0);
|
||||
front_end_resource_limit lp_limit(rlim);
|
||||
|
||||
scoped_rlimit _rlimit(rlim, rlimit);
|
||||
cancel_eh<reslimit> eh(rlim);
|
||||
scoped_timer timer(timeout, &eh);
|
||||
|
||||
std::string fn(mps_file_name);
|
||||
lean::mps_reader<double, double> reader(fn);
|
||||
reader.set_message_stream(&std::cout); // can be redirected
|
||||
reader.read();
|
||||
if (!reader.is_ok()) {
|
||||
std::cerr << "cannot process " << mps_file_name << std::endl;
|
||||
return;
|
||||
}
|
||||
lean::lp_solver<double, double> * solver = reader.create_solver(false); // false - to create the primal solver
|
||||
solver->settings().set_resource_limit(lp_limit);
|
||||
g_solver = solver;
|
||||
if (params.min()) {
|
||||
solver->flip_costs();
|
||||
}
|
||||
solver->settings().set_message_ostream(&std::cout);
|
||||
solver->settings().report_frequency = params.rep_freq();
|
||||
solver->settings().print_statistics = params.print_stats();
|
||||
solver->settings().presolve_with_double_solver_for_lar = params.presolve_with_dbl();
|
||||
solver->find_maximal_solution();
|
||||
|
||||
*(solver->settings().get_message_ostream()) << "status is " << lp_status_to_string(solver->get_status()) << std::endl;
|
||||
if (solver->get_status() == lean::OPTIMAL) {
|
||||
if (params.min()) {
|
||||
solver->flip_costs();
|
||||
}
|
||||
solver->print_model(std::cout);
|
||||
}
|
||||
|
||||
// #pragma omp critical (g_display_stats)
|
||||
{
|
||||
display_statistics();
|
||||
register_on_timeout_proc(0);
|
||||
g_solver = 0;
|
||||
}
|
||||
delete solver;
|
||||
}
|
||||
|
||||
unsigned read_mps_file(char const * mps_file_name) {
|
||||
signal(SIGINT, on_ctrl_c);
|
||||
register_on_timeout_proc(on_timeout);
|
||||
lp_params p;
|
||||
param_descrs r;
|
||||
p.collect_param_descrs(r);
|
||||
run_solver(p, mps_file_name);
|
||||
return 0;
|
||||
}
|
7
src/shell/lp_frontend.h
Normal file
7
src/shell/lp_frontend.h
Normal file
|
@ -0,0 +1,7 @@
|
|||
/*
|
||||
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
|
||||
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
unsigned read_mps_file(char const * mps_file_name);
|
|
@ -35,8 +35,9 @@ Revision History:
|
|||
#include"error_codes.h"
|
||||
#include"gparams.h"
|
||||
#include"env_params.h"
|
||||
#include "lp_frontend.h"
|
||||
|
||||
typedef enum { IN_UNSPECIFIED, IN_SMTLIB, IN_SMTLIB_2, IN_DATALOG, IN_DIMACS, IN_WCNF, IN_OPB, IN_Z3_LOG } input_kind;
|
||||
typedef enum { IN_UNSPECIFIED, IN_SMTLIB, IN_SMTLIB_2, IN_DATALOG, IN_DIMACS, IN_WCNF, IN_OPB, IN_Z3_LOG, IN_MPS } input_kind;
|
||||
|
||||
std::string g_aux_input_file;
|
||||
char const * g_input_file = 0;
|
||||
|
@ -342,6 +343,10 @@ int STD_CALL main(int argc, char ** argv) {
|
|||
else if (strcmp(ext, "smt") == 0) {
|
||||
g_input_kind = IN_SMTLIB;
|
||||
}
|
||||
else if (strcmp(ext, "mps") == 0 || strcmp(ext, "sif") == 0 ||
|
||||
strcmp(ext, "MPS") == 0 || strcmp(ext, "SIF") == 0) {
|
||||
g_input_kind = IN_MPS;
|
||||
}
|
||||
}
|
||||
}
|
||||
switch (g_input_kind) {
|
||||
|
@ -367,6 +372,9 @@ int STD_CALL main(int argc, char ** argv) {
|
|||
case IN_Z3_LOG:
|
||||
replay_z3_log(g_input_file);
|
||||
break;
|
||||
case IN_MPS:
|
||||
return_value = read_mps_file(g_input_file);
|
||||
break;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
}
|
||||
|
|
|
@ -32,6 +32,7 @@ void smt_params::updt_local_params(params_ref const & _p) {
|
|||
m_restart_factor = p.restart_factor();
|
||||
m_case_split_strategy = static_cast<case_split_strategy>(p.case_split());
|
||||
m_theory_case_split = p.theory_case_split();
|
||||
m_theory_aware_branching = p.theory_aware_branching();
|
||||
m_delay_units = p.delay_units();
|
||||
m_delay_units_threshold = p.delay_units_threshold();
|
||||
m_preprocess = _p.get_bool("preprocess", true); // hidden parameter
|
||||
|
|
|
@ -25,6 +25,7 @@ Revision History:
|
|||
#include"theory_arith_params.h"
|
||||
#include"theory_array_params.h"
|
||||
#include"theory_bv_params.h"
|
||||
#include"theory_str_params.h"
|
||||
#include"theory_pb_params.h"
|
||||
#include"theory_datatype_params.h"
|
||||
#include"preprocessor_params.h"
|
||||
|
@ -76,6 +77,7 @@ struct smt_params : public preprocessor_params,
|
|||
public theory_arith_params,
|
||||
public theory_array_params,
|
||||
public theory_bv_params,
|
||||
public theory_str_params,
|
||||
public theory_pb_params,
|
||||
public theory_datatype_params {
|
||||
bool m_display_proof;
|
||||
|
@ -111,6 +113,7 @@ struct smt_params : public preprocessor_params,
|
|||
unsigned m_rel_case_split_order;
|
||||
bool m_lookahead_diseq;
|
||||
bool m_theory_case_split;
|
||||
bool m_theory_aware_branching;
|
||||
|
||||
// -----------------------------------
|
||||
//
|
||||
|
@ -248,6 +251,8 @@ struct smt_params : public preprocessor_params,
|
|||
m_case_split_strategy(CS_ACTIVITY_DELAY_NEW),
|
||||
m_rel_case_split_order(0),
|
||||
m_lookahead_diseq(false),
|
||||
m_theory_case_split(false),
|
||||
m_theory_aware_branching(false),
|
||||
m_delay_units(false),
|
||||
m_delay_units_threshold(32),
|
||||
m_theory_resolve(false),
|
||||
|
@ -290,7 +295,7 @@ struct smt_params : public preprocessor_params,
|
|||
m_check_at_labels(false),
|
||||
m_dump_goal_as_smt(false),
|
||||
m_auto_config(true),
|
||||
m_string_solver(symbol("seq")){
|
||||
m_string_solver(symbol("auto")){
|
||||
updt_local_params(p);
|
||||
}
|
||||
|
||||
|
|
|
@ -64,6 +64,18 @@ def_module_params(module_name='smt',
|
|||
('theory_case_split', BOOL, False, 'Allow the context to use heuristics involving theory case splits, which are a set of literals of which exactly one can be assigned True. If this option is false, the context will generate extra axioms to enforce this instead.'),
|
||||
('string_solver', SYMBOL, 'seq', 'solver for string/sequence theories. options are: \'z3str3\' (specialized string solver), \'seq\' (sequence solver), \'auto\' (use static features to choose best solver)'),
|
||||
('core.validate', BOOL, False, 'validate unsat core produced by SMT context'),
|
||||
('str.strong_arrangements', BOOL, True, 'assert equivalences instead of implications when generating string arrangement axioms'),
|
||||
('str.aggressive_length_testing', BOOL, False, 'prioritize testing concrete length values over generating more options'),
|
||||
('str.aggressive_value_testing', BOOL, False, 'prioritize testing concrete string constant values over generating more options'),
|
||||
('str.aggressive_unroll_testing', BOOL, True, 'prioritize testing concrete regex unroll counts over generating more options'),
|
||||
('str.fast_length_tester_cache', BOOL, False, 'cache length tester constants instead of regenerating them'),
|
||||
('str.fast_value_tester_cache', BOOL, True, 'cache value tester constants instead of regenerating them'),
|
||||
('str.string_constant_cache', BOOL, True, 'cache all generated string constants generated from anywhere in theory_str'),
|
||||
('str.use_binary_search', BOOL, False, 'use a binary search heuristic for finding concrete length values for free variables in theory_str (set to False to use linear search)'),
|
||||
('str.binary_search_start', UINT, 64, 'initial upper bound for theory_str binary search'),
|
||||
('theory_aware_branching', BOOL, False, 'Allow the context to use extra information from theory solvers regarding literal branching prioritization.'),
|
||||
('str.finite_overlap_models', BOOL, False, 'attempt a finite model search for overlapping variables instead of completely giving up on the arrangement'),
|
||||
('str.overlap_priority', DOUBLE, -0.1, 'theory-aware priority for overlapping variable cases; use smt.theory_aware_branching=true'),
|
||||
('core.minimize', BOOL, False, 'minimize unsat core produced by SMT context'),
|
||||
('core.extend_patterns', BOOL, False, 'extend unsat core with literals that trigger (potential) quantifier instances'),
|
||||
('core.extend_patterns.max_distance', UINT, UINT_MAX, 'limits the distance of a pattern-extended unsat core'),
|
||||
|
|
34
src/smt/params/theory_str_params.cpp
Normal file
34
src/smt/params/theory_str_params.cpp
Normal file
|
@ -0,0 +1,34 @@
|
|||
/*++
|
||||
Module Name:
|
||||
|
||||
theory_str_params.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Parameters for string theory plugin
|
||||
|
||||
Author:
|
||||
|
||||
Murphy Berzish (mtrberzi) 2016-12-13
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
|
||||
#include"theory_str_params.h"
|
||||
#include"smt_params_helper.hpp"
|
||||
|
||||
void theory_str_params::updt_params(params_ref const & _p) {
|
||||
smt_params_helper p(_p);
|
||||
m_StrongArrangements = p.str_strong_arrangements();
|
||||
m_AggressiveLengthTesting = p.str_aggressive_length_testing();
|
||||
m_AggressiveValueTesting = p.str_aggressive_value_testing();
|
||||
m_AggressiveUnrollTesting = p.str_aggressive_unroll_testing();
|
||||
m_UseFastLengthTesterCache = p.str_fast_length_tester_cache();
|
||||
m_UseFastValueTesterCache = p.str_fast_value_tester_cache();
|
||||
m_StringConstantCache = p.str_string_constant_cache();
|
||||
m_FiniteOverlapModels = p.str_finite_overlap_models();
|
||||
m_UseBinarySearch = p.str_use_binary_search();
|
||||
m_BinarySearchInitialUpperBound = p.str_binary_search_start();
|
||||
m_OverlapTheoryAwarePriority = p.str_overlap_priority();
|
||||
}
|
102
src/smt/params/theory_str_params.h
Normal file
102
src/smt/params/theory_str_params.h
Normal file
|
@ -0,0 +1,102 @@
|
|||
/*++
|
||||
Module Name:
|
||||
|
||||
theory_str_params.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Parameters for string theory plugin
|
||||
|
||||
Author:
|
||||
|
||||
Murphy Berzish (mtrberzi) 2016-12-13
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
|
||||
#ifndef THEORY_STR_PARAMS_H
|
||||
#define THEORY_STR_PARAMS_H
|
||||
|
||||
#include"params.h"
|
||||
|
||||
struct theory_str_params {
|
||||
/*
|
||||
* If AssertStrongerArrangements is set to true,
|
||||
* the implications that would normally be asserted during arrangement generation
|
||||
* will instead be asserted as equivalences.
|
||||
* This is a stronger version of the standard axiom.
|
||||
* The Z3str2 axioms can be simulated by setting this to false.
|
||||
*/
|
||||
bool m_StrongArrangements;
|
||||
|
||||
/*
|
||||
* If AggressiveLengthTesting is true, we manipulate the phase of length tester equalities
|
||||
* to prioritize trying concrete length options over choosing the "more" option.
|
||||
*/
|
||||
bool m_AggressiveLengthTesting;
|
||||
|
||||
/*
|
||||
* Similarly, if AggressiveValueTesting is true, we manipulate the phase of value tester equalities
|
||||
* to prioritize trying concrete value options over choosing the "more" option.
|
||||
*/
|
||||
bool m_AggressiveValueTesting;
|
||||
|
||||
/*
|
||||
* If AggressiveUnrollTesting is true, we manipulate the phase of regex unroll tester equalities
|
||||
* to prioritize trying concrete unroll counts over choosing the "more" option.
|
||||
*/
|
||||
bool m_AggressiveUnrollTesting;
|
||||
|
||||
/*
|
||||
* If UseFastLengthTesterCache is set to true,
|
||||
* length tester terms will not be generated from scratch each time they are needed,
|
||||
* but will be saved in a map and looked up.
|
||||
*/
|
||||
bool m_UseFastLengthTesterCache;
|
||||
|
||||
/*
|
||||
* If UseFastValueTesterCache is set to true,
|
||||
* value tester terms will not be generated from scratch each time they are needed,
|
||||
* but will be saved in a map and looked up.
|
||||
*/
|
||||
bool m_UseFastValueTesterCache;
|
||||
|
||||
/*
|
||||
* If StringConstantCache is set to true,
|
||||
* all string constants in theory_str generated from anywhere will be cached and saved.
|
||||
*/
|
||||
bool m_StringConstantCache;
|
||||
|
||||
/*
|
||||
* If FiniteOverlapModels is set to true,
|
||||
* arrangements that result in overlapping variables will generate a small number of models
|
||||
* to test instead of completely giving up on the case.
|
||||
*/
|
||||
bool m_FiniteOverlapModels;
|
||||
|
||||
bool m_UseBinarySearch;
|
||||
unsigned m_BinarySearchInitialUpperBound;
|
||||
|
||||
double m_OverlapTheoryAwarePriority;
|
||||
|
||||
theory_str_params(params_ref const & p = params_ref()):
|
||||
m_StrongArrangements(true),
|
||||
m_AggressiveLengthTesting(false),
|
||||
m_AggressiveValueTesting(false),
|
||||
m_AggressiveUnrollTesting(true),
|
||||
m_UseFastLengthTesterCache(false),
|
||||
m_UseFastValueTesterCache(true),
|
||||
m_StringConstantCache(true),
|
||||
m_FiniteOverlapModels(false),
|
||||
m_UseBinarySearch(false),
|
||||
m_BinarySearchInitialUpperBound(64),
|
||||
m_OverlapTheoryAwarePriority(-0.1)
|
||||
{
|
||||
updt_params(p);
|
||||
}
|
||||
|
||||
void updt_params(params_ref const & p);
|
||||
};
|
||||
|
||||
#endif /* THEORY_STR_PARAMS_H */
|
|
@ -2448,8 +2448,9 @@ namespace smt {
|
|||
|
||||
ptr_vector<theory>::iterator it = m_theory_set.begin();
|
||||
ptr_vector<theory>::iterator end = m_theory_set.end();
|
||||
for (; it != end; ++it)
|
||||
for (; it != end; ++it) {
|
||||
(*it)->pop_scope_eh(num_scopes);
|
||||
}
|
||||
|
||||
del_justifications(m_justifications, s.m_justifications_lim);
|
||||
|
||||
|
@ -3013,6 +3014,10 @@ namespace smt {
|
|||
}
|
||||
}
|
||||
|
||||
void context::add_theory_aware_branching_info(bool_var v, double priority, lbool phase) {
|
||||
m_case_split_queue->add_theory_aware_branching_info(v, priority, phase);
|
||||
}
|
||||
|
||||
void context::undo_th_case_split(literal l) {
|
||||
m_all_th_case_split_literals.remove(l.index());
|
||||
if (m_literal2casesplitsets.contains(l.index())) {
|
||||
|
@ -3022,10 +3027,6 @@ namespace smt {
|
|||
}
|
||||
}
|
||||
|
||||
void context::add_theory_aware_branching_info(bool_var v, double priority, lbool phase) {
|
||||
m_case_split_queue->add_theory_aware_branching_info(v, priority, phase);
|
||||
}
|
||||
|
||||
bool context::propagate_th_case_split(unsigned qhead) {
|
||||
if (m_all_th_case_split_literals.empty())
|
||||
return true;
|
||||
|
@ -3034,7 +3035,7 @@ namespace smt {
|
|||
// not counting any literals that get assigned by this method
|
||||
// this relies on bcp() to give us its old m_qhead and therefore
|
||||
// bcp() should always be called before this method
|
||||
|
||||
|
||||
unsigned assigned_literal_end = m_assigned_literals.size();
|
||||
for (; qhead < assigned_literal_end; ++qhead) {
|
||||
literal l = m_assigned_literals[qhead];
|
||||
|
@ -3114,11 +3115,18 @@ namespace smt {
|
|||
}
|
||||
|
||||
bool is_valid_assumption(ast_manager & m, expr * assumption) {
|
||||
expr* arg;
|
||||
if (!m.is_bool(assumption))
|
||||
return false;
|
||||
if (is_uninterp_const(assumption))
|
||||
return true;
|
||||
if (m.is_not(assumption) && is_uninterp_const(to_app(assumption)->get_arg(0)))
|
||||
if (m.is_not(assumption, arg) && is_uninterp_const(arg))
|
||||
return true;
|
||||
if (!is_app(assumption))
|
||||
return false;
|
||||
if (to_app(assumption)->get_num_args() == 0)
|
||||
return true;
|
||||
if (m.is_not(assumption, arg) && is_app(arg) && to_app(arg)->get_num_args() == 0)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
|
|
@ -20,6 +20,7 @@ Revision History:
|
|||
#include"smt_setup.h"
|
||||
#include"static_features.h"
|
||||
#include"theory_arith.h"
|
||||
#include"theory_lra.h"
|
||||
#include"theory_dense_diff_logic.h"
|
||||
#include"theory_diff_logic.h"
|
||||
#include"theory_utvpi.h"
|
||||
|
@ -33,6 +34,7 @@ Revision History:
|
|||
#include"theory_seq.h"
|
||||
#include"theory_pb.h"
|
||||
#include"theory_fpa.h"
|
||||
#include"theory_str.h"
|
||||
|
||||
namespace smt {
|
||||
|
||||
|
@ -205,7 +207,7 @@ namespace smt {
|
|||
void setup::setup_QF_BVRE() {
|
||||
setup_QF_BV();
|
||||
setup_QF_LIA();
|
||||
setup_seq();
|
||||
m_context.register_plugin(alloc(theory_seq, m_manager));
|
||||
}
|
||||
|
||||
void setup::setup_QF_UF(static_features const & st) {
|
||||
|
@ -441,7 +443,7 @@ namespace smt {
|
|||
m_params.m_arith_propagate_eqs = false;
|
||||
m_params.m_eliminate_term_ite = true;
|
||||
m_params.m_nnf_cnf = false;
|
||||
setup_mi_arith();
|
||||
setup_r_arith();
|
||||
}
|
||||
|
||||
void setup::setup_QF_LRA(static_features const & st) {
|
||||
|
@ -466,7 +468,7 @@ namespace smt {
|
|||
m_params.m_restart_adaptive = false;
|
||||
}
|
||||
m_params.m_arith_small_lemma_size = 32;
|
||||
setup_mi_arith();
|
||||
setup_r_arith();
|
||||
}
|
||||
|
||||
void setup::setup_QF_LIA() {
|
||||
|
@ -538,7 +540,7 @@ namespace smt {
|
|||
m_params.m_relevancy_lvl = 0;
|
||||
m_params.m_arith_reflect = false;
|
||||
m_params.m_nnf_cnf = false;
|
||||
setup_mi_arith();
|
||||
setup_r_arith();
|
||||
}
|
||||
|
||||
void setup::setup_QF_BV() {
|
||||
|
@ -705,7 +707,8 @@ namespace smt {
|
|||
}
|
||||
|
||||
void setup::setup_QF_S() {
|
||||
setup_seq();
|
||||
m_context.register_plugin(alloc(smt::theory_mi_arith, m_manager, m_params));
|
||||
m_context.register_plugin(alloc(smt::theory_str, m_manager, m_params));
|
||||
}
|
||||
|
||||
bool is_arith(static_features const & st) {
|
||||
|
@ -716,6 +719,13 @@ namespace smt {
|
|||
m_context.register_plugin(alloc(smt::theory_i_arith, m_manager, m_params));
|
||||
}
|
||||
|
||||
void setup::setup_r_arith() {
|
||||
m_context.register_plugin(alloc(smt::theory_mi_arith, m_manager, m_params));
|
||||
|
||||
// Disabled in initial commit of LRA additions
|
||||
// m_context.register_plugin(alloc(smt::theory_lra, m_manager, m_params));
|
||||
}
|
||||
|
||||
void setup::setup_mi_arith() {
|
||||
if (m_params.m_arith_mode == AS_OPTINF) {
|
||||
m_context.register_plugin(alloc(smt::theory_inf_arith, m_manager, m_params));
|
||||
|
@ -853,7 +863,8 @@ namespace smt {
|
|||
}
|
||||
|
||||
void setup::setup_str() {
|
||||
m_context.register_plugin(alloc(smt::theory_seq, m_manager));
|
||||
setup_arith();
|
||||
m_context.register_plugin(alloc(theory_str, m_manager, m_params));
|
||||
}
|
||||
|
||||
void setup::setup_seq() {
|
||||
|
|
|
@ -99,6 +99,7 @@ namespace smt {
|
|||
void setup_card();
|
||||
void setup_i_arith();
|
||||
void setup_mi_arith();
|
||||
void setup_r_arith();
|
||||
void setup_fpa();
|
||||
void setup_str();
|
||||
|
||||
|
|
|
@ -54,7 +54,7 @@ namespace smt {
|
|||
}
|
||||
}
|
||||
|
||||
void theory::display_app(std::ostream & out, app * n) const {
|
||||
std::ostream& theory::display_app(std::ostream & out, app * n) const {
|
||||
func_decl * d = n->get_decl();
|
||||
if (n->get_num_args() == 0) {
|
||||
out << d->get_name();
|
||||
|
@ -73,9 +73,10 @@ namespace smt {
|
|||
else {
|
||||
out << "#" << n->get_id();
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
void theory::display_flat_app(std::ostream & out, app * n) const {
|
||||
std::ostream& theory::display_flat_app(std::ostream & out, app * n) const {
|
||||
func_decl * d = n->get_decl();
|
||||
if (n->get_num_args() == 0) {
|
||||
out << d->get_name();
|
||||
|
@ -106,6 +107,7 @@ namespace smt {
|
|||
else {
|
||||
out << "#" << n->get_id();
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
bool theory::is_relevant_and_shared(enode * n) const {
|
||||
|
|
|
@ -186,13 +186,13 @@ namespace smt {
|
|||
}
|
||||
|
||||
/**
|
||||
\brief This method is called from smt_context when an unsat core is generated.
|
||||
\brief This method is called from the smt_context when an unsat core is generated.
|
||||
The theory may change the answer to UNKNOWN by returning l_undef from this method.
|
||||
*/
|
||||
virtual lbool validate_unsat_core(expr_ref_vector & unsat_core) {
|
||||
return l_false;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
\brief This method is invoked before the search starts.
|
||||
*/
|
||||
|
@ -337,14 +337,14 @@ namespace smt {
|
|||
|
||||
virtual void collect_statistics(::statistics & st) const {
|
||||
}
|
||||
|
||||
void display_app(std::ostream & out, app * n) const;
|
||||
|
||||
void display_flat_app(std::ostream & out, app * n) const;
|
||||
|
||||
void display_var_def(std::ostream & out, theory_var v) const { return display_app(out, get_enode(v)->get_owner()); }
|
||||
std::ostream& display_app(std::ostream & out, app * n) const;
|
||||
|
||||
void display_var_flat_def(std::ostream & out, theory_var v) const { return display_flat_app(out, get_enode(v)->get_owner()); }
|
||||
std::ostream& display_flat_app(std::ostream & out, app * n) const;
|
||||
|
||||
std::ostream& display_var_def(std::ostream & out, theory_var v) const { return display_app(out, get_enode(v)->get_owner()); }
|
||||
|
||||
std::ostream& display_var_flat_def(std::ostream & out, theory_var v) const { return display_flat_app(out, get_enode(v)->get_owner()); }
|
||||
|
||||
/**
|
||||
\brief Assume eqs between variable that are equal with respect to the given table.
|
||||
|
|
|
@ -505,7 +505,7 @@ namespace smt {
|
|||
struct var_value_eq {
|
||||
theory_arith & m_th;
|
||||
var_value_eq(theory_arith & th):m_th(th) {}
|
||||
bool operator()(theory_var v1, theory_var v2) const { return m_th.get_value(v1) == m_th.get_value(v2) && m_th.is_int(v1) == m_th.is_int(v2); }
|
||||
bool operator()(theory_var v1, theory_var v2) const { return m_th.get_value(v1) == m_th.get_value(v2) && m_th.is_int_src(v1) == m_th.is_int_src(v2); }
|
||||
};
|
||||
|
||||
typedef int_hashtable<var_value_hash, var_value_eq> var_value_table;
|
||||
|
|
|
@ -2201,16 +2201,19 @@ namespace smt {
|
|||
int num = get_num_vars();
|
||||
for (theory_var v = 0; v < num; v++) {
|
||||
enode * n = get_enode(v);
|
||||
TRACE("func_interp_bug", tout << "#" << n->get_owner_id() << " -> " << m_value[v] << "\n";);
|
||||
if (!is_relevant_and_shared(n))
|
||||
TRACE("func_interp_bug", tout << mk_pp(n->get_owner(), get_manager()) << " -> " << m_value[v] << " root #" << n->get_root()->get_owner_id() << " " << is_relevant_and_shared(n) << "\n";);
|
||||
if (!is_relevant_and_shared(n)) {
|
||||
continue;
|
||||
}
|
||||
theory_var other = null_theory_var;
|
||||
other = m_var_value_table.insert_if_not_there(v);
|
||||
if (other == v)
|
||||
if (other == v) {
|
||||
continue;
|
||||
}
|
||||
enode * n2 = get_enode(other);
|
||||
if (n->get_root() == n2->get_root())
|
||||
if (n->get_root() == n2->get_root()) {
|
||||
continue;
|
||||
}
|
||||
TRACE("func_interp_bug", tout << "adding to assume_eq queue #" << n->get_owner_id() << " #" << n2->get_owner_id() << "\n";);
|
||||
m_assume_eq_candidates.push_back(std::make_pair(other, v));
|
||||
result = true;
|
||||
|
|
2622
src/smt/theory_lra.cpp
Normal file
2622
src/smt/theory_lra.cpp
Normal file
File diff suppressed because it is too large
Load diff
96
src/smt/theory_lra.h
Normal file
96
src/smt/theory_lra.h
Normal file
|
@ -0,0 +1,96 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
theory_lra.h
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Lev Nachmanson (levnach) 2016-25-3
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
|
||||
Revision History:
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
||||
#include "theory_opt.h"
|
||||
|
||||
namespace smt {
|
||||
class theory_lra : public theory, public theory_opt {
|
||||
class imp;
|
||||
imp* m_imp;
|
||||
public:
|
||||
theory_lra(ast_manager& m, theory_arith_params& params);
|
||||
virtual ~theory_lra();
|
||||
virtual theory* mk_fresh(context* new_ctx);
|
||||
virtual char const* get_name() const { return "lra"; }
|
||||
|
||||
virtual void init(context * ctx);
|
||||
|
||||
virtual bool internalize_atom(app * atom, bool gate_ctx);
|
||||
|
||||
virtual bool internalize_term(app * term);
|
||||
|
||||
virtual void internalize_eq_eh(app * atom, bool_var v);
|
||||
|
||||
virtual void assign_eh(bool_var v, bool is_true);
|
||||
|
||||
virtual void new_eq_eh(theory_var v1, theory_var v2);
|
||||
|
||||
virtual bool use_diseqs() const;
|
||||
|
||||
virtual void new_diseq_eh(theory_var v1, theory_var v2);
|
||||
|
||||
virtual void push_scope_eh();
|
||||
|
||||
virtual void pop_scope_eh(unsigned num_scopes);
|
||||
|
||||
virtual void restart_eh();
|
||||
|
||||
virtual void relevant_eh(app* e);
|
||||
|
||||
virtual void init_search_eh();
|
||||
|
||||
virtual final_check_status final_check_eh();
|
||||
|
||||
virtual bool is_shared(theory_var v) const;
|
||||
|
||||
virtual bool can_propagate();
|
||||
|
||||
virtual void propagate();
|
||||
|
||||
virtual justification * why_is_diseq(theory_var v1, theory_var v2);
|
||||
|
||||
// virtual void flush_eh();
|
||||
|
||||
virtual void reset_eh();
|
||||
|
||||
virtual void init_model(model_generator & m);
|
||||
|
||||
virtual model_value_proc * mk_value(enode * n, model_generator & mg);
|
||||
|
||||
virtual bool get_value(enode* n, expr_ref& r);
|
||||
|
||||
virtual bool validate_eq_in_model(theory_var v1, theory_var v2, bool is_true) const;
|
||||
|
||||
virtual void display(std::ostream & out) const;
|
||||
|
||||
virtual void collect_statistics(::statistics & st) const;
|
||||
|
||||
// optimization
|
||||
virtual inf_eps value(theory_var);
|
||||
virtual inf_eps maximize(theory_var v, expr_ref& blocker, bool& has_shared);
|
||||
virtual theory_var add_objective(app* term);
|
||||
virtual expr_ref mk_ge(filter_model_converter& fm, theory_var v, inf_rational const& val);
|
||||
|
||||
|
||||
};
|
||||
|
||||
}
|
10574
src/smt/theory_str.cpp
Normal file
10574
src/smt/theory_str.cpp
Normal file
File diff suppressed because it is too large
Load diff
653
src/smt/theory_str.h
Normal file
653
src/smt/theory_str.h
Normal file
|
@ -0,0 +1,653 @@
|
|||
/*++
|
||||
Module Name:
|
||||
|
||||
theory_str.h
|
||||
|
||||
Abstract:
|
||||
|
||||
String Theory Plugin
|
||||
|
||||
Author:
|
||||
|
||||
Murphy Berzish and Yunhui Zheng
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
#ifndef _THEORY_STR_H_
|
||||
#define _THEORY_STR_H_
|
||||
|
||||
#include"smt_theory.h"
|
||||
#include"theory_str_params.h"
|
||||
#include"trail.h"
|
||||
#include"th_rewriter.h"
|
||||
#include"value_factory.h"
|
||||
#include"smt_model_generator.h"
|
||||
#include"arith_decl_plugin.h"
|
||||
#include<set>
|
||||
#include<stack>
|
||||
#include<vector>
|
||||
#include<map>
|
||||
#include"seq_decl_plugin.h"
|
||||
#include"union_find.h"
|
||||
|
||||
namespace smt {
|
||||
|
||||
typedef hashtable<symbol, symbol_hash_proc, symbol_eq_proc> symbol_set;
|
||||
|
||||
class str_value_factory : public value_factory {
|
||||
seq_util u;
|
||||
symbol_set m_strings;
|
||||
std::string delim;
|
||||
unsigned m_next;
|
||||
public:
|
||||
str_value_factory(ast_manager & m, family_id fid) :
|
||||
value_factory(m, fid),
|
||||
u(m), delim("!"), m_next(0) {}
|
||||
virtual ~str_value_factory() {}
|
||||
virtual expr * get_some_value(sort * s) {
|
||||
return u.str.mk_string(symbol("some value"));
|
||||
}
|
||||
virtual bool get_some_values(sort * s, expr_ref & v1, expr_ref & v2) {
|
||||
v1 = u.str.mk_string(symbol("value 1"));
|
||||
v2 = u.str.mk_string(symbol("value 2"));
|
||||
return true;
|
||||
}
|
||||
virtual expr * get_fresh_value(sort * s) {
|
||||
if (u.is_string(s)) {
|
||||
while (true) {
|
||||
std::ostringstream strm;
|
||||
strm << delim << std::hex << (m_next++) << std::dec << delim;
|
||||
symbol sym(strm.str().c_str());
|
||||
if (m_strings.contains(sym)) continue;
|
||||
m_strings.insert(sym);
|
||||
return u.str.mk_string(sym);
|
||||
}
|
||||
}
|
||||
sort* seq = 0;
|
||||
if (u.is_re(s, seq)) {
|
||||
expr* v0 = get_fresh_value(seq);
|
||||
return u.re.mk_to_re(v0);
|
||||
}
|
||||
TRACE("t_str", tout << "unexpected sort in get_fresh_value(): " << mk_pp(s, m_manager) << std::endl;);
|
||||
UNREACHABLE(); return NULL;
|
||||
}
|
||||
virtual void register_value(expr * n) { /* Ignore */ }
|
||||
};
|
||||
|
||||
// rather than modify obj_pair_map I inherit from it and add my own helper methods
|
||||
class theory_str_contain_pair_bool_map_t : public obj_pair_map<expr, expr, expr*> {
|
||||
public:
|
||||
expr * operator[](std::pair<expr*, expr*> key) const {
|
||||
expr * value;
|
||||
bool found = this->find(key.first, key.second, value);
|
||||
if (found) {
|
||||
return value;
|
||||
} else {
|
||||
TRACE("t_str", tout << "WARNING: lookup miss in contain_pair_bool_map!" << std::endl;);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
bool contains(std::pair<expr*, expr*> key) const {
|
||||
expr * unused;
|
||||
return this->find(key.first, key.second, unused);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Ctx>
|
||||
class binary_search_trail : public trail<Ctx> {
|
||||
obj_map<expr, ptr_vector<expr> > & target;
|
||||
expr * entry;
|
||||
public:
|
||||
binary_search_trail(obj_map<expr, ptr_vector<expr> > & target, expr * entry) :
|
||||
target(target), entry(entry) {}
|
||||
virtual ~binary_search_trail() {}
|
||||
virtual void undo(Ctx & ctx) {
|
||||
TRACE("t_str_binary_search", tout << "in binary_search_trail::undo()" << std::endl;);
|
||||
if (target.contains(entry)) {
|
||||
if (!target[entry].empty()) {
|
||||
target[entry].pop_back();
|
||||
} else {
|
||||
TRACE("t_str_binary_search", tout << "WARNING: attempt to remove length tester from an empty stack" << std::endl;);
|
||||
}
|
||||
} else {
|
||||
TRACE("t_str_binary_search", tout << "WARNING: attempt to access length tester map via invalid key" << std::endl;);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
class nfa {
|
||||
protected:
|
||||
bool m_valid;
|
||||
unsigned m_next_id;
|
||||
|
||||
unsigned next_id() {
|
||||
unsigned retval = m_next_id;
|
||||
++m_next_id;
|
||||
return retval;
|
||||
}
|
||||
|
||||
unsigned m_start_state;
|
||||
unsigned m_end_state;
|
||||
|
||||
std::map<unsigned, std::map<char, unsigned> > transition_map;
|
||||
std::map<unsigned, std::set<unsigned> > epsilon_map;
|
||||
|
||||
void make_transition(unsigned start, char symbol, unsigned end) {
|
||||
transition_map[start][symbol] = end;
|
||||
}
|
||||
|
||||
void make_epsilon_move(unsigned start, unsigned end) {
|
||||
epsilon_map[start].insert(end);
|
||||
}
|
||||
|
||||
// Convert a regular expression to an e-NFA using Thompson's construction
|
||||
void convert_re(expr * e, unsigned & start, unsigned & end, seq_util & u);
|
||||
|
||||
public:
|
||||
nfa(seq_util & u, expr * e)
|
||||
: m_valid(true), m_next_id(0), m_start_state(0), m_end_state(0) {
|
||||
convert_re(e, m_start_state, m_end_state, u);
|
||||
}
|
||||
|
||||
nfa() : m_valid(false), m_next_id(0), m_start_state(0), m_end_state(0) {}
|
||||
|
||||
bool is_valid() const {
|
||||
return m_valid;
|
||||
}
|
||||
|
||||
void epsilon_closure(unsigned start, std::set<unsigned> & closure);
|
||||
|
||||
bool matches(zstring input);
|
||||
};
|
||||
|
||||
class theory_str : public theory {
|
||||
struct T_cut
|
||||
{
|
||||
int level;
|
||||
std::map<expr*, int> vars;
|
||||
|
||||
T_cut() {
|
||||
level = -100;
|
||||
}
|
||||
};
|
||||
|
||||
typedef trail_stack<theory_str> th_trail_stack;
|
||||
typedef union_find<theory_str> th_union_find;
|
||||
|
||||
typedef map<rational, expr*, obj_hash<rational>, default_eq<rational> > rational_map;
|
||||
struct zstring_hash_proc {
|
||||
unsigned operator()(zstring const & s) const {
|
||||
return string_hash(s.encode().c_str(), static_cast<unsigned>(s.length()), 17);
|
||||
}
|
||||
};
|
||||
typedef map<zstring, expr*, zstring_hash_proc, default_eq<zstring> > string_map;
|
||||
|
||||
protected:
|
||||
theory_str_params const & m_params;
|
||||
|
||||
/*
|
||||
* Setting EagerStringConstantLengthAssertions to true allows some methods,
|
||||
* in particular internalize_term(), to add
|
||||
* length assertions about relevant string constants.
|
||||
* Note that currently this should always be set to 'true', or else *no* length assertions
|
||||
* will be made about string constants.
|
||||
*/
|
||||
bool opt_EagerStringConstantLengthAssertions;
|
||||
|
||||
/*
|
||||
* If VerifyFinalCheckProgress is set to true, continuing after final check is invoked
|
||||
* without asserting any new axioms is considered a bug and will throw an exception.
|
||||
*/
|
||||
bool opt_VerifyFinalCheckProgress;
|
||||
|
||||
/*
|
||||
* This constant controls how eagerly we expand unrolls in unbounded regex membership tests.
|
||||
*/
|
||||
int opt_LCMUnrollStep;
|
||||
|
||||
/*
|
||||
* If NoQuickReturn_IntegerTheory is set to true,
|
||||
* integer theory integration checks that assert axioms
|
||||
* will not return from the function after asserting their axioms.
|
||||
* The default behaviour of Z3str2 is to set this to 'false'. This may be incorrect.
|
||||
*/
|
||||
bool opt_NoQuickReturn_IntegerTheory;
|
||||
|
||||
/*
|
||||
* If DisableIntegerTheoryIntegration is set to true,
|
||||
* ALL calls to the integer theory integration methods
|
||||
* (get_value, get_len_value, lower_bound, upper_bound)
|
||||
* will ignore what the arithmetic solver believes about length terms,
|
||||
* and will return no information.
|
||||
*
|
||||
* This reduces performance significantly, but can be useful to enable
|
||||
* if it is suspected that string-integer integration, or the arithmetic solver itself,
|
||||
* might have a bug.
|
||||
*
|
||||
* The default behaviour of Z3str2 is to set this to 'false'.
|
||||
*/
|
||||
bool opt_DisableIntegerTheoryIntegration;
|
||||
|
||||
/*
|
||||
* If DeferEQCConsistencyCheck is set to true,
|
||||
* expensive calls to new_eq_check() will be deferred until final check,
|
||||
* at which time the consistency of *all* string equivalence classes will be validated.
|
||||
*/
|
||||
bool opt_DeferEQCConsistencyCheck;
|
||||
|
||||
/*
|
||||
* If CheckVariableScope is set to true,
|
||||
* pop_scope_eh() and final_check_eh() will run extra checks
|
||||
* to determine whether the current assignment
|
||||
* contains references to any internal variables that are no longer in scope.
|
||||
*/
|
||||
bool opt_CheckVariableScope;
|
||||
|
||||
/*
|
||||
* If ConcatOverlapAvoid is set to true,
|
||||
* the check to simplify Concat = Concat in handle_equality() will
|
||||
* avoid simplifying wrt. pairs of Concat terms that will immediately
|
||||
* result in an overlap. (false = Z3str2 behaviour)
|
||||
*/
|
||||
bool opt_ConcatOverlapAvoid;
|
||||
|
||||
bool search_started;
|
||||
arith_util m_autil;
|
||||
seq_util u;
|
||||
int sLevel;
|
||||
|
||||
bool finalCheckProgressIndicator;
|
||||
|
||||
expr_ref_vector m_trail; // trail for generated terms
|
||||
|
||||
str_value_factory * m_factory;
|
||||
|
||||
// terms we couldn't go through set_up_axioms() with because they weren't internalized
|
||||
expr_ref_vector m_delayed_axiom_setup_terms;
|
||||
|
||||
ptr_vector<enode> m_basicstr_axiom_todo;
|
||||
svector<std::pair<enode*,enode*> > m_str_eq_todo;
|
||||
ptr_vector<enode> m_concat_axiom_todo;
|
||||
ptr_vector<enode> m_string_constant_length_todo;
|
||||
ptr_vector<enode> m_concat_eval_todo;
|
||||
|
||||
// enode lists for library-aware/high-level string terms (e.g. substr, contains)
|
||||
ptr_vector<enode> m_library_aware_axiom_todo;
|
||||
|
||||
// hashtable of all exprs for which we've already set up term-specific axioms --
|
||||
// this prevents infinite recursive descent with respect to axioms that
|
||||
// include an occurrence of the term for which axioms are being generated
|
||||
obj_hashtable<expr> axiomatized_terms;
|
||||
|
||||
int tmpStringVarCount;
|
||||
int tmpXorVarCount;
|
||||
int tmpLenTestVarCount;
|
||||
int tmpValTestVarCount;
|
||||
std::map<std::pair<expr*, expr*>, std::map<int, expr*> > varForBreakConcat;
|
||||
|
||||
bool avoidLoopCut;
|
||||
bool loopDetected;
|
||||
obj_map<expr, std::stack<T_cut*> > cut_var_map;
|
||||
expr_ref m_theoryStrOverlapAssumption_term;
|
||||
|
||||
obj_hashtable<expr> variable_set;
|
||||
obj_hashtable<expr> internal_variable_set;
|
||||
obj_hashtable<expr> regex_variable_set;
|
||||
std::map<int, std::set<expr*> > internal_variable_scope_levels;
|
||||
|
||||
obj_hashtable<expr> internal_lenTest_vars;
|
||||
obj_hashtable<expr> internal_valTest_vars;
|
||||
obj_hashtable<expr> internal_unrollTest_vars;
|
||||
|
||||
obj_hashtable<expr> input_var_in_len;
|
||||
|
||||
obj_map<expr, unsigned int> fvar_len_count_map;
|
||||
std::map<expr*, ptr_vector<expr> > fvar_lenTester_map;
|
||||
obj_map<expr, expr*> lenTester_fvar_map;
|
||||
|
||||
std::map<expr*, std::map<int, svector<std::pair<int, expr*> > > > fvar_valueTester_map;
|
||||
std::map<expr*, expr*> valueTester_fvar_map;
|
||||
|
||||
std::map<expr*, int_vector> val_range_map;
|
||||
|
||||
// This can't be an expr_ref_vector because the constructor is wrong,
|
||||
// we would need to modify the allocator so we pass in ast_manager
|
||||
std::map<expr*, std::map<std::set<expr*>, ptr_vector<expr> > > unroll_tries_map;
|
||||
std::map<expr*, expr*> unroll_var_map;
|
||||
std::map<std::pair<expr*, expr*>, expr*> concat_eq_unroll_ast_map;
|
||||
|
||||
expr_ref_vector contains_map;
|
||||
|
||||
theory_str_contain_pair_bool_map_t contain_pair_bool_map;
|
||||
//obj_map<expr, obj_pair_set<expr, expr> > contain_pair_idx_map;
|
||||
std::map<expr*, std::set<std::pair<expr*, expr*> > > contain_pair_idx_map;
|
||||
|
||||
std::map<std::pair<expr*, zstring>, expr*> regex_in_bool_map;
|
||||
std::map<expr*, std::set<zstring> > regex_in_var_reg_str_map;
|
||||
|
||||
std::map<expr*, nfa> regex_nfa_cache; // Regex term --> NFA
|
||||
|
||||
char * char_set;
|
||||
std::map<char, int> charSetLookupTable;
|
||||
int charSetSize;
|
||||
|
||||
obj_pair_map<expr, expr, expr*> concat_astNode_map;
|
||||
|
||||
// all (str.to-int) and (int.to-str) terms
|
||||
expr_ref_vector string_int_conversion_terms;
|
||||
obj_hashtable<expr> string_int_axioms;
|
||||
|
||||
// used when opt_FastLengthTesterCache is true
|
||||
rational_map lengthTesterCache;
|
||||
// used when opt_FastValueTesterCache is true
|
||||
string_map valueTesterCache;
|
||||
|
||||
string_map stringConstantCache;
|
||||
unsigned long totalCacheAccessCount;
|
||||
unsigned long cacheHitCount;
|
||||
unsigned long cacheMissCount;
|
||||
|
||||
// cache mapping each string S to Length(S)
|
||||
obj_map<expr, app*> length_ast_map;
|
||||
|
||||
th_union_find m_find;
|
||||
th_trail_stack m_trail_stack;
|
||||
theory_var get_var(expr * n) const;
|
||||
expr * get_eqc_next(expr * n);
|
||||
app * get_ast(theory_var i);
|
||||
|
||||
// binary search heuristic data
|
||||
struct binary_search_info {
|
||||
rational lowerBound;
|
||||
rational midPoint;
|
||||
rational upperBound;
|
||||
rational windowSize;
|
||||
|
||||
binary_search_info() : lowerBound(rational::zero()), midPoint(rational::zero()),
|
||||
upperBound(rational::zero()), windowSize(rational::zero()) {}
|
||||
binary_search_info(rational lower, rational mid, rational upper, rational windowSize) :
|
||||
lowerBound(lower), midPoint(mid), upperBound(upper), windowSize(windowSize) {}
|
||||
|
||||
void calculate_midpoint() {
|
||||
midPoint = floor(lowerBound + ((upperBound - lowerBound) / rational(2)) );
|
||||
}
|
||||
};
|
||||
// maps a free string var to a stack of active length testers.
|
||||
// can use binary_search_trail to record changes to this object
|
||||
obj_map<expr, ptr_vector<expr> > binary_search_len_tester_stack;
|
||||
// maps a length tester var to the *active* search window
|
||||
obj_map<expr, binary_search_info> binary_search_len_tester_info;
|
||||
// maps a free string var to the first length tester to be (re)used
|
||||
obj_map<expr, expr*> binary_search_starting_len_tester;
|
||||
// maps a length tester to the next length tester to be (re)used if the split is "low"
|
||||
obj_map<expr, expr*> binary_search_next_var_low;
|
||||
// maps a length tester to the next length tester to be (re)used if the split is "high"
|
||||
obj_map<expr, expr*> binary_search_next_var_high;
|
||||
|
||||
// finite model finding data
|
||||
// maps a finite model tester var to a list of variables that will be tested
|
||||
obj_map<expr, ptr_vector<expr> > finite_model_test_varlists;
|
||||
protected:
|
||||
void assert_axiom(expr * e);
|
||||
void assert_implication(expr * premise, expr * conclusion);
|
||||
expr * rewrite_implication(expr * premise, expr * conclusion);
|
||||
|
||||
expr * mk_string(zstring const& str);
|
||||
expr * mk_string(const char * str);
|
||||
|
||||
app * mk_strlen(expr * e);
|
||||
expr * mk_concat(expr * n1, expr * n2);
|
||||
expr * mk_concat_const_str(expr * n1, expr * n2);
|
||||
app * mk_contains(expr * haystack, expr * needle);
|
||||
app * mk_indexof(expr * haystack, expr * needle);
|
||||
app * mk_fresh_const(char const* name, sort* s);
|
||||
|
||||
literal mk_literal(expr* _e);
|
||||
app * mk_int(int n);
|
||||
app * mk_int(rational & q);
|
||||
|
||||
void check_and_init_cut_var(expr * node);
|
||||
void add_cut_info_one_node(expr * baseNode, int slevel, expr * node);
|
||||
void add_cut_info_merge(expr * destNode, int slevel, expr * srcNode);
|
||||
bool has_self_cut(expr * n1, expr * n2);
|
||||
|
||||
// for ConcatOverlapAvoid
|
||||
bool will_result_in_overlap(expr * lhs, expr * rhs);
|
||||
|
||||
void track_variable_scope(expr * var);
|
||||
app * mk_str_var(std::string name);
|
||||
app * mk_int_var(std::string name);
|
||||
app * mk_nonempty_str_var();
|
||||
app * mk_internal_xor_var();
|
||||
expr * mk_internal_valTest_var(expr * node, int len, int vTries);
|
||||
app * mk_regex_rep_var();
|
||||
app * mk_unroll_bound_var();
|
||||
app * mk_unroll_test_var();
|
||||
void add_nonempty_constraint(expr * s);
|
||||
|
||||
void instantiate_concat_axiom(enode * cat);
|
||||
void try_eval_concat(enode * cat);
|
||||
void instantiate_basic_string_axioms(enode * str);
|
||||
void instantiate_str_eq_length_axiom(enode * lhs, enode * rhs);
|
||||
|
||||
void instantiate_axiom_CharAt(enode * e);
|
||||
void instantiate_axiom_prefixof(enode * e);
|
||||
void instantiate_axiom_suffixof(enode * e);
|
||||
void instantiate_axiom_Contains(enode * e);
|
||||
void instantiate_axiom_Indexof(enode * e);
|
||||
void instantiate_axiom_Indexof2(enode * e);
|
||||
void instantiate_axiom_LastIndexof(enode * e);
|
||||
void instantiate_axiom_Substr(enode * e);
|
||||
void instantiate_axiom_Replace(enode * e);
|
||||
void instantiate_axiom_str_to_int(enode * e);
|
||||
void instantiate_axiom_int_to_str(enode * e);
|
||||
|
||||
expr * mk_RegexIn(expr * str, expr * regexp);
|
||||
void instantiate_axiom_RegexIn(enode * e);
|
||||
app * mk_unroll(expr * n, expr * bound);
|
||||
|
||||
void process_unroll_eq_const_str(expr * unrollFunc, expr * constStr);
|
||||
void unroll_str2reg_constStr(expr * unrollFunc, expr * eqConstStr);
|
||||
void process_concat_eq_unroll(expr * concat, expr * unroll);
|
||||
|
||||
void set_up_axioms(expr * ex);
|
||||
void handle_equality(expr * lhs, expr * rhs);
|
||||
|
||||
app * mk_value_helper(app * n);
|
||||
expr * get_eqc_value(expr * n, bool & hasEqcValue);
|
||||
expr * z3str2_get_eqc_value(expr * n , bool & hasEqcValue);
|
||||
bool in_same_eqc(expr * n1, expr * n2);
|
||||
expr * collect_eq_nodes(expr * n, expr_ref_vector & eqcSet);
|
||||
|
||||
bool get_value(expr* e, rational& val) const;
|
||||
bool get_len_value(expr* e, rational& val);
|
||||
bool lower_bound(expr* _e, rational& lo);
|
||||
bool upper_bound(expr* _e, rational& hi);
|
||||
|
||||
bool can_two_nodes_eq(expr * n1, expr * n2);
|
||||
bool can_concat_eq_str(expr * concat, zstring& str);
|
||||
bool can_concat_eq_concat(expr * concat1, expr * concat2);
|
||||
bool check_concat_len_in_eqc(expr * concat);
|
||||
bool check_length_consistency(expr * n1, expr * n2);
|
||||
bool check_length_const_string(expr * n1, expr * constStr);
|
||||
bool check_length_eq_var_concat(expr * n1, expr * n2);
|
||||
bool check_length_concat_concat(expr * n1, expr * n2);
|
||||
bool check_length_concat_var(expr * concat, expr * var);
|
||||
bool check_length_var_var(expr * var1, expr * var2);
|
||||
void check_contain_in_new_eq(expr * n1, expr * n2);
|
||||
void check_contain_by_eqc_val(expr * varNode, expr * constNode);
|
||||
void check_contain_by_substr(expr * varNode, expr_ref_vector & willEqClass);
|
||||
void check_contain_by_eq_nodes(expr * n1, expr * n2);
|
||||
bool in_contain_idx_map(expr * n);
|
||||
void compute_contains(std::map<expr*, expr*> & varAliasMap,
|
||||
std::map<expr*, expr*> & concatAliasMap, std::map<expr*, expr *> & varConstMap,
|
||||
std::map<expr*, expr*> & concatConstMap, std::map<expr*, std::map<expr*, int> > & varEqConcatMap);
|
||||
expr * dealias_node(expr * node, std::map<expr*, expr*> & varAliasMap, std::map<expr*, expr*> & concatAliasMap);
|
||||
void get_grounded_concats(expr* node, std::map<expr*, expr*> & varAliasMap,
|
||||
std::map<expr*, expr*> & concatAliasMap, std::map<expr*, expr*> & varConstMap,
|
||||
std::map<expr*, expr*> & concatConstMap, std::map<expr*, std::map<expr*, int> > & varEqConcatMap,
|
||||
std::map<expr*, std::map<std::vector<expr*>, std::set<expr*> > > & groundedMap);
|
||||
void print_grounded_concat(expr * node, std::map<expr*, std::map<std::vector<expr*>, std::set<expr*> > > & groundedMap);
|
||||
void check_subsequence(expr* str, expr* strDeAlias, expr* subStr, expr* subStrDeAlias, expr* boolVar,
|
||||
std::map<expr*, std::map<std::vector<expr*>, std::set<expr*> > > & groundedMap);
|
||||
bool is_partial_in_grounded_concat(const std::vector<expr*> & strVec, const std::vector<expr*> & subStrVec);
|
||||
|
||||
void get_nodes_in_concat(expr * node, ptr_vector<expr> & nodeList);
|
||||
expr * simplify_concat(expr * node);
|
||||
|
||||
void simplify_parent(expr * nn, expr * eq_str);
|
||||
|
||||
void simplify_concat_equality(expr * lhs, expr * rhs);
|
||||
void solve_concat_eq_str(expr * concat, expr * str);
|
||||
|
||||
void infer_len_concat_equality(expr * nn1, expr * nn2);
|
||||
bool infer_len_concat(expr * n, rational & nLen);
|
||||
void infer_len_concat_arg(expr * n, rational len);
|
||||
|
||||
bool is_concat_eq_type1(expr * concatAst1, expr * concatAst2);
|
||||
bool is_concat_eq_type2(expr * concatAst1, expr * concatAst2);
|
||||
bool is_concat_eq_type3(expr * concatAst1, expr * concatAst2);
|
||||
bool is_concat_eq_type4(expr * concatAst1, expr * concatAst2);
|
||||
bool is_concat_eq_type5(expr * concatAst1, expr * concatAst2);
|
||||
bool is_concat_eq_type6(expr * concatAst1, expr * concatAst2);
|
||||
|
||||
void process_concat_eq_type1(expr * concatAst1, expr * concatAst2);
|
||||
void process_concat_eq_type2(expr * concatAst1, expr * concatAst2);
|
||||
void process_concat_eq_type3(expr * concatAst1, expr * concatAst2);
|
||||
void process_concat_eq_type4(expr * concatAst1, expr * concatAst2);
|
||||
void process_concat_eq_type5(expr * concatAst1, expr * concatAst2);
|
||||
void process_concat_eq_type6(expr * concatAst1, expr * concatAst2);
|
||||
|
||||
void print_cut_var(expr * node, std::ofstream & xout);
|
||||
|
||||
void generate_mutual_exclusion(expr_ref_vector & exprs);
|
||||
void add_theory_aware_branching_info(expr * term, double priority, lbool phase);
|
||||
|
||||
bool new_eq_check(expr * lhs, expr * rhs);
|
||||
void group_terms_by_eqc(expr * n, std::set<expr*> & concats, std::set<expr*> & vars, std::set<expr*> & consts);
|
||||
|
||||
int ctx_dep_analysis(std::map<expr*, int> & strVarMap, std::map<expr*, int> & freeVarMap,
|
||||
std::map<expr*, std::set<expr*> > & unrollGroupMap, std::map<expr*, std::map<expr*, int> > & var_eq_concat_map);
|
||||
void trace_ctx_dep(std::ofstream & tout,
|
||||
std::map<expr*, expr*> & aliasIndexMap,
|
||||
std::map<expr*, expr*> & var_eq_constStr_map,
|
||||
std::map<expr*, std::map<expr*, int> > & var_eq_concat_map,
|
||||
std::map<expr*, std::map<expr*, int> > & var_eq_unroll_map,
|
||||
std::map<expr*, expr*> & concat_eq_constStr_map,
|
||||
std::map<expr*, std::map<expr*, int> > & concat_eq_concat_map,
|
||||
std::map<expr*, std::set<expr*> > & unrollGroupMap);
|
||||
|
||||
void classify_ast_by_type(expr * node, std::map<expr*, int> & varMap,
|
||||
std::map<expr*, int> & concatMap, std::map<expr*, int> & unrollMap);
|
||||
void classify_ast_by_type_in_positive_context(std::map<expr*, int> & varMap,
|
||||
std::map<expr*, int> & concatMap, std::map<expr*, int> & unrollMap);
|
||||
|
||||
expr * mk_internal_lenTest_var(expr * node, int lTries);
|
||||
expr * gen_len_val_options_for_free_var(expr * freeVar, expr * lenTesterInCbEq, zstring lenTesterValue);
|
||||
void process_free_var(std::map<expr*, int> & freeVar_map);
|
||||
expr * gen_len_test_options(expr * freeVar, expr * indicator, int tries);
|
||||
expr * gen_free_var_options(expr * freeVar, expr * len_indicator,
|
||||
zstring len_valueStr, expr * valTesterInCbEq, zstring valTesterValueStr);
|
||||
expr * gen_val_options(expr * freeVar, expr * len_indicator, expr * val_indicator,
|
||||
zstring lenStr, int tries);
|
||||
void print_value_tester_list(svector<std::pair<int, expr*> > & testerList);
|
||||
bool get_next_val_encode(int_vector & base, int_vector & next);
|
||||
zstring gen_val_string(int len, int_vector & encoding);
|
||||
|
||||
// binary search heuristic
|
||||
expr * binary_search_length_test(expr * freeVar, expr * previousLenTester, zstring previousLenTesterValue);
|
||||
expr_ref binary_search_case_split(expr * freeVar, expr * tester, binary_search_info & bounds, literal_vector & case_split_lits);
|
||||
|
||||
bool free_var_attempt(expr * nn1, expr * nn2);
|
||||
void more_len_tests(expr * lenTester, zstring lenTesterValue);
|
||||
void more_value_tests(expr * valTester, zstring valTesterValue);
|
||||
|
||||
expr * get_alias_index_ast(std::map<expr*, expr*> & aliasIndexMap, expr * node);
|
||||
expr * getMostLeftNodeInConcat(expr * node);
|
||||
expr * getMostRightNodeInConcat(expr * node);
|
||||
void get_var_in_eqc(expr * n, std::set<expr*> & varSet);
|
||||
void get_concats_in_eqc(expr * n, std::set<expr*> & concats);
|
||||
void get_const_str_asts_in_node(expr * node, expr_ref_vector & constList);
|
||||
expr * eval_concat(expr * n1, expr * n2);
|
||||
|
||||
bool finalcheck_str2int(app * a);
|
||||
bool finalcheck_int2str(app * a);
|
||||
|
||||
// strRegex
|
||||
|
||||
void get_eqc_allUnroll(expr * n, expr * &constStr, std::set<expr*> & unrollFuncSet);
|
||||
void get_eqc_simpleUnroll(expr * n, expr * &constStr, std::set<expr*> & unrollFuncSet);
|
||||
void gen_assign_unroll_reg(std::set<expr*> & unrolls);
|
||||
expr * gen_assign_unroll_Str2Reg(expr * n, std::set<expr*> & unrolls);
|
||||
expr * gen_unroll_conditional_options(expr * var, std::set<expr*> & unrolls, zstring lcmStr);
|
||||
expr * gen_unroll_assign(expr * var, zstring lcmStr, expr * testerVar, int l, int h);
|
||||
void reduce_virtual_regex_in(expr * var, expr * regex, expr_ref_vector & items);
|
||||
void check_regex_in(expr * nn1, expr * nn2);
|
||||
zstring get_std_regex_str(expr * r);
|
||||
|
||||
void dump_assignments();
|
||||
void initialize_charset();
|
||||
|
||||
void check_variable_scope();
|
||||
void recursive_check_variable_scope(expr * ex);
|
||||
|
||||
void collect_var_concat(expr * node, std::set<expr*> & varSet, std::set<expr*> & concatSet);
|
||||
bool propagate_length(std::set<expr*> & varSet, std::set<expr*> & concatSet, std::map<expr*, int> & exprLenMap);
|
||||
void get_unique_non_concat_nodes(expr * node, std::set<expr*> & argSet);
|
||||
bool propagate_length_within_eqc(expr * var);
|
||||
|
||||
// TESTING
|
||||
void refresh_theory_var(expr * e);
|
||||
|
||||
expr_ref set_up_finite_model_test(expr * lhs, expr * rhs);
|
||||
void finite_model_test(expr * v, expr * c);
|
||||
|
||||
public:
|
||||
theory_str(ast_manager & m, theory_str_params const & params);
|
||||
virtual ~theory_str();
|
||||
|
||||
virtual char const * get_name() const { return "seq"; }
|
||||
virtual void display(std::ostream & out) const;
|
||||
|
||||
bool overlapping_variables_detected() const { return loopDetected; }
|
||||
|
||||
th_trail_stack& get_trail_stack() { return m_trail_stack; }
|
||||
void merge_eh(theory_var, theory_var, theory_var v1, theory_var v2) {}
|
||||
void after_merge_eh(theory_var r1, theory_var r2, theory_var v1, theory_var v2) { }
|
||||
void unmerge_eh(theory_var v1, theory_var v2) {}
|
||||
protected:
|
||||
virtual bool internalize_atom(app * atom, bool gate_ctx);
|
||||
virtual bool internalize_term(app * term);
|
||||
virtual enode* ensure_enode(expr* e);
|
||||
virtual theory_var mk_var(enode * n);
|
||||
|
||||
virtual void new_eq_eh(theory_var, theory_var);
|
||||
virtual void new_diseq_eh(theory_var, theory_var);
|
||||
|
||||
virtual theory* mk_fresh(context*) { return alloc(theory_str, get_manager(), m_params); }
|
||||
virtual void init_search_eh();
|
||||
virtual void add_theory_assumptions(expr_ref_vector & assumptions);
|
||||
virtual lbool validate_unsat_core(expr_ref_vector & unsat_core);
|
||||
virtual void relevant_eh(app * n);
|
||||
virtual void assign_eh(bool_var v, bool is_true);
|
||||
virtual void push_scope_eh();
|
||||
virtual void pop_scope_eh(unsigned num_scopes);
|
||||
virtual void reset_eh();
|
||||
|
||||
virtual bool can_propagate();
|
||||
virtual void propagate();
|
||||
|
||||
virtual final_check_status final_check_eh();
|
||||
virtual void attach_new_th_var(enode * n);
|
||||
|
||||
virtual void init_model(model_generator & m);
|
||||
virtual model_value_proc * mk_value(enode * n, model_generator & mg);
|
||||
virtual void finalize_model(model_generator & mg);
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif /* _THEORY_STR_H_ */
|
144
src/test/argument_parser.h
Normal file
144
src/test/argument_parser.h
Normal file
|
@ -0,0 +1,144 @@
|
|||
/*
|
||||
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <set>
|
||||
#include <iostream>
|
||||
|
||||
namespace lean {
|
||||
class argument_parser {
|
||||
std::unordered_map<std::string, std::string> m_options;
|
||||
std::unordered_map<std::string, std::string> m_options_with_after_string;
|
||||
std::set<std::string> m_used_options;
|
||||
std::unordered_map<std::string, std::string> m_used_options_with_after_string;
|
||||
std::vector<std::string> m_free_args;
|
||||
std::vector<std::string> m_args;
|
||||
|
||||
public:
|
||||
std::string m_error_message;
|
||||
argument_parser(unsigned argn, char * const* args) {
|
||||
for (unsigned i = 0; i < argn; i++) {
|
||||
m_args.push_back(std::string(args[i]));
|
||||
}
|
||||
}
|
||||
|
||||
void add_option(std::string s) {
|
||||
add_option_with_help_string(s, "");
|
||||
}
|
||||
|
||||
void add_option_with_help_string(std::string s, std::string help_string) {
|
||||
m_options[s]=help_string;
|
||||
}
|
||||
|
||||
void add_option_with_after_string(std::string s) {
|
||||
add_option_with_after_string_with_help(s, "");
|
||||
}
|
||||
|
||||
void add_option_with_after_string_with_help(std::string s, std::string help_string) {
|
||||
m_options_with_after_string[s]=help_string;
|
||||
}
|
||||
|
||||
|
||||
bool parse() {
|
||||
bool status_is_ok = true;
|
||||
for (unsigned i = 0; i < m_args.size(); i++) {
|
||||
std::string ar = m_args[i];
|
||||
if (m_options.find(ar) != m_options.end() )
|
||||
m_used_options.insert(ar);
|
||||
else if (m_options_with_after_string.find(ar) != m_options_with_after_string.end()) {
|
||||
if (i == m_args.size() - 1) {
|
||||
m_error_message = "Argument is missing after "+ar;
|
||||
return false;
|
||||
}
|
||||
i++;
|
||||
m_used_options_with_after_string[ar] = m_args[i];
|
||||
} else {
|
||||
if (starts_with(ar, "-") || starts_with(ar, "//"))
|
||||
status_is_ok = false;
|
||||
|
||||
m_free_args.push_back(ar);
|
||||
}
|
||||
}
|
||||
return status_is_ok;
|
||||
}
|
||||
|
||||
bool contains(std::unordered_map<std::string, std::string> & m, std::string s) {
|
||||
return m.find(s) != m.end();
|
||||
}
|
||||
|
||||
bool contains(std::set<std::string> & m, std::string s) {
|
||||
return m.find(s) != m.end();
|
||||
}
|
||||
|
||||
bool option_is_used(std::string option) {
|
||||
return contains(m_used_options, option) || contains(m_used_options_with_after_string, option);
|
||||
}
|
||||
|
||||
std::string get_option_value(std::string option) {
|
||||
auto t = m_used_options_with_after_string.find(option);
|
||||
if (t != m_used_options_with_after_string.end()){
|
||||
return t->second;
|
||||
}
|
||||
return std::string();
|
||||
}
|
||||
|
||||
bool starts_with(std::string s, char const * prefix) {
|
||||
return starts_with(s, std::string(prefix));
|
||||
}
|
||||
|
||||
bool starts_with(std::string s, std::string prefix) {
|
||||
return s.substr(0, prefix.size()) == prefix;
|
||||
}
|
||||
|
||||
std::string usage_string() {
|
||||
std::string ret = "";
|
||||
std::vector<std::string> unknown_options;
|
||||
for (auto t : m_free_args) {
|
||||
if (starts_with(t, "-") || starts_with(t, "\\")) {
|
||||
unknown_options.push_back(t);
|
||||
}
|
||||
}
|
||||
if (unknown_options.size()) {
|
||||
ret = "Unknown options:";
|
||||
}
|
||||
for (auto unknownOption : unknown_options) {
|
||||
ret += unknownOption;
|
||||
ret += ",";
|
||||
}
|
||||
ret += "\n";
|
||||
ret += "Usage:\n";
|
||||
for (auto allowed_option : m_options)
|
||||
ret += allowed_option.first + " " + (allowed_option.second.size() == 0 ? std::string("") : std::string("/") + allowed_option.second) + std::string("\n");
|
||||
for (auto s : m_options_with_after_string) {
|
||||
ret += s.first + " " + (s.second.size() == 0? " \"option value\"":("\""+ s.second+"\"")) + "\n";
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
void print() {
|
||||
if (m_used_options.size() == 0 && m_used_options_with_after_string.size() == 0 && m_free_args.size() == 0) {
|
||||
std::cout << "no options are given" << std::endl;
|
||||
return;
|
||||
}
|
||||
std::cout << "options are: " << std::endl;
|
||||
for (std::string s : m_used_options) {
|
||||
std::cout << s << std::endl;
|
||||
}
|
||||
for (auto & t : m_used_options_with_after_string) {
|
||||
std::cout << t.first << " " << t.second << std::endl;
|
||||
}
|
||||
if (m_free_args.size() > 0) {
|
||||
std::cout << "free arguments are: " << std::endl;
|
||||
for (auto & t : m_free_args) {
|
||||
std::cout << t << " " << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
3232
src/test/lp.cpp
Normal file
3232
src/test/lp.cpp
Normal file
File diff suppressed because it is too large
Load diff
14
src/test/lp_main.cpp
Normal file
14
src/test/lp_main.cpp
Normal file
|
@ -0,0 +1,14 @@
|
|||
void gparams_register_modules(){}
|
||||
void mem_initialize() {}
|
||||
void mem_finalize() {}
|
||||
#include "util/rational.h"
|
||||
namespace lean {
|
||||
void test_lp_local(int argc, char**argv);
|
||||
}
|
||||
int main(int argn, char**argv){
|
||||
rational::initialize();
|
||||
lean::test_lp_local(argn, argv);
|
||||
rational::finalize();
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -239,6 +239,7 @@ int main(int argc, char ** argv) {
|
|||
TST(pdr);
|
||||
TST_ARGV(ddnf);
|
||||
TST(model_evaluator);
|
||||
TST_ARGV(lp);
|
||||
TST(get_consequences);
|
||||
TST(pb2bv);
|
||||
TST_ARGV(cnf_backbones);
|
||||
|
|
|
@ -13,8 +13,9 @@ Copyright (c) 2015 Microsoft Corporation
|
|||
void test_print(Z3_context ctx, Z3_ast a) {
|
||||
Z3_set_ast_print_mode(ctx, Z3_PRINT_SMTLIB2_COMPLIANT);
|
||||
char const* spec1 = Z3_benchmark_to_smtlib_string(ctx, "test", 0, 0, 0, 0, 0, a);
|
||||
std::cout << spec1 << "\n";
|
||||
std::cout << "spec1: benchmark->string\n" << spec1 << "\n";
|
||||
|
||||
std::cout << "attempting to parse spec1...\n";
|
||||
Z3_ast b =
|
||||
Z3_parse_smtlib2_string(ctx,
|
||||
spec1,
|
||||
|
@ -24,14 +25,14 @@ void test_print(Z3_context ctx, Z3_ast a) {
|
|||
0,
|
||||
0,
|
||||
0);
|
||||
|
||||
std::cout << "parse successful, converting ast->string\n";
|
||||
char const* spec2 = Z3_ast_to_string(ctx, b);
|
||||
std::cout << spec2 << "\n";
|
||||
std::cout << "spec2: string->ast->string\n" << spec2 << "\n";
|
||||
}
|
||||
|
||||
void test_parseprint(char const* spec) {
|
||||
Z3_context ctx = Z3_mk_context(0);
|
||||
std::cout << spec << "\n";
|
||||
std::cout << "spec:\n" << spec << "\n";
|
||||
|
||||
Z3_ast a =
|
||||
Z3_parse_smtlib2_string(ctx,
|
||||
|
@ -43,8 +44,12 @@ void test_parseprint(char const* spec) {
|
|||
0,
|
||||
0);
|
||||
|
||||
std::cout << "done parsing\n";
|
||||
|
||||
test_print(ctx, a);
|
||||
|
||||
std::cout << "done printing\n";
|
||||
|
||||
Z3_del_context(ctx);
|
||||
}
|
||||
|
||||
|
@ -104,6 +109,12 @@ void tst_smt2print_parse() {
|
|||
|
||||
test_parseprint(spec5);
|
||||
|
||||
// Test strings
|
||||
char const* spec6 =
|
||||
"(assert (= \"abc\" \"abc\"))";
|
||||
|
||||
test_parseprint(spec6);
|
||||
|
||||
// Test ?
|
||||
|
||||
}
|
||||
|
|
392
src/test/smt_reader.h
Normal file
392
src/test/smt_reader.h
Normal file
|
@ -0,0 +1,392 @@
|
|||
/*
|
||||
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
// reads an MPS file reperesenting a Mixed Integer Program
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
#include "util/lp/lp_primal_simplex.h"
|
||||
#include "util/lp/lp_dual_simplex.h"
|
||||
#include "util/lp/lar_solver.h"
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <functional>
|
||||
#include <algorithm>
|
||||
#include "util/lp/mps_reader.h"
|
||||
#include "util/lp/ul_pair.h"
|
||||
#include "util/lp/lar_constraints.h"
|
||||
#include <sstream>
|
||||
#include <cstdlib>
|
||||
namespace lean {
|
||||
|
||||
template<typename T>
|
||||
T from_string(const std::string& str) {
|
||||
std::istringstream ss(str);
|
||||
T ret;
|
||||
ss >> ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
class smt_reader {
|
||||
public:
|
||||
struct lisp_elem {
|
||||
std::string m_head;
|
||||
std::vector<lisp_elem> m_elems;
|
||||
void print() {
|
||||
if (m_elems.size()) {
|
||||
std::cout << '(';
|
||||
std::cout << m_head << ' ';
|
||||
for (auto & el : m_elems)
|
||||
el.print();
|
||||
|
||||
std::cout << ')';
|
||||
} else {
|
||||
std::cout << " " << m_head;
|
||||
}
|
||||
}
|
||||
unsigned size() const { return static_cast<unsigned>(m_elems.size()); }
|
||||
bool is_simple() const { return size() == 0; }
|
||||
};
|
||||
struct formula_constraint {
|
||||
lconstraint_kind m_kind;
|
||||
std::vector<std::pair<mpq, std::string>> m_coeffs;
|
||||
mpq m_right_side = numeric_traits<mpq>::zero();
|
||||
void add_pair(mpq c, std::string name) {
|
||||
m_coeffs.push_back(make_pair(c, name));
|
||||
}
|
||||
};
|
||||
|
||||
lisp_elem m_formula_lisp_elem;
|
||||
|
||||
std::unordered_map<std::string, unsigned> m_name_to_var_index;
|
||||
std::vector<formula_constraint> m_constraints;
|
||||
std::string m_file_name;
|
||||
std::ifstream m_file_stream;
|
||||
std::string m_line;
|
||||
bool m_is_OK = true;
|
||||
unsigned m_line_number = 0;
|
||||
smt_reader(std::string file_name):
|
||||
m_file_name(file_name), m_file_stream(file_name) {
|
||||
}
|
||||
|
||||
void set_error() {
|
||||
std::cout << "setting error" << std::endl;
|
||||
m_is_OK = false;
|
||||
}
|
||||
|
||||
bool is_ok() {
|
||||
return m_is_OK;
|
||||
}
|
||||
|
||||
bool prefix(const char * pr) {
|
||||
return m_line.find(pr) == 0;
|
||||
}
|
||||
|
||||
int first_separator() {
|
||||
unsigned blank_pos = static_cast<unsigned>(m_line.find(' '));
|
||||
unsigned br_pos = static_cast<unsigned>(m_line.find('('));
|
||||
unsigned reverse_br_pos = static_cast<unsigned>(m_line.find(')'));
|
||||
return std::min(blank_pos, std::min(br_pos, reverse_br_pos));
|
||||
}
|
||||
|
||||
void fill_lisp_elem(lisp_elem & lm) {
|
||||
if (m_line[0] == '(')
|
||||
fill_nested_elem(lm);
|
||||
else
|
||||
fill_simple_elem(lm);
|
||||
}
|
||||
|
||||
void fill_simple_elem(lisp_elem & lm) {
|
||||
int separator = first_separator();
|
||||
lean_assert(-1 != separator && separator != 0);
|
||||
lm.m_head = m_line.substr(0, separator);
|
||||
m_line = m_line.substr(separator);
|
||||
}
|
||||
|
||||
void fill_nested_elem(lisp_elem & lm) {
|
||||
lean_assert(m_line[0] == '(');
|
||||
m_line = m_line.substr(1);
|
||||
int separator = first_separator();
|
||||
lm.m_head = m_line.substr(0, separator);
|
||||
m_line = m_line.substr(lm.m_head.size());
|
||||
eat_blanks();
|
||||
while (m_line.size()) {
|
||||
if (m_line[0] == '(') {
|
||||
lisp_elem el;
|
||||
fill_nested_elem(el);
|
||||
lm.m_elems.push_back(el);
|
||||
} else {
|
||||
if (m_line[0] == ')') {
|
||||
m_line = m_line.substr(1);
|
||||
break;
|
||||
}
|
||||
lisp_elem el;
|
||||
fill_simple_elem(el);
|
||||
lm.m_elems.push_back(el);
|
||||
}
|
||||
eat_blanks();
|
||||
}
|
||||
}
|
||||
|
||||
void eat_blanks() {
|
||||
while (m_line.size()) {
|
||||
if (m_line[0] == ' ')
|
||||
m_line = m_line.substr(1);
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void fill_formula_elem() {
|
||||
fill_lisp_elem(m_formula_lisp_elem);
|
||||
}
|
||||
|
||||
void parse_line() {
|
||||
if (m_line.find(":formula") == 0) {
|
||||
int first_br = static_cast<int>(m_line.find('('));
|
||||
if (first_br == -1) {
|
||||
std::cout << "empty formula" << std::endl;
|
||||
return;
|
||||
}
|
||||
m_line = m_line.substr(first_br);
|
||||
fill_formula_elem();
|
||||
}
|
||||
}
|
||||
|
||||
void set_constraint_kind(formula_constraint & c, lisp_elem & el) {
|
||||
if (el.m_head == "=") {
|
||||
c.m_kind = EQ;
|
||||
} else if (el.m_head == ">=") {
|
||||
c.m_kind = GE;
|
||||
} else if (el.m_head == "<=") {
|
||||
c.m_kind = LE;
|
||||
} else if (el.m_head == ">") {
|
||||
c.m_kind = GT;
|
||||
} else if (el.m_head == "<") {
|
||||
c.m_kind = LT;
|
||||
} else {
|
||||
std::cout << "kind " << el.m_head << " is not supported " << std::endl;
|
||||
set_error();
|
||||
}
|
||||
}
|
||||
|
||||
void adjust_rigth_side(formula_constraint & /* c*/, lisp_elem & /*el*/) {
|
||||
// lean_assert(el.m_head == "0"); // do nothing for the time being
|
||||
}
|
||||
|
||||
void set_constraint_coeffs(formula_constraint & c, lisp_elem & el) {
|
||||
lean_assert(el.m_elems.size() == 2);
|
||||
set_constraint_coeffs_on_coeff_element(c, el.m_elems[0]);
|
||||
adjust_rigth_side(c, el.m_elems[1]);
|
||||
}
|
||||
|
||||
|
||||
bool is_integer(std::string & s) {
|
||||
if (s.size() == 0) return false;
|
||||
return atoi(s.c_str()) != 0 || isdigit(s.c_str()[0]);
|
||||
}
|
||||
|
||||
void add_complex_sum_elem(formula_constraint & c, lisp_elem & el) {
|
||||
if (el.m_head == "*") {
|
||||
add_mult_elem(c, el.m_elems);
|
||||
} else if (el.m_head == "~") {
|
||||
lisp_elem & minel = el.m_elems[0];
|
||||
lean_assert(minel.is_simple());
|
||||
c.m_right_side += mpq(str_to_int(minel.m_head));
|
||||
} else {
|
||||
std::cout << "unexpected input " << el.m_head << std::endl;
|
||||
set_error();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::string get_name(lisp_elem & name) {
|
||||
lean_assert(name.is_simple());
|
||||
lean_assert(!is_integer(name.m_head));
|
||||
return name.m_head;
|
||||
}
|
||||
|
||||
|
||||
void add_mult_elem(formula_constraint & c, std::vector<lisp_elem> & els) {
|
||||
lean_assert(els.size() == 2);
|
||||
mpq coeff = get_coeff(els[0]);
|
||||
std::string col_name = get_name(els[1]);
|
||||
c.add_pair(coeff, col_name);
|
||||
}
|
||||
|
||||
mpq get_coeff(lisp_elem & le) {
|
||||
if (le.is_simple()) {
|
||||
return mpq(str_to_int(le.m_head));
|
||||
} else {
|
||||
lean_assert(le.m_head == "~");
|
||||
lean_assert(le.size() == 1);
|
||||
lisp_elem & el = le.m_elems[0];
|
||||
lean_assert(el.is_simple());
|
||||
return -mpq(str_to_int(el.m_head));
|
||||
}
|
||||
}
|
||||
|
||||
int str_to_int(std::string & s) {
|
||||
lean_assert(is_integer(s));
|
||||
return atoi(s.c_str());
|
||||
}
|
||||
|
||||
void add_sum_elem(formula_constraint & c, lisp_elem & el) {
|
||||
if (el.size()) {
|
||||
add_complex_sum_elem(c, el);
|
||||
} else {
|
||||
lean_assert(is_integer(el.m_head));
|
||||
int v = atoi(el.m_head.c_str());
|
||||
mpq vr(v);
|
||||
c.m_right_side -= vr;
|
||||
}
|
||||
}
|
||||
|
||||
void add_sum(formula_constraint & c, std::vector<lisp_elem> & sum_els) {
|
||||
for (auto & el : sum_els)
|
||||
add_sum_elem(c, el);
|
||||
}
|
||||
|
||||
void set_constraint_coeffs_on_coeff_element(formula_constraint & c, lisp_elem & el) {
|
||||
if (el.m_head == "*") {
|
||||
add_mult_elem(c, el.m_elems);
|
||||
} else if (el.m_head == "+") {
|
||||
add_sum(c, el.m_elems);
|
||||
} else {
|
||||
lean_assert(false); // unexpected input
|
||||
}
|
||||
}
|
||||
|
||||
void create_constraint(lisp_elem & el) {
|
||||
formula_constraint c;
|
||||
set_constraint_kind(c, el);
|
||||
set_constraint_coeffs(c, el);
|
||||
m_constraints.push_back(c);
|
||||
}
|
||||
|
||||
void fill_constraints() {
|
||||
if (m_formula_lisp_elem.m_head != "and") {
|
||||
std::cout << "unexpected top element " << m_formula_lisp_elem.m_head << std::endl;
|
||||
set_error();
|
||||
return;
|
||||
}
|
||||
for (auto & el : m_formula_lisp_elem.m_elems)
|
||||
create_constraint(el);
|
||||
}
|
||||
|
||||
void read() {
|
||||
if (!m_file_stream.is_open()){
|
||||
std::cout << "cannot open file " << m_file_name << std::endl;
|
||||
set_error();
|
||||
return;
|
||||
}
|
||||
while (m_is_OK && getline(m_file_stream, m_line)) {
|
||||
parse_line();
|
||||
m_line_number++;
|
||||
}
|
||||
|
||||
m_file_stream.close();
|
||||
fill_constraints();
|
||||
}
|
||||
|
||||
/*
|
||||
void fill_lar_solver_on_row(row * row, lar_solver *solver) {
|
||||
if (row->m_name != m_cost_row_name) {
|
||||
lar_constraint c(get_lar_relation_from_row(row->m_type), row->m_right_side);
|
||||
for (auto s : row->m_row_columns) {
|
||||
var_index i = solver->add_var(s.first);
|
||||
c.add_variable_to_constraint(i, s.second);
|
||||
}
|
||||
solver->add_constraint(&c);
|
||||
} else {
|
||||
// ignore the cost row
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void fill_lar_solver_on_rows(lar_solver * solver) {
|
||||
for (auto row_it : m_rows) {
|
||||
fill_lar_solver_on_row(row_it.second, solver);
|
||||
}
|
||||
}
|
||||
|
||||
void create_low_constraint_for_var(column* col, bound * b, lar_solver *solver) {
|
||||
lar_constraint c(GE, b->m_low);
|
||||
var_index i = solver->add_var(col->m_name);
|
||||
c.add_variable_to_constraint(i, numeric_traits<T>::one());
|
||||
solver->add_constraint(&c);
|
||||
}
|
||||
|
||||
void create_upper_constraint_for_var(column* col, bound * b, lar_solver *solver) {
|
||||
lar_constraint c(LE, b->m_upper);
|
||||
var_index i = solver->add_var(col->m_name);
|
||||
c.add_variable_to_constraint(i, numeric_traits<T>::one());
|
||||
solver->add_constraint(&c);
|
||||
}
|
||||
|
||||
void create_equality_contraint_for_var(column* col, bound * b, lar_solver *solver) {
|
||||
lar_constraint c(EQ, b->m_fixed_value);
|
||||
var_index i = solver->add_var(col->m_name);
|
||||
c.add_variable_to_constraint(i, numeric_traits<T>::one());
|
||||
solver->add_constraint(&c);
|
||||
}
|
||||
|
||||
void fill_lar_solver_on_columns(lar_solver * solver) {
|
||||
for (auto s : m_columns) {
|
||||
mps_reader::column * col = s.second;
|
||||
solver->add_var(col->m_name);
|
||||
auto b = col->m_bound;
|
||||
if (b == nullptr) return;
|
||||
|
||||
if (b->m_free) continue;
|
||||
|
||||
if (b->m_low_is_set) {
|
||||
create_low_constraint_for_var(col, b, solver);
|
||||
}
|
||||
if (b->m_upper_is_set) {
|
||||
create_upper_constraint_for_var(col, b, solver);
|
||||
}
|
||||
if (b->m_value_is_fixed) {
|
||||
create_equality_contraint_for_var(col, b, solver);
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
unsigned register_name(std::string s) {
|
||||
auto it = m_name_to_var_index.find(s);
|
||||
if (it!= m_name_to_var_index.end())
|
||||
return it->second;
|
||||
|
||||
unsigned ret= m_name_to_var_index.size();
|
||||
m_name_to_var_index[s] = ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
void add_constraint_to_solver(lar_solver * solver, formula_constraint & fc) {
|
||||
vector<std::pair<mpq, var_index>> ls;
|
||||
for (auto & it : fc.m_coeffs) {
|
||||
ls.push_back(std::make_pair(it.first, solver->add_var(register_name(it.second))));
|
||||
}
|
||||
solver->add_constraint(ls, fc.m_kind, fc.m_right_side);
|
||||
}
|
||||
|
||||
void fill_lar_solver(lar_solver * solver) {
|
||||
for (formula_constraint & fc : m_constraints)
|
||||
add_constraint_to_solver(solver, fc);
|
||||
}
|
||||
|
||||
|
||||
lar_solver * create_lar_solver() {
|
||||
lar_solver * ls = new lar_solver();
|
||||
fill_lar_solver(ls);
|
||||
return ls;
|
||||
}
|
||||
};
|
||||
}
|
73
src/test/test_file_reader.h
Normal file
73
src/test/test_file_reader.h
Normal file
|
@ -0,0 +1,73 @@
|
|||
/*
|
||||
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
// reads a text file
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/lp_solver.h"
|
||||
|
||||
namespace lean {
|
||||
|
||||
template <typename T>
|
||||
struct test_result {
|
||||
lp_status m_status;
|
||||
T m_cost;
|
||||
std::unordered_map<std::string, T> column_values;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class test_file_reader {
|
||||
struct raw_blob {
|
||||
std::vector<std::string> m_unparsed_strings;
|
||||
std::vector<raw_blob> m_blobs;
|
||||
};
|
||||
|
||||
struct test_file_blob {
|
||||
std::string m_name;
|
||||
std::string m_content;
|
||||
std::unordered_map<std::string, std::string> m_table;
|
||||
std::unordered_map<std::string, test_file_blob> m_blobs;
|
||||
|
||||
test_result<T> * get_test_result() {
|
||||
test_result<T> * tr = new test_result<T>();
|
||||
throw "not impl";
|
||||
return tr;
|
||||
}
|
||||
};
|
||||
std::ifstream m_file_stream;
|
||||
public:
|
||||
// constructor
|
||||
test_file_reader(std::string file_name) : m_file_stream(file_name) {
|
||||
if (!m_file_stream.is_open()) {
|
||||
std::cout << "cannot open file " << "\'" << file_name << "\'" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
raw_blob scan_to_row_blob() {
|
||||
}
|
||||
|
||||
test_file_blob scan_row_blob_to_test_file_blob(raw_blob /* rblob */) {
|
||||
}
|
||||
|
||||
test_result<T> * get_test_result() {
|
||||
if (!m_file_stream.is_open()) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
raw_blob rblob = scan_to_row_blob();
|
||||
|
||||
test_file_blob tblob = scan_row_blob_to_test_file_blob(rblob);
|
||||
|
||||
return tblob.get_test_result();
|
||||
}
|
||||
};
|
||||
}
|
71
src/util/lp/binary_heap_priority_queue.h
Normal file
71
src/util/lp/binary_heap_priority_queue.h
Normal file
|
@ -0,0 +1,71 @@
|
|||
|
||||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/debug.h"
|
||||
#include "util/lp/lp_utils.h"
|
||||
namespace lean {
|
||||
// the elements with the smallest priority are dequeued first
|
||||
template <typename T>
|
||||
class binary_heap_priority_queue {
|
||||
vector<T> m_priorities;
|
||||
|
||||
// indexing for A starts from 1
|
||||
vector<unsigned> m_heap; // keeps the elements of the queue
|
||||
vector<int> m_heap_inverse; // o = m_heap[m_heap_inverse[o]]
|
||||
unsigned m_heap_size = 0;
|
||||
|
||||
// is is the child place in heap
|
||||
void swap_with_parent(unsigned i);
|
||||
void put_at(unsigned i, unsigned h);
|
||||
void decrease_priority(unsigned o, T newPriority);
|
||||
public:
|
||||
#ifdef LEAN_DEBUG
|
||||
bool is_consistent() const;
|
||||
#endif
|
||||
public:
|
||||
void remove(unsigned o);
|
||||
unsigned size() const { return m_heap_size; }
|
||||
binary_heap_priority_queue(): m_heap(1) {} // the empty constructror
|
||||
// n is the initial queue capacity.
|
||||
// The capacity will be enlarged two times automatically if needed
|
||||
binary_heap_priority_queue(unsigned n);
|
||||
|
||||
void clear() {
|
||||
for (unsigned i = 0; i < m_heap_size; i++) {
|
||||
unsigned o = m_heap[i+1];
|
||||
m_heap_inverse[o] = -1;
|
||||
}
|
||||
m_heap_size = 0;
|
||||
}
|
||||
|
||||
void resize(unsigned n);
|
||||
void put_to_heap(unsigned i, unsigned o);
|
||||
|
||||
void enqueue_new(unsigned o, const T& priority);
|
||||
|
||||
// This method can work with an element that is already in the queue.
|
||||
// In this case the priority will be changed and the queue adjusted.
|
||||
void enqueue(unsigned o, const T & priority);
|
||||
void change_priority_for_existing(unsigned o, const T & priority);
|
||||
T get_priority(unsigned o) const { return m_priorities[o]; }
|
||||
bool is_empty() const { return m_heap_size == 0; }
|
||||
|
||||
/// return the first element of the queue and removes it from the queue
|
||||
unsigned dequeue_and_get_priority(T & priority);
|
||||
void fix_heap_under(unsigned i);
|
||||
void put_the_last_at_the_top_and_fix_the_heap();
|
||||
/// return the first element of the queue and removes it from the queue
|
||||
unsigned dequeue();
|
||||
unsigned peek() const {
|
||||
lean_assert(m_heap_size > 0);
|
||||
return m_heap[1];
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
void print(std::ostream & out);
|
||||
#endif
|
||||
};
|
||||
}
|
193
src/util/lp/binary_heap_priority_queue.hpp
Normal file
193
src/util/lp/binary_heap_priority_queue.hpp
Normal file
|
@ -0,0 +1,193 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/binary_heap_priority_queue.h"
|
||||
namespace lean {
|
||||
// is is the child place in heap
|
||||
template <typename T> void binary_heap_priority_queue<T>::swap_with_parent(unsigned i) {
|
||||
unsigned parent = m_heap[i >> 1];
|
||||
put_at(i >> 1, m_heap[i]);
|
||||
put_at(i, parent);
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::put_at(unsigned i, unsigned h) {
|
||||
m_heap[i] = h;
|
||||
m_heap_inverse[h] = i;
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::decrease_priority(unsigned o, T newPriority) {
|
||||
m_priorities[o] = newPriority;
|
||||
int i = m_heap_inverse[o];
|
||||
while (i > 1) {
|
||||
if (m_priorities[m_heap[i]] < m_priorities[m_heap[i >> 1]])
|
||||
swap_with_parent(i);
|
||||
else
|
||||
break;
|
||||
i >>= 1;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T> bool binary_heap_priority_queue<T>::is_consistent() const {
|
||||
for (int i = 0; i < m_heap_inverse.size(); i++) {
|
||||
int i_index = m_heap_inverse[i];
|
||||
lean_assert(i_index <= static_cast<int>(m_heap_size));
|
||||
lean_assert(i_index == -1 || m_heap[i_index] == i);
|
||||
}
|
||||
for (unsigned i = 1; i < m_heap_size; i++) {
|
||||
unsigned ch = i << 1;
|
||||
for (int k = 0; k < 2; k++) {
|
||||
if (ch > m_heap_size) break;
|
||||
if (!(m_priorities[m_heap[i]] <= m_priorities[m_heap[ch]])){
|
||||
return false;
|
||||
}
|
||||
ch++;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
template <typename T> void binary_heap_priority_queue<T>::remove(unsigned o) {
|
||||
T priority_of_o = m_priorities[o];
|
||||
int o_in_heap = m_heap_inverse[o];
|
||||
if (o_in_heap == -1) {
|
||||
return; // nothing to do
|
||||
}
|
||||
lean_assert(static_cast<unsigned>(o_in_heap) <= m_heap_size);
|
||||
if (static_cast<unsigned>(o_in_heap) < m_heap_size) {
|
||||
put_at(o_in_heap, m_heap[m_heap_size--]);
|
||||
if (m_priorities[m_heap[o_in_heap]] > priority_of_o) {
|
||||
fix_heap_under(o_in_heap);
|
||||
} else { // we need to propogate the m_heap[o_in_heap] up
|
||||
unsigned i = o_in_heap;
|
||||
while (i > 1) {
|
||||
unsigned ip = i >> 1;
|
||||
if (m_priorities[m_heap[i]] < m_priorities[m_heap[ip]])
|
||||
swap_with_parent(i);
|
||||
else
|
||||
break;
|
||||
i = ip;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
lean_assert(static_cast<unsigned>(o_in_heap) == m_heap_size);
|
||||
m_heap_size--;
|
||||
}
|
||||
m_heap_inverse[o] = -1;
|
||||
// lean_assert(is_consistent());
|
||||
}
|
||||
// n is the initial queue capacity.
|
||||
// The capacity will be enlarged two times automatically if needed
|
||||
template <typename T> binary_heap_priority_queue<T>::binary_heap_priority_queue(unsigned n) :
|
||||
m_priorities(n),
|
||||
m_heap(n + 1), // because the indexing for A starts from 1
|
||||
m_heap_inverse(n, -1)
|
||||
{ }
|
||||
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::resize(unsigned n) {
|
||||
m_priorities.resize(n);
|
||||
m_heap.resize(n + 1);
|
||||
m_heap_inverse.resize(n, -1);
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::put_to_heap(unsigned i, unsigned o) {
|
||||
m_heap[i] = o;
|
||||
m_heap_inverse[o] = i;
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::enqueue_new(unsigned o, const T& priority) {
|
||||
m_heap_size++;
|
||||
int i = m_heap_size;
|
||||
lean_assert(o < m_priorities.size());
|
||||
m_priorities[o] = priority;
|
||||
put_at(i, o);
|
||||
while (i > 1 && m_priorities[m_heap[i >> 1]] > priority) {
|
||||
swap_with_parent(i);
|
||||
i >>= 1;
|
||||
}
|
||||
}
|
||||
// This method can work with an element that is already in the queue.
|
||||
// In this case the priority will be changed and the queue adjusted.
|
||||
template <typename T> void binary_heap_priority_queue<T>::enqueue(unsigned o, const T & priority) {
|
||||
if (o >= m_priorities.size()) {
|
||||
resize(o << 1); // make the size twice larger
|
||||
}
|
||||
if (m_heap_inverse[o] == -1)
|
||||
enqueue_new(o, priority);
|
||||
else
|
||||
change_priority_for_existing(o, priority);
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::change_priority_for_existing(unsigned o, const T & priority) {
|
||||
if (m_priorities[o] > priority) {
|
||||
decrease_priority(o, priority);
|
||||
} else {
|
||||
m_priorities[o] = priority;
|
||||
fix_heap_under(m_heap_inverse[o]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// return the first element of the queue and removes it from the queue
|
||||
template <typename T> unsigned binary_heap_priority_queue<T>::dequeue_and_get_priority(T & priority) {
|
||||
lean_assert(m_heap_size != 0);
|
||||
int ret = m_heap[1];
|
||||
priority = m_priorities[ret];
|
||||
put_the_last_at_the_top_and_fix_the_heap();
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::fix_heap_under(unsigned i) {
|
||||
while (true) {
|
||||
unsigned smallest = i;
|
||||
unsigned l = i << 1;
|
||||
if (l <= m_heap_size && m_priorities[m_heap[l]] < m_priorities[m_heap[i]])
|
||||
smallest = l;
|
||||
unsigned r = l + 1;
|
||||
if (r <= m_heap_size && m_priorities[m_heap[r]] < m_priorities[m_heap[smallest]])
|
||||
smallest = r;
|
||||
if (smallest != i)
|
||||
swap_with_parent(smallest);
|
||||
else
|
||||
break;
|
||||
i = smallest;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::put_the_last_at_the_top_and_fix_the_heap() {
|
||||
if (m_heap_size > 1) {
|
||||
put_at(1, m_heap[m_heap_size--]);
|
||||
fix_heap_under(1);
|
||||
} else {
|
||||
m_heap_size--;
|
||||
}
|
||||
}
|
||||
/// return the first element of the queue and removes it from the queue
|
||||
template <typename T> unsigned binary_heap_priority_queue<T>::dequeue() {
|
||||
lean_assert(m_heap_size > 0);
|
||||
int ret = m_heap[1];
|
||||
put_the_last_at_the_top_and_fix_the_heap();
|
||||
m_heap_inverse[ret] = -1;
|
||||
return ret;
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T> void binary_heap_priority_queue<T>::print(std::ostream & out) {
|
||||
vector<int> index;
|
||||
vector<T> prs;
|
||||
while (size()) {
|
||||
T prior;
|
||||
int j = dequeue_and_get_priority(prior);
|
||||
index.push_back(j);
|
||||
prs.push_back(prior);
|
||||
out << "(" << j << ", " << prior << ")";
|
||||
}
|
||||
out << std::endl;
|
||||
// restore the queue
|
||||
for (int i = 0; i < index.size(); i++)
|
||||
enqueue(index[i], prs[i]);
|
||||
}
|
||||
#endif
|
||||
}
|
26
src/util/lp/binary_heap_priority_queue_instances.cpp
Normal file
26
src/util/lp/binary_heap_priority_queue_instances.cpp
Normal file
|
@ -0,0 +1,26 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/binary_heap_priority_queue.hpp"
|
||||
namespace lean {
|
||||
template binary_heap_priority_queue<int>::binary_heap_priority_queue(unsigned int);
|
||||
template unsigned binary_heap_priority_queue<int>::dequeue();
|
||||
template void binary_heap_priority_queue<int>::enqueue(unsigned int, int const&);
|
||||
template void binary_heap_priority_queue<double>::enqueue(unsigned int, double const&);
|
||||
template void binary_heap_priority_queue<mpq>::enqueue(unsigned int, mpq const&);
|
||||
template void binary_heap_priority_queue<int>::remove(unsigned int);
|
||||
template unsigned binary_heap_priority_queue<numeric_pair<mpq> >::dequeue();
|
||||
template unsigned binary_heap_priority_queue<double>::dequeue();
|
||||
template unsigned binary_heap_priority_queue<mpq>::dequeue();
|
||||
template void binary_heap_priority_queue<numeric_pair<mpq> >::enqueue(unsigned int, numeric_pair<mpq> const&);
|
||||
template void binary_heap_priority_queue<numeric_pair<mpq> >::resize(unsigned int);
|
||||
template void lean::binary_heap_priority_queue<double>::resize(unsigned int);
|
||||
template binary_heap_priority_queue<unsigned int>::binary_heap_priority_queue(unsigned int);
|
||||
template void binary_heap_priority_queue<unsigned>::resize(unsigned int);
|
||||
template unsigned binary_heap_priority_queue<unsigned int>::dequeue();
|
||||
template void binary_heap_priority_queue<unsigned int>::enqueue(unsigned int, unsigned int const&);
|
||||
template void binary_heap_priority_queue<unsigned int>::remove(unsigned int);
|
||||
template void lean::binary_heap_priority_queue<mpq>::resize(unsigned int);
|
||||
}
|
50
src/util/lp/binary_heap_upair_queue.h
Normal file
50
src/util/lp/binary_heap_upair_queue.h
Normal file
|
@ -0,0 +1,50 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include <unordered_set>
|
||||
#include <unordered_map>
|
||||
#include <queue>
|
||||
#include "util/vector.h"
|
||||
#include <set>
|
||||
#include <utility>
|
||||
#include "util/lp/binary_heap_priority_queue.h"
|
||||
|
||||
|
||||
typedef std::pair<unsigned, unsigned> upair;
|
||||
|
||||
namespace lean {
|
||||
template <typename T>
|
||||
class binary_heap_upair_queue {
|
||||
binary_heap_priority_queue<T> m_q;
|
||||
std::unordered_map<upair, unsigned> m_pairs_to_index;
|
||||
vector<upair> m_pairs; // inverse to index
|
||||
vector<unsigned> m_available_spots;
|
||||
public:
|
||||
binary_heap_upair_queue(unsigned size);
|
||||
|
||||
unsigned dequeue_available_spot();
|
||||
bool is_empty() const { return m_q.is_empty(); }
|
||||
|
||||
unsigned size() const {return m_q.size(); }
|
||||
|
||||
bool contains(unsigned i, unsigned j) const { return m_pairs_to_index.find(std::make_pair(i, j)) != m_pairs_to_index.end();
|
||||
}
|
||||
|
||||
void remove(unsigned i, unsigned j);
|
||||
bool ij_index_is_new(unsigned ij_index) const;
|
||||
void enqueue(unsigned i, unsigned j, const T & priority);
|
||||
void dequeue(unsigned & i, unsigned &j);
|
||||
T get_priority(unsigned i, unsigned j) const;
|
||||
#ifdef LEAN_DEBUG
|
||||
bool pair_to_index_is_a_bijection() const;
|
||||
bool available_spots_are_correct() const;
|
||||
bool is_correct() const {
|
||||
return m_q.is_consistent() && pair_to_index_is_a_bijection() && available_spots_are_correct();
|
||||
}
|
||||
#endif
|
||||
void resize(unsigned size) { m_q.resize(size); }
|
||||
};
|
||||
}
|
110
src/util/lp/binary_heap_upair_queue.hpp
Normal file
110
src/util/lp/binary_heap_upair_queue.hpp
Normal file
|
@ -0,0 +1,110 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#include <set>
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/binary_heap_upair_queue.h"
|
||||
namespace lean {
|
||||
template <typename T> binary_heap_upair_queue<T>::binary_heap_upair_queue(unsigned size) : m_q(size), m_pairs(size) {
|
||||
for (unsigned i = 0; i < size; i++)
|
||||
m_available_spots.push_back(i);
|
||||
}
|
||||
|
||||
template <typename T> unsigned
|
||||
binary_heap_upair_queue<T>::dequeue_available_spot() {
|
||||
lean_assert(m_available_spots.empty() == false);
|
||||
unsigned ret = m_available_spots.back();
|
||||
m_available_spots.pop_back();
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_upair_queue<T>::remove(unsigned i, unsigned j) {
|
||||
upair p(i, j);
|
||||
auto it = m_pairs_to_index.find(p);
|
||||
if (it == m_pairs_to_index.end())
|
||||
return; // nothing to do
|
||||
m_q.remove(it->second);
|
||||
m_available_spots.push_back(it->second);
|
||||
m_pairs_to_index.erase(it);
|
||||
}
|
||||
|
||||
|
||||
template <typename T> bool binary_heap_upair_queue<T>::ij_index_is_new(unsigned ij_index) const {
|
||||
for (auto it : m_pairs_to_index) {
|
||||
if (it.second == ij_index)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_upair_queue<T>::enqueue(unsigned i, unsigned j, const T & priority) {
|
||||
upair p(i, j);
|
||||
auto it = m_pairs_to_index.find(p);
|
||||
unsigned ij_index;
|
||||
if (it == m_pairs_to_index.end()) {
|
||||
// it is a new pair, let us find a spot for it
|
||||
if (m_available_spots.empty()) {
|
||||
// we ran out of empty spots
|
||||
unsigned size_was = static_cast<unsigned>(m_pairs.size());
|
||||
unsigned new_size = size_was << 1;
|
||||
for (unsigned i = size_was; i < new_size; i++)
|
||||
m_available_spots.push_back(i);
|
||||
m_pairs.resize(new_size);
|
||||
}
|
||||
ij_index = dequeue_available_spot();
|
||||
// lean_assert(ij_index<m_pairs.size() && ij_index_is_new(ij_index));
|
||||
m_pairs[ij_index] = p;
|
||||
m_pairs_to_index[p] = ij_index;
|
||||
} else {
|
||||
ij_index = it->second;
|
||||
}
|
||||
m_q.enqueue(ij_index, priority);
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_upair_queue<T>::dequeue(unsigned & i, unsigned &j) {
|
||||
lean_assert(!m_q.is_empty());
|
||||
unsigned ij_index = m_q.dequeue();
|
||||
upair & p = m_pairs[ij_index];
|
||||
i = p.first;
|
||||
j = p.second;
|
||||
m_available_spots.push_back(ij_index);
|
||||
m_pairs_to_index.erase(p);
|
||||
}
|
||||
|
||||
|
||||
template <typename T> T binary_heap_upair_queue<T>::get_priority(unsigned i, unsigned j) const {
|
||||
auto it = m_pairs_to_index.find(std::make_pair(i, j));
|
||||
if (it == m_pairs_to_index.end())
|
||||
return T(0xFFFFFF); // big number
|
||||
return m_q.get_priority(it->second);
|
||||
}
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T> bool binary_heap_upair_queue<T>::pair_to_index_is_a_bijection() const {
|
||||
std::set<int> tmp;
|
||||
for (auto p : m_pairs_to_index) {
|
||||
unsigned j = p.second;
|
||||
unsigned size = tmp.size();
|
||||
tmp.insert(j);
|
||||
if (tmp.size() == size)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T> bool binary_heap_upair_queue<T>::available_spots_are_correct() const {
|
||||
std::set<int> tmp;
|
||||
for (auto p : m_available_spots){
|
||||
tmp.insert(p);
|
||||
}
|
||||
if (tmp.size() != m_available_spots.size())
|
||||
return false;
|
||||
for (auto it : m_pairs_to_index)
|
||||
if (tmp.find(it.second) != tmp.end())
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
}
|
17
src/util/lp/binary_heap_upair_queue_instances.cpp
Normal file
17
src/util/lp/binary_heap_upair_queue_instances.cpp
Normal file
|
@ -0,0 +1,17 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/binary_heap_upair_queue.hpp"
|
||||
namespace lean {
|
||||
template binary_heap_upair_queue<int>::binary_heap_upair_queue(unsigned int);
|
||||
template binary_heap_upair_queue<unsigned int>::binary_heap_upair_queue(unsigned int);
|
||||
template unsigned binary_heap_upair_queue<int>::dequeue_available_spot();
|
||||
template unsigned binary_heap_upair_queue<unsigned int>::dequeue_available_spot();
|
||||
template void binary_heap_upair_queue<int>::enqueue(unsigned int, unsigned int, int const&);
|
||||
template void binary_heap_upair_queue<int>::remove(unsigned int, unsigned int);
|
||||
template void binary_heap_upair_queue<unsigned int>::remove(unsigned int, unsigned int);
|
||||
template void binary_heap_upair_queue<int>::dequeue(unsigned int&, unsigned int&);
|
||||
template void binary_heap_upair_queue<unsigned int>::enqueue(unsigned int, unsigned int, unsigned int const&);
|
||||
template void binary_heap_upair_queue<unsigned int>::dequeue(unsigned int&, unsigned int&);
|
||||
}
|
333
src/util/lp/bound_analyzer_on_row.h
Normal file
333
src/util/lp/bound_analyzer_on_row.h
Normal file
|
@ -0,0 +1,333 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
#include "implied_bound.h"
|
||||
#include "test_bound_analyzer.h"
|
||||
#include <functional>
|
||||
#include "util/lp/bound_propagator.h"
|
||||
// We have an equality : sum by j of row[j]*x[j] = rs
|
||||
// We try to pin a var by pushing the total by using the variable bounds
|
||||
// In a loop we drive the partial sum down, denoting the variables of this process by _u.
|
||||
// In the same loop trying to pin variables by pushing the partial sum up, denoting the variable related to it by _l
|
||||
namespace lean {
|
||||
|
||||
class bound_analyzer_on_row {
|
||||
|
||||
linear_combination_iterator<mpq> & m_it;
|
||||
unsigned m_row_or_term_index;
|
||||
int m_column_of_u = -1; // index of an unlimited from above monoid
|
||||
// -1 means that such a value is not found, -2 means that at least two of such monoids were found
|
||||
int m_column_of_l = -1; // index of an unlimited from below monoid
|
||||
impq m_rs;
|
||||
bound_propagator & m_bp;
|
||||
public :
|
||||
// constructor
|
||||
bound_analyzer_on_row(
|
||||
linear_combination_iterator<mpq> &it,
|
||||
const numeric_pair<mpq>& rs,
|
||||
unsigned row_or_term_index,
|
||||
bound_propagator & bp
|
||||
)
|
||||
:
|
||||
m_it(it),
|
||||
m_row_or_term_index(row_or_term_index),
|
||||
m_rs(rs),
|
||||
m_bp(bp)
|
||||
{}
|
||||
|
||||
|
||||
unsigned j;
|
||||
void analyze() {
|
||||
|
||||
mpq a; unsigned j;
|
||||
while (((m_column_of_l != -2) || (m_column_of_u != -2)) && m_it.next(a, j))
|
||||
analyze_bound_on_var_on_coeff(j, a);
|
||||
|
||||
if (m_column_of_u >= 0)
|
||||
limit_monoid_u_from_below();
|
||||
else if (m_column_of_u == -1)
|
||||
limit_all_monoids_from_below();
|
||||
|
||||
if (m_column_of_l >= 0)
|
||||
limit_monoid_l_from_above();
|
||||
else if (m_column_of_l == -1)
|
||||
limit_all_monoids_from_above();
|
||||
}
|
||||
|
||||
bool bound_is_available(unsigned j, bool low_bound) {
|
||||
return (low_bound && low_bound_is_available(j)) ||
|
||||
(!low_bound && upper_bound_is_available(j));
|
||||
}
|
||||
|
||||
bool upper_bound_is_available(unsigned j) const {
|
||||
switch (m_bp.get_column_type(j))
|
||||
{
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
case column_type::upper_bound:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool low_bound_is_available(unsigned j) const {
|
||||
switch (m_bp.get_column_type(j))
|
||||
{
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
case column_type::low_bound:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
const impq & ub(unsigned j) const {
|
||||
lean_assert(upper_bound_is_available(j));
|
||||
return m_bp.get_upper_bound(j);
|
||||
}
|
||||
const impq & lb(unsigned j) const {
|
||||
lean_assert(low_bound_is_available(j));
|
||||
return m_bp.get_low_bound(j);
|
||||
}
|
||||
|
||||
|
||||
const mpq & monoid_max_no_mult(bool a_is_pos, unsigned j, bool & strict) const {
|
||||
if (a_is_pos) {
|
||||
strict = !is_zero(ub(j).y);
|
||||
return ub(j).x;
|
||||
}
|
||||
strict = !is_zero(lb(j).y);
|
||||
return lb(j).x;
|
||||
}
|
||||
mpq monoid_max(const mpq & a, unsigned j) const {
|
||||
if (is_pos(a)) {
|
||||
return a * ub(j).x;
|
||||
}
|
||||
return a * lb(j).x;
|
||||
}
|
||||
mpq monoid_max(const mpq & a, unsigned j, bool & strict) const {
|
||||
if (is_pos(a)) {
|
||||
strict = !is_zero(ub(j).y);
|
||||
return a * ub(j).x;
|
||||
}
|
||||
strict = !is_zero(lb(j).y);
|
||||
return a * lb(j).x;
|
||||
}
|
||||
const mpq & monoid_min_no_mult(bool a_is_pos, unsigned j, bool & strict) const {
|
||||
if (!a_is_pos) {
|
||||
strict = !is_zero(ub(j).y);
|
||||
return ub(j).x;
|
||||
}
|
||||
strict = !is_zero(lb(j).y);
|
||||
return lb(j).x;
|
||||
}
|
||||
|
||||
mpq monoid_min(const mpq & a, unsigned j, bool& strict) const {
|
||||
if (is_neg(a)) {
|
||||
strict = !is_zero(ub(j).y);
|
||||
return a * ub(j).x;
|
||||
}
|
||||
|
||||
strict = !is_zero(lb(j).y);
|
||||
return a * lb(j).x;
|
||||
}
|
||||
|
||||
mpq monoid_min(const mpq & a, unsigned j) const {
|
||||
if (is_neg(a)) {
|
||||
return a * ub(j).x;
|
||||
}
|
||||
|
||||
return a * lb(j).x;
|
||||
}
|
||||
|
||||
|
||||
void limit_all_monoids_from_above() {
|
||||
int strict = 0;
|
||||
mpq total;
|
||||
lean_assert(is_zero(total));
|
||||
m_it.reset();
|
||||
mpq a; unsigned j;
|
||||
while (m_it.next(a, j)) {
|
||||
bool str;
|
||||
total -= monoid_min(a, j, str);
|
||||
if (str)
|
||||
strict++;
|
||||
}
|
||||
|
||||
m_it.reset();
|
||||
while (m_it.next(a, j)) {
|
||||
bool str;
|
||||
bool a_is_pos = is_pos(a);
|
||||
mpq bound = total / a + monoid_min_no_mult(a_is_pos, j, str);
|
||||
if (a_is_pos) {
|
||||
limit_j(j, bound, true, false, strict - static_cast<int>(str) > 0);
|
||||
}
|
||||
else {
|
||||
limit_j(j, bound, false, true, strict - static_cast<int>(str) > 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void limit_all_monoids_from_below() {
|
||||
int strict = 0;
|
||||
mpq total;
|
||||
lean_assert(is_zero(total));
|
||||
m_it.reset();
|
||||
mpq a; unsigned j;
|
||||
while (m_it.next(a, j)) {
|
||||
bool str;
|
||||
total -= monoid_max(a, j, str);
|
||||
if (str)
|
||||
strict++;
|
||||
}
|
||||
m_it.reset();
|
||||
while (m_it.next(a, j)) {
|
||||
bool str;
|
||||
bool a_is_pos = is_pos(a);
|
||||
mpq bound = total / a + monoid_max_no_mult(a_is_pos, j, str);
|
||||
bool astrict = strict - static_cast<int>(str) > 0;
|
||||
if (a_is_pos) {
|
||||
limit_j(j, bound, true, true, astrict);
|
||||
}
|
||||
else {
|
||||
limit_j(j, bound, false, false, astrict);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void limit_monoid_u_from_below() {
|
||||
// we are going to limit from below the monoid m_column_of_u,
|
||||
// every other monoid is impossible to limit from below
|
||||
mpq u_coeff, a;
|
||||
unsigned j;
|
||||
mpq bound = -m_rs.x;
|
||||
m_it.reset();
|
||||
bool strict = false;
|
||||
while (m_it.next(a, j)) {
|
||||
if (j == static_cast<unsigned>(m_column_of_u)) {
|
||||
u_coeff = a;
|
||||
continue;
|
||||
}
|
||||
bool str;
|
||||
bound -= monoid_max(a, j, str);
|
||||
if (str)
|
||||
strict = true;
|
||||
}
|
||||
|
||||
bound /= u_coeff;
|
||||
|
||||
if (numeric_traits<impq>::is_pos(u_coeff)) {
|
||||
limit_j(m_column_of_u, bound, true, true, strict);
|
||||
} else {
|
||||
limit_j(m_column_of_u, bound, false, false, strict);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void limit_monoid_l_from_above() {
|
||||
// we are going to limit from above the monoid m_column_of_l,
|
||||
// every other monoid is impossible to limit from above
|
||||
mpq l_coeff, a;
|
||||
unsigned j;
|
||||
mpq bound = -m_rs.x;
|
||||
bool strict = false;
|
||||
m_it.reset();
|
||||
while (m_it.next(a, j)) {
|
||||
if (j == static_cast<unsigned>(m_column_of_l)) {
|
||||
l_coeff = a;
|
||||
continue;
|
||||
}
|
||||
|
||||
bool str;
|
||||
bound -= monoid_min(a, j, str);
|
||||
if (str)
|
||||
strict = true;
|
||||
}
|
||||
|
||||
bound /= l_coeff;
|
||||
if (is_pos(l_coeff)) {
|
||||
limit_j(m_column_of_l, bound, true, false, strict);
|
||||
} else {
|
||||
limit_j(m_column_of_l, bound, false, true, strict);
|
||||
}
|
||||
}
|
||||
|
||||
// // it is the coefficent before the bounded column
|
||||
// void provide_evidence(bool coeff_is_pos) {
|
||||
// /*
|
||||
// auto & be = m_ibounds.back();
|
||||
// bool low_bound = be.m_low_bound;
|
||||
// if (!coeff_is_pos)
|
||||
// low_bound = !low_bound;
|
||||
// auto it = m_it.clone();
|
||||
// mpq a; unsigned j;
|
||||
// while (it->next(a, j)) {
|
||||
// if (be.m_j == j) continue;
|
||||
// lean_assert(bound_is_available(j, is_neg(a) ? low_bound : !low_bound));
|
||||
// be.m_vector_of_bound_signatures.emplace_back(a, j, numeric_traits<impq>::
|
||||
// is_neg(a)? low_bound: !low_bound);
|
||||
// }
|
||||
// delete it;
|
||||
// */
|
||||
// }
|
||||
|
||||
void limit_j(unsigned j, const mpq& u, bool coeff_before_j_is_pos, bool is_low_bound, bool strict){
|
||||
m_bp.try_add_bound(u, j, is_low_bound, coeff_before_j_is_pos, m_row_or_term_index, strict);
|
||||
}
|
||||
|
||||
|
||||
void advance_u(unsigned j) {
|
||||
if (m_column_of_u == -1)
|
||||
m_column_of_u = j;
|
||||
else
|
||||
m_column_of_u = -2;
|
||||
}
|
||||
|
||||
void advance_l(unsigned j) {
|
||||
if (m_column_of_l == -1)
|
||||
m_column_of_l = j;
|
||||
else
|
||||
m_column_of_l = -2;
|
||||
}
|
||||
|
||||
void analyze_bound_on_var_on_coeff(int j, const mpq &a) {
|
||||
switch (m_bp.get_column_type(j)) {
|
||||
case column_type::low_bound:
|
||||
if (numeric_traits<mpq>::is_pos(a))
|
||||
advance_u(j);
|
||||
else
|
||||
advance_l(j);
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
if(numeric_traits<mpq>::is_neg(a))
|
||||
advance_u(j);
|
||||
else
|
||||
advance_l(j);
|
||||
break;
|
||||
case column_type::free_column:
|
||||
advance_u(j);
|
||||
advance_l(j);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static void analyze_row(linear_combination_iterator<mpq> &it,
|
||||
const numeric_pair<mpq>& rs,
|
||||
unsigned row_or_term_index,
|
||||
bound_propagator & bp
|
||||
) {
|
||||
bound_analyzer_on_row a(it, rs, row_or_term_index, bp);
|
||||
a.analyze();
|
||||
}
|
||||
|
||||
};
|
||||
}
|
47
src/util/lp/bound_propagator.cpp
Normal file
47
src/util/lp/bound_propagator.cpp
Normal file
|
@ -0,0 +1,47 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/lar_solver.h"
|
||||
namespace lean {
|
||||
bound_propagator::bound_propagator(lar_solver & ls):
|
||||
m_lar_solver(ls) {}
|
||||
column_type bound_propagator::get_column_type(unsigned j) const {
|
||||
return m_lar_solver.m_mpq_lar_core_solver.m_column_types()[j];
|
||||
}
|
||||
const impq & bound_propagator::get_low_bound(unsigned j) const {
|
||||
return m_lar_solver.m_mpq_lar_core_solver.m_r_low_bounds()[j];
|
||||
}
|
||||
const impq & bound_propagator::get_upper_bound(unsigned j) const {
|
||||
return m_lar_solver.m_mpq_lar_core_solver.m_r_upper_bounds()[j];
|
||||
}
|
||||
void bound_propagator::try_add_bound(const mpq & v, unsigned j, bool is_low, bool coeff_before_j_is_pos, unsigned row_or_term_index, bool strict) {
|
||||
j = m_lar_solver.adjust_column_index_to_term_index(j);
|
||||
lconstraint_kind kind = is_low? GE : LE;
|
||||
if (strict)
|
||||
kind = static_cast<lconstraint_kind>(kind / 2);
|
||||
|
||||
if (!bound_is_interesting(j, kind, v))
|
||||
return;
|
||||
unsigned k; // index to ibounds
|
||||
if (is_low) {
|
||||
if (try_get_val(m_improved_low_bounds, j, k)) {
|
||||
auto & found_bound = m_ibounds[k];
|
||||
if (v > found_bound.m_bound || (v == found_bound.m_bound && found_bound.m_strict == false && strict))
|
||||
found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
|
||||
} else {
|
||||
m_improved_low_bounds[j] = m_ibounds.size();
|
||||
m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
|
||||
}
|
||||
} else { // the upper bound case
|
||||
if (try_get_val(m_improved_upper_bounds, j, k)) {
|
||||
auto & found_bound = m_ibounds[k];
|
||||
if (v < found_bound.m_bound || (v == found_bound.m_bound && found_bound.m_strict == false && strict))
|
||||
found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
|
||||
} else {
|
||||
m_improved_upper_bounds[j] = m_ibounds.size();
|
||||
m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
27
src/util/lp/bound_propagator.h
Normal file
27
src/util/lp/bound_propagator.h
Normal file
|
@ -0,0 +1,27 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/lp_settings.h"
|
||||
namespace lean {
|
||||
class lar_solver;
|
||||
class bound_propagator {
|
||||
std::unordered_map<unsigned, unsigned> m_improved_low_bounds; // these maps map a column index to the corresponding index in ibounds
|
||||
std::unordered_map<unsigned, unsigned> m_improved_upper_bounds;
|
||||
lar_solver & m_lar_solver;
|
||||
public:
|
||||
vector<implied_bound> m_ibounds;
|
||||
public:
|
||||
bound_propagator(lar_solver & ls);
|
||||
column_type get_column_type(unsigned) const;
|
||||
const impq & get_low_bound(unsigned) const;
|
||||
const impq & get_upper_bound(unsigned) const;
|
||||
void try_add_bound(const mpq & v, unsigned j, bool is_low, bool coeff_before_j_is_pos, unsigned row_or_term_index, bool strict);
|
||||
virtual bool bound_is_interesting(unsigned vi,
|
||||
lean::lconstraint_kind kind,
|
||||
const rational & bval) {return true;}
|
||||
unsigned number_of_found_bounds() const { return m_ibounds.size(); }
|
||||
virtual void consume(mpq const& v, unsigned j) { std::cout << "doh\n"; }
|
||||
};
|
||||
}
|
20
src/util/lp/breakpoint.h
Normal file
20
src/util/lp/breakpoint.h
Normal file
|
@ -0,0 +1,20 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
namespace lean {
|
||||
enum breakpoint_type {
|
||||
low_break, upper_break, fixed_break
|
||||
};
|
||||
template <typename X>
|
||||
struct breakpoint {
|
||||
unsigned m_j; // the basic column
|
||||
breakpoint_type m_type;
|
||||
X m_delta;
|
||||
breakpoint(){}
|
||||
breakpoint(unsigned j, X delta, breakpoint_type type):m_j(j), m_type(type), m_delta(delta) {}
|
||||
};
|
||||
}
|
235
src/util/lp/column_info.h
Normal file
235
src/util/lp/column_info.h
Normal file
|
@ -0,0 +1,235 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include <unordered_map>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "util/lp/lp_settings.h"
|
||||
namespace lean {
|
||||
inline bool is_valid(unsigned j) { return static_cast<int>(j) >= 0;}
|
||||
|
||||
template <typename T>
|
||||
class column_info {
|
||||
std::string m_name;
|
||||
bool m_low_bound_is_set = false;
|
||||
bool m_low_bound_is_strict = false;
|
||||
bool m_upper_bound_is_set = false;
|
||||
bool m_upper_bound_is_strict = false;
|
||||
T m_low_bound;
|
||||
T m_upper_bound;
|
||||
T m_cost = numeric_traits<T>::zero();
|
||||
T m_fixed_value;
|
||||
bool m_is_fixed = false;
|
||||
unsigned m_column_index = static_cast<unsigned>(-1);
|
||||
public:
|
||||
bool operator==(const column_info & c) const {
|
||||
return m_name == c.m_name &&
|
||||
m_low_bound_is_set == c.m_low_bound_is_set &&
|
||||
m_low_bound_is_strict == c.m_low_bound_is_strict &&
|
||||
m_upper_bound_is_set == c.m_upper_bound_is_set&&
|
||||
m_upper_bound_is_strict == c.m_upper_bound_is_strict&&
|
||||
(!m_low_bound_is_set || m_low_bound == c.m_low_bound) &&
|
||||
(!m_upper_bound_is_set || m_upper_bound == c.m_upper_bound) &&
|
||||
m_cost == c.m_cost&&
|
||||
m_is_fixed == c.m_is_fixed &&
|
||||
(!m_is_fixed || m_fixed_value == c.m_fixed_value) &&
|
||||
m_column_index == c.m_column_index;
|
||||
}
|
||||
bool operator!=(const column_info & c) const { return !((*this) == c); }
|
||||
void set_column_index(unsigned j) {
|
||||
m_column_index = j;
|
||||
}
|
||||
// the default constructor
|
||||
column_info() {}
|
||||
|
||||
column_info(unsigned column_index) : m_column_index(column_index) {
|
||||
}
|
||||
|
||||
column_info(const column_info & ci) {
|
||||
m_name = ci.m_name;
|
||||
m_low_bound_is_set = ci.m_low_bound_is_set;
|
||||
m_low_bound_is_strict = ci.m_low_bound_is_strict;
|
||||
m_upper_bound_is_set = ci.m_upper_bound_is_set;
|
||||
m_upper_bound_is_strict = ci.m_upper_bound_is_strict;
|
||||
m_low_bound = ci.m_low_bound;
|
||||
m_upper_bound = ci.m_upper_bound;
|
||||
m_cost = ci.m_cost;
|
||||
m_fixed_value = ci.m_fixed_value;
|
||||
m_is_fixed = ci.m_is_fixed;
|
||||
m_column_index = ci.m_column_index;
|
||||
}
|
||||
|
||||
unsigned get_column_index() const {
|
||||
return m_column_index;
|
||||
}
|
||||
|
||||
column_type get_column_type() const {
|
||||
return m_is_fixed? column_type::fixed : (m_low_bound_is_set? (m_upper_bound_is_set? column_type::boxed : column_type::low_bound) : (m_upper_bound_is_set? column_type::upper_bound: column_type::free_column));
|
||||
}
|
||||
|
||||
column_type get_column_type_no_flipping() const {
|
||||
if (m_is_fixed) {
|
||||
return column_type::fixed;
|
||||
}
|
||||
|
||||
if (m_low_bound_is_set) {
|
||||
return m_upper_bound_is_set? column_type::boxed: column_type::low_bound;
|
||||
}
|
||||
// we are flipping the bounds!
|
||||
return m_upper_bound_is_set? column_type::upper_bound
|
||||
: column_type::free_column;
|
||||
}
|
||||
|
||||
T get_low_bound() const {
|
||||
lean_assert(m_low_bound_is_set);
|
||||
return m_low_bound;
|
||||
}
|
||||
T get_upper_bound() const {
|
||||
lean_assert(m_upper_bound_is_set);
|
||||
return m_upper_bound;
|
||||
}
|
||||
|
||||
bool low_bound_is_set() const {
|
||||
return m_low_bound_is_set;
|
||||
}
|
||||
|
||||
bool upper_bound_is_set() const {
|
||||
return m_upper_bound_is_set;
|
||||
}
|
||||
|
||||
T get_shift() {
|
||||
if (is_fixed()) {
|
||||
return m_fixed_value;
|
||||
}
|
||||
if (is_flipped()){
|
||||
return m_upper_bound;
|
||||
}
|
||||
return m_low_bound_is_set? m_low_bound : numeric_traits<T>::zero();
|
||||
}
|
||||
|
||||
bool is_flipped() {
|
||||
return m_upper_bound_is_set && !m_low_bound_is_set;
|
||||
}
|
||||
|
||||
bool adjusted_low_bound_is_set() {
|
||||
return !is_flipped()? low_bound_is_set(): upper_bound_is_set();
|
||||
}
|
||||
|
||||
bool adjusted_upper_bound_is_set() {
|
||||
return !is_flipped()? upper_bound_is_set(): low_bound_is_set();
|
||||
}
|
||||
|
||||
T get_adjusted_upper_bound() {
|
||||
return get_upper_bound() - get_low_bound();
|
||||
}
|
||||
|
||||
bool is_fixed() const {
|
||||
return m_is_fixed;
|
||||
}
|
||||
|
||||
bool is_free() {
|
||||
return !m_low_bound_is_set && !m_upper_bound_is_set;
|
||||
}
|
||||
|
||||
void set_fixed_value(T v) {
|
||||
m_is_fixed = true;
|
||||
m_fixed_value = v;
|
||||
}
|
||||
|
||||
T get_fixed_value() const {
|
||||
lean_assert(m_is_fixed);
|
||||
return m_fixed_value;
|
||||
}
|
||||
|
||||
T get_cost() const {
|
||||
return m_cost;
|
||||
}
|
||||
|
||||
void set_cost(T const & cost) {
|
||||
m_cost = cost;
|
||||
}
|
||||
|
||||
void set_name(std::string const & s) {
|
||||
m_name = s;
|
||||
}
|
||||
|
||||
std::string get_name() const {
|
||||
return m_name;
|
||||
}
|
||||
|
||||
void set_low_bound(T const & l) {
|
||||
m_low_bound = l;
|
||||
m_low_bound_is_set = true;
|
||||
}
|
||||
|
||||
void set_upper_bound(T const & l) {
|
||||
m_upper_bound = l;
|
||||
m_upper_bound_is_set = true;
|
||||
}
|
||||
|
||||
void unset_low_bound() {
|
||||
m_low_bound_is_set = false;
|
||||
}
|
||||
|
||||
void unset_upper_bound() {
|
||||
m_upper_bound_is_set = false;
|
||||
}
|
||||
|
||||
void unset_fixed() {
|
||||
m_is_fixed = false;
|
||||
}
|
||||
|
||||
bool low_bound_holds(T v) {
|
||||
return !low_bound_is_set() || v >= m_low_bound -T(0.0000001);
|
||||
}
|
||||
|
||||
bool upper_bound_holds(T v) {
|
||||
return !upper_bound_is_set() || v <= m_upper_bound + T(0.000001);
|
||||
}
|
||||
|
||||
bool bounds_hold(T v) {
|
||||
return low_bound_holds(v) && upper_bound_holds(v);
|
||||
}
|
||||
|
||||
bool adjusted_bounds_hold(T v) {
|
||||
return adjusted_low_bound_holds(v) && adjusted_upper_bound_holds(v);
|
||||
}
|
||||
|
||||
bool adjusted_low_bound_holds(T v) {
|
||||
return !adjusted_low_bound_is_set() || v >= -T(0.0000001);
|
||||
}
|
||||
|
||||
bool adjusted_upper_bound_holds(T v) {
|
||||
return !adjusted_upper_bound_is_set() || v <= get_adjusted_upper_bound() + T(0.000001);
|
||||
}
|
||||
bool is_infeasible() {
|
||||
if ((!upper_bound_is_set()) || (!low_bound_is_set()))
|
||||
return false;
|
||||
// ok, both bounds are set
|
||||
bool at_least_one_is_strict = upper_bound_is_strict() || low_bound_is_strict();
|
||||
if (!at_least_one_is_strict)
|
||||
return get_upper_bound() < get_low_bound();
|
||||
// at least on bound is strict
|
||||
return get_upper_bound() <= get_low_bound(); // the equality is impossible
|
||||
}
|
||||
bool low_bound_is_strict() const {
|
||||
return m_low_bound_is_strict;
|
||||
}
|
||||
|
||||
void set_low_bound_strict(bool val) {
|
||||
m_low_bound_is_strict = val;
|
||||
}
|
||||
|
||||
bool upper_bound_is_strict() const {
|
||||
return m_upper_bound_is_strict;
|
||||
}
|
||||
|
||||
void set_upper_bound_strict(bool val) {
|
||||
m_upper_bound_is_strict = val;
|
||||
}
|
||||
};
|
||||
}
|
82
src/util/lp/column_namer.h
Normal file
82
src/util/lp/column_namer.h
Normal file
|
@ -0,0 +1,82 @@
|
|||
#pragma once
|
||||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <string>
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
namespace lean {
|
||||
class column_namer {
|
||||
public:
|
||||
virtual std::string get_column_name(unsigned j) const = 0;
|
||||
template <typename T>
|
||||
void print_linear_iterator(linear_combination_iterator<T>* it, std::ostream & out) const {
|
||||
vector<std::pair<T, unsigned>> coeff;
|
||||
T a;
|
||||
unsigned i;
|
||||
while (it->next(a, i)) {
|
||||
coeff.emplace_back(a, i);
|
||||
}
|
||||
print_linear_combination_of_column_indices(coeff, out);
|
||||
}
|
||||
template <typename T>
|
||||
void print_linear_iterator_indices_only(linear_combination_iterator<T>* it, std::ostream & out) const {
|
||||
vector<std::pair<T, unsigned>> coeff;
|
||||
T a;
|
||||
unsigned i;
|
||||
while (it->next(a, i)) {
|
||||
coeff.emplace_back(a, i);
|
||||
}
|
||||
print_linear_combination_of_column_indices_only(coeff, out);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void print_linear_combination_of_column_indices_only(const vector<std::pair<T, unsigned>> & coeffs, std::ostream & out) const {
|
||||
bool first = true;
|
||||
for (const auto & it : coeffs) {
|
||||
auto val = it.first;
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
if (numeric_traits<T>::is_pos(val)) {
|
||||
out << " + ";
|
||||
} else {
|
||||
out << " - ";
|
||||
val = -val;
|
||||
}
|
||||
}
|
||||
if (val == -numeric_traits<T>::one())
|
||||
out << " - ";
|
||||
else if (val != numeric_traits<T>::one())
|
||||
out << T_to_string(val);
|
||||
|
||||
out << "_" << it.second;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void print_linear_combination_of_column_indices(const vector<std::pair<T, unsigned>> & coeffs, std::ostream & out) const {
|
||||
bool first = true;
|
||||
for (const auto & it : coeffs) {
|
||||
auto val = it.first;
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
if (numeric_traits<T>::is_pos(val)) {
|
||||
out << " + ";
|
||||
} else {
|
||||
out << " - ";
|
||||
val = -val;
|
||||
}
|
||||
}
|
||||
if (val == -numeric_traits<T>::one())
|
||||
out << " - ";
|
||||
else if (val != numeric_traits<T>::one())
|
||||
out << val;
|
||||
|
||||
out << get_column_name(it.second);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
}
|
118
src/util/lp/core_solver_pretty_printer.h
Normal file
118
src/util/lp/core_solver_pretty_printer.h
Normal file
|
@ -0,0 +1,118 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include <limits>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "util/vector.h"
|
||||
#include <ostream>
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/lp/indexed_vector.h"
|
||||
namespace lean {
|
||||
template <typename T, typename X> class lp_core_solver_base; // forward definition
|
||||
|
||||
template <typename T, typename X>
|
||||
class core_solver_pretty_printer {
|
||||
std::ostream & m_out;
|
||||
template<typename A> using vector = vector<A>;
|
||||
typedef std::string string;
|
||||
lp_core_solver_base<T, X> & m_core_solver;
|
||||
vector<unsigned> m_column_widths;
|
||||
vector<vector<string>> m_A;
|
||||
vector<vector<string>> m_signs;
|
||||
vector<string> m_costs;
|
||||
vector<string> m_cost_signs;
|
||||
vector<string> m_lows; // low bounds
|
||||
vector<string> m_upps; // upper bounds
|
||||
vector<string> m_lows_signs;
|
||||
vector<string> m_upps_signs;
|
||||
unsigned m_rs_width;
|
||||
vector<X> m_rs;
|
||||
unsigned m_title_width;
|
||||
std::string m_cost_title;
|
||||
std::string m_basis_heading_title;
|
||||
std::string m_x_title;
|
||||
std::string m_low_bounds_title = "low";
|
||||
std::string m_upp_bounds_title = "upp";
|
||||
std::string m_exact_norm_title = "exact cn";
|
||||
std::string m_approx_norm_title = "approx cn";
|
||||
|
||||
|
||||
unsigned ncols() { return m_core_solver.m_A.column_count(); }
|
||||
unsigned nrows() { return m_core_solver.m_A.row_count(); }
|
||||
unsigned m_artificial_start = std::numeric_limits<unsigned>::max();
|
||||
indexed_vector<T> m_w_buff;
|
||||
indexed_vector<T> m_ed_buff;
|
||||
vector<T> m_exact_column_norms;
|
||||
|
||||
public:
|
||||
core_solver_pretty_printer(lp_core_solver_base<T, X > & core_solver, std::ostream & out);
|
||||
|
||||
void init_costs();
|
||||
|
||||
~core_solver_pretty_printer();
|
||||
void init_rs_width();
|
||||
|
||||
T current_column_norm();
|
||||
|
||||
void init_m_A_and_signs();
|
||||
|
||||
void init_column_widths();
|
||||
|
||||
void adjust_width_with_low_bound(unsigned column, unsigned & w);
|
||||
void adjust_width_with_upper_bound(unsigned column, unsigned & w);
|
||||
|
||||
void adjust_width_with_bounds(unsigned column, unsigned & w);
|
||||
|
||||
void adjust_width_with_basis_heading(unsigned column, unsigned & w) {
|
||||
w = std::max(w, (unsigned)T_to_string(m_core_solver.m_basis_heading[column]).size());
|
||||
}
|
||||
|
||||
unsigned get_column_width(unsigned column);
|
||||
|
||||
unsigned regular_cell_width(unsigned row, unsigned column, std::string name) {
|
||||
return regular_cell_string(row, column, name).size();
|
||||
}
|
||||
|
||||
std::string regular_cell_string(unsigned row, unsigned column, std::string name);
|
||||
|
||||
|
||||
void set_coeff(vector<string>& row, vector<string> & row_signs, unsigned col, const T & t, string name);
|
||||
|
||||
void print_x();
|
||||
|
||||
std::string get_low_bound_string(unsigned j);
|
||||
|
||||
std::string get_upp_bound_string(unsigned j);
|
||||
|
||||
|
||||
void print_lows();
|
||||
|
||||
void print_upps();
|
||||
|
||||
string get_exact_column_norm_string(unsigned col) {
|
||||
return T_to_string(m_exact_column_norms[col]);
|
||||
}
|
||||
|
||||
void print_exact_norms();
|
||||
|
||||
void print_approx_norms();
|
||||
|
||||
void print();
|
||||
|
||||
void print_basis_heading();
|
||||
|
||||
void print_bottom_line() {
|
||||
m_out << "----------------------" << std::endl;
|
||||
}
|
||||
|
||||
void print_cost();
|
||||
|
||||
void print_given_rows(vector<string> & row, vector<string> & signs, X rst);
|
||||
|
||||
void print_row(unsigned i);
|
||||
|
||||
};
|
||||
}
|
377
src/util/lp/core_solver_pretty_printer.hpp
Normal file
377
src/util/lp/core_solver_pretty_printer.hpp
Normal file
|
@ -0,0 +1,377 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <limits>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/lp_core_solver_base.h"
|
||||
#include "util/lp/core_solver_pretty_printer.h"
|
||||
#include "util/lp/numeric_pair.h"
|
||||
namespace lean {
|
||||
|
||||
|
||||
template <typename T, typename X>
|
||||
core_solver_pretty_printer<T, X>::core_solver_pretty_printer(lp_core_solver_base<T, X > & core_solver, std::ostream & out):
|
||||
m_out(out),
|
||||
m_core_solver(core_solver),
|
||||
m_A(core_solver.m_A.row_count(), vector<string>(core_solver.m_A.column_count(), "")),
|
||||
m_signs(core_solver.m_A.row_count(), vector<string>(core_solver.m_A.column_count(), " ")),
|
||||
m_costs(ncols(), ""),
|
||||
m_cost_signs(ncols(), " "),
|
||||
m_rs(ncols(), zero_of_type<X>()),
|
||||
m_w_buff(core_solver.m_w),
|
||||
m_ed_buff(core_solver.m_ed) {
|
||||
m_column_widths.resize(core_solver.m_A.column_count(), 0),
|
||||
init_m_A_and_signs();
|
||||
init_costs();
|
||||
init_column_widths();
|
||||
init_rs_width();
|
||||
m_cost_title = "costs";
|
||||
m_basis_heading_title = "heading";
|
||||
m_x_title = "x*";
|
||||
m_title_width = static_cast<unsigned>(std::max(std::max(m_cost_title.size(), std::max(m_basis_heading_title.size(), m_x_title.size())), m_approx_norm_title.size()));
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::init_costs() {
|
||||
if (!m_core_solver.use_tableau()) {
|
||||
vector<T> local_y(m_core_solver.m_m());
|
||||
m_core_solver.solve_yB(local_y);
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
if (m_core_solver.m_basis_heading[i] < 0) {
|
||||
T t = m_core_solver.m_costs[i] - m_core_solver.m_A.dot_product_with_column(local_y, i);
|
||||
set_coeff(m_costs, m_cost_signs, i, t, m_core_solver.column_name(i));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
if (m_core_solver.m_basis_heading[i] < 0) {
|
||||
set_coeff(m_costs, m_cost_signs, i, m_core_solver.m_d[i], m_core_solver.column_name(i));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> core_solver_pretty_printer<T, X>::~core_solver_pretty_printer() {
|
||||
m_core_solver.m_w = m_w_buff;
|
||||
m_core_solver.m_ed = m_ed_buff;
|
||||
}
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::init_rs_width() {
|
||||
m_rs_width = static_cast<unsigned>(T_to_string(m_core_solver.get_cost()).size());
|
||||
for (unsigned i = 0; i < nrows(); i++) {
|
||||
unsigned wt = static_cast<unsigned>(T_to_string(m_rs[i]).size());
|
||||
if (wt > m_rs_width) {
|
||||
m_rs_width = wt;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> T core_solver_pretty_printer<T, X>::current_column_norm() {
|
||||
T ret = zero_of_type<T>();
|
||||
for (auto i : m_core_solver.m_ed.m_index)
|
||||
ret += m_core_solver.m_ed[i] * m_core_solver.m_ed[i];
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::init_m_A_and_signs() {
|
||||
if (numeric_traits<T>::precise() && m_core_solver.m_settings.use_tableau()) {
|
||||
for (unsigned column = 0; column < ncols(); column++) {
|
||||
vector<T> t(nrows(), zero_of_type<T>());
|
||||
for (const auto & c : m_core_solver.m_A.m_columns[column]){
|
||||
t[c.m_i] = m_core_solver.m_A.get_val(c);
|
||||
}
|
||||
|
||||
string name = m_core_solver.column_name(column);
|
||||
for (unsigned row = 0; row < nrows(); row ++) {
|
||||
set_coeff(
|
||||
m_A[row],
|
||||
m_signs[row],
|
||||
column,
|
||||
t[row],
|
||||
name);
|
||||
m_rs[row] += t[row] * m_core_solver.m_x[column];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (unsigned column = 0; column < ncols(); column++) {
|
||||
m_core_solver.solve_Bd(column); // puts the result into m_core_solver.m_ed
|
||||
string name = m_core_solver.column_name(column);
|
||||
for (unsigned row = 0; row < nrows(); row ++) {
|
||||
set_coeff(
|
||||
m_A[row],
|
||||
m_signs[row],
|
||||
column,
|
||||
m_core_solver.m_ed[row],
|
||||
name);
|
||||
m_rs[row] += m_core_solver.m_ed[row] * m_core_solver.m_x[column];
|
||||
}
|
||||
if (!m_core_solver.use_tableau())
|
||||
m_exact_column_norms.push_back(current_column_norm() + T(1)); // a conversion missing 1 -> T
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::init_column_widths() {
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
m_column_widths[i] = get_column_width(i);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::adjust_width_with_low_bound(unsigned column, unsigned & w) {
|
||||
if (!m_core_solver.low_bounds_are_set()) return;
|
||||
w = std::max(w, (unsigned)T_to_string(m_core_solver.low_bound_value(column)).size());
|
||||
}
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::adjust_width_with_upper_bound(unsigned column, unsigned & w) {
|
||||
w = std::max(w, (unsigned)T_to_string(m_core_solver.upper_bound_value(column)).size());
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::adjust_width_with_bounds(unsigned column, unsigned & w) {
|
||||
switch (m_core_solver.get_column_type(column)) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
adjust_width_with_low_bound(column, w);
|
||||
adjust_width_with_upper_bound(column, w);
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
adjust_width_with_low_bound(column, w);
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
adjust_width_with_upper_bound(column, w);
|
||||
break;
|
||||
case column_type::free_column:
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> unsigned core_solver_pretty_printer<T, X>:: get_column_width(unsigned column) {
|
||||
unsigned w = static_cast<unsigned>(std::max((size_t)m_costs[column].size(), T_to_string(m_core_solver.m_x[column]).size()));
|
||||
adjust_width_with_bounds(column, w);
|
||||
adjust_width_with_basis_heading(column, w);
|
||||
for (unsigned i = 0; i < nrows(); i++) {
|
||||
unsigned cellw = static_cast<unsigned>(m_A[i][column].size());
|
||||
if (cellw > w) {
|
||||
w = cellw;
|
||||
}
|
||||
}
|
||||
if (!m_core_solver.use_tableau()) {
|
||||
w = std::max(w, (unsigned)T_to_string(m_exact_column_norms[column]).size());
|
||||
if (m_core_solver.m_column_norms.size() > 0)
|
||||
w = std::max(w, (unsigned)T_to_string(m_core_solver.m_column_norms[column]).size());
|
||||
}
|
||||
return w;
|
||||
}
|
||||
|
||||
template <typename T, typename X> std::string core_solver_pretty_printer<T, X>::regular_cell_string(unsigned row, unsigned /* column */, std::string name) {
|
||||
T t = fabs(m_core_solver.m_ed[row]);
|
||||
if ( t == 1) return name;
|
||||
return T_to_string(t) + name;
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::set_coeff(vector<string>& row, vector<string> & row_signs, unsigned col, const T & t, string name) {
|
||||
if (numeric_traits<T>::is_zero(t)) {
|
||||
return;
|
||||
}
|
||||
if (col > 0) {
|
||||
if (t > 0) {
|
||||
row_signs[col] = "+";
|
||||
row[col] = t != 1? T_to_string(t) + name : name;
|
||||
} else {
|
||||
row_signs[col] = "-";
|
||||
row[col] = t != -1? T_to_string(-t) + name: name;
|
||||
}
|
||||
} else { // col == 0
|
||||
if (t == -1) {
|
||||
row[col] = "-" + name;
|
||||
} else if (t == 1) {
|
||||
row[col] = name;
|
||||
} else {
|
||||
row[col] = T_to_string(t) + name;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_x() {
|
||||
if (ncols() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
int blanks = m_title_width + 1 - static_cast<int>(m_x_title.size());
|
||||
m_out << m_x_title;
|
||||
print_blanks(blanks, m_out);
|
||||
|
||||
auto bh = m_core_solver.m_x;
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
string s = T_to_string(bh[i]);
|
||||
int blanks = m_column_widths[i] - static_cast<int>(s.size());
|
||||
print_blanks(blanks, m_out);
|
||||
m_out << s << " "; // the column interval
|
||||
}
|
||||
m_out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> std::string core_solver_pretty_printer<T, X>::get_low_bound_string(unsigned j) {
|
||||
switch (m_core_solver.get_column_type(j)){
|
||||
case column_type::boxed:
|
||||
case column_type::low_bound:
|
||||
case column_type::fixed:
|
||||
if (m_core_solver.low_bounds_are_set())
|
||||
return T_to_string(m_core_solver.low_bound_value(j));
|
||||
else
|
||||
return std::string("0");
|
||||
break;
|
||||
default:
|
||||
return std::string();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> std::string core_solver_pretty_printer<T, X>::get_upp_bound_string(unsigned j) {
|
||||
switch (m_core_solver.get_column_type(j)){
|
||||
case column_type::boxed:
|
||||
case column_type::upper_bound:
|
||||
case column_type::fixed:
|
||||
return T_to_string(m_core_solver.upper_bound_value(j));
|
||||
break;
|
||||
default:
|
||||
return std::string();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_lows() {
|
||||
if (ncols() == 0) {
|
||||
return;
|
||||
}
|
||||
int blanks = m_title_width + 1 - static_cast<unsigned>(m_low_bounds_title.size());
|
||||
m_out << m_low_bounds_title;
|
||||
print_blanks(blanks, m_out);
|
||||
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
string s = get_low_bound_string(i);
|
||||
int blanks = m_column_widths[i] - static_cast<unsigned>(s.size());
|
||||
print_blanks(blanks, m_out);
|
||||
m_out << s << " "; // the column interval
|
||||
}
|
||||
m_out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_upps() {
|
||||
if (ncols() == 0) {
|
||||
return;
|
||||
}
|
||||
int blanks = m_title_width + 1 - static_cast<unsigned>(m_upp_bounds_title.size());
|
||||
m_out << m_upp_bounds_title;
|
||||
print_blanks(blanks, m_out);
|
||||
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
string s = get_upp_bound_string(i);
|
||||
int blanks = m_column_widths[i] - static_cast<unsigned>(s.size());
|
||||
print_blanks(blanks, m_out);
|
||||
m_out << s << " "; // the column interval
|
||||
}
|
||||
m_out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_exact_norms() {
|
||||
if (m_core_solver.use_tableau()) return;
|
||||
int blanks = m_title_width + 1 - static_cast<int>(m_exact_norm_title.size());
|
||||
m_out << m_exact_norm_title;
|
||||
print_blanks(blanks, m_out);
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
string s = get_exact_column_norm_string(i);
|
||||
int blanks = m_column_widths[i] - static_cast<int>(s.size());
|
||||
print_blanks(blanks, m_out);
|
||||
m_out << s << " ";
|
||||
}
|
||||
m_out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_approx_norms() {
|
||||
if (m_core_solver.use_tableau()) return;
|
||||
int blanks = m_title_width + 1 - static_cast<int>(m_approx_norm_title.size());
|
||||
m_out << m_approx_norm_title;
|
||||
print_blanks(blanks, m_out);
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
string s = T_to_string(m_core_solver.m_column_norms[i]);
|
||||
int blanks = m_column_widths[i] - static_cast<int>(s.size());
|
||||
print_blanks(blanks, m_out);
|
||||
m_out << s << " ";
|
||||
}
|
||||
m_out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print() {
|
||||
for (unsigned i = 0; i < nrows(); i++) {
|
||||
print_row(i);
|
||||
}
|
||||
print_bottom_line();
|
||||
print_cost();
|
||||
print_x();
|
||||
print_basis_heading();
|
||||
print_lows();
|
||||
print_upps();
|
||||
print_exact_norms();
|
||||
if (m_core_solver.m_column_norms.size() > 0)
|
||||
print_approx_norms();
|
||||
m_out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_basis_heading() {
|
||||
int blanks = m_title_width + 1 - static_cast<int>(m_basis_heading_title.size());
|
||||
m_out << m_basis_heading_title;
|
||||
print_blanks(blanks, m_out);
|
||||
|
||||
if (ncols() == 0) {
|
||||
return;
|
||||
}
|
||||
auto bh = m_core_solver.m_basis_heading;
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
string s = T_to_string(bh[i]);
|
||||
int blanks = m_column_widths[i] - static_cast<unsigned>(s.size());
|
||||
print_blanks(blanks, m_out);
|
||||
m_out << s << " "; // the column interval
|
||||
}
|
||||
m_out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_cost() {
|
||||
int blanks = m_title_width + 1 - static_cast<int>(m_cost_title.size());
|
||||
m_out << m_cost_title;
|
||||
print_blanks(blanks, m_out);
|
||||
print_given_rows(m_costs, m_cost_signs, m_core_solver.get_cost());
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_given_rows(vector<string> & row, vector<string> & signs, X rst) {
|
||||
for (unsigned col = 0; col < row.size(); col++) {
|
||||
unsigned width = m_column_widths[col];
|
||||
string s = row[col];
|
||||
int number_of_blanks = width - static_cast<unsigned>(s.size());
|
||||
lean_assert(number_of_blanks >= 0);
|
||||
print_blanks(number_of_blanks, m_out);
|
||||
m_out << s << ' ';
|
||||
if (col < row.size() - 1) {
|
||||
m_out << signs[col + 1] << ' ';
|
||||
}
|
||||
}
|
||||
m_out << '=';
|
||||
|
||||
string rs = T_to_string(rst);
|
||||
int nb = m_rs_width - static_cast<int>(rs.size());
|
||||
lean_assert(nb >= 0);
|
||||
print_blanks(nb + 1, m_out);
|
||||
m_out << rs << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_row(unsigned i){
|
||||
print_blanks(m_title_width + 1, m_out);
|
||||
auto row = m_A[i];
|
||||
auto sign_row = m_signs[i];
|
||||
auto rs = m_rs[i];
|
||||
print_given_rows(row, sign_row, rs);
|
||||
}
|
||||
}
|
15
src/util/lp/core_solver_pretty_printer_instances.cpp
Normal file
15
src/util/lp/core_solver_pretty_printer_instances.cpp
Normal file
|
@ -0,0 +1,15 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/core_solver_pretty_printer.hpp"
|
||||
template lean::core_solver_pretty_printer<double, double>::core_solver_pretty_printer(lean::lp_core_solver_base<double, double> &, std::ostream & out);
|
||||
template void lean::core_solver_pretty_printer<double, double>::print();
|
||||
template lean::core_solver_pretty_printer<double, double>::~core_solver_pretty_printer();
|
||||
template lean::core_solver_pretty_printer<lean::mpq, lean::mpq>::core_solver_pretty_printer(lean::lp_core_solver_base<lean::mpq, lean::mpq> &, std::ostream & out);
|
||||
template void lean::core_solver_pretty_printer<lean::mpq, lean::mpq>::print();
|
||||
template lean::core_solver_pretty_printer<lean::mpq, lean::mpq>::~core_solver_pretty_printer();
|
||||
template lean::core_solver_pretty_printer<lean::mpq, lean::numeric_pair<lean::mpq> >::core_solver_pretty_printer(lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> > &, std::ostream & out);
|
||||
template lean::core_solver_pretty_printer<lean::mpq, lean::numeric_pair<lean::mpq> >::~core_solver_pretty_printer();
|
||||
template void lean::core_solver_pretty_printer<lean::mpq, lean::numeric_pair<lean::mpq> >::print();
|
92
src/util/lp/dense_matrix.h
Normal file
92
src/util/lp/dense_matrix.h
Normal file
|
@ -0,0 +1,92 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#ifdef LEAN_DEBUG
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/matrix.h"
|
||||
namespace lean {
|
||||
// used for debugging purposes only
|
||||
template <typename T, typename X>
|
||||
class dense_matrix: public matrix<T, X> {
|
||||
public:
|
||||
struct ref {
|
||||
unsigned m_i;
|
||||
dense_matrix & m_s;
|
||||
ref(unsigned i, dense_matrix & s) :m_i(i * s.m_n), m_s(s){}
|
||||
T & operator[] (unsigned j) {
|
||||
return m_s.m_values[m_i + j];
|
||||
}
|
||||
const T & operator[] (unsigned j) const {
|
||||
return m_s.m_v[m_i + j];
|
||||
}
|
||||
};
|
||||
ref operator[] (unsigned i) {
|
||||
return ref(i, *this);
|
||||
}
|
||||
unsigned m_m; // number of rows
|
||||
unsigned m_n; // number of const
|
||||
vector<T> m_values;
|
||||
dense_matrix(unsigned m, unsigned n);
|
||||
|
||||
dense_matrix operator*=(matrix<T, X> const & a) {
|
||||
lean_assert(column_count() == a.row_count());
|
||||
dense_matrix c(row_count(), a.column_count());
|
||||
for (unsigned i = 0; i < row_count(); i++) {
|
||||
for (unsigned j = 0; j < a.column_count(); j++) {
|
||||
T v = numeric_traits<T>::zero();
|
||||
for (unsigned k = 0; k < a.column_count(); k++) {
|
||||
v += get_elem(i, k) * a(k, j);
|
||||
}
|
||||
c.set_elem(i, j, v);
|
||||
}
|
||||
}
|
||||
*this = c;
|
||||
return *this;
|
||||
}
|
||||
|
||||
dense_matrix & operator=(matrix<T, X> const & other);
|
||||
|
||||
dense_matrix & operator=(dense_matrix const & other);
|
||||
|
||||
dense_matrix(matrix<T, X> const * other);
|
||||
void apply_from_right(T * w);
|
||||
|
||||
void apply_from_right(vector <T> & w);
|
||||
|
||||
T * apply_from_left_with_different_dims(vector<T> & w);
|
||||
void apply_from_left(vector<T> & w , lp_settings & ) { apply_from_left(w); }
|
||||
|
||||
void apply_from_left(vector<T> & w);
|
||||
|
||||
void apply_from_left(X * w, lp_settings & );
|
||||
|
||||
void apply_from_left_to_X(vector<X> & w, lp_settings & );
|
||||
|
||||
virtual void set_number_of_rows(unsigned /*m*/) {}
|
||||
virtual void set_number_of_columns(unsigned /*n*/) { }
|
||||
|
||||
T get_elem(unsigned i, unsigned j) const { return m_values[i * m_n + j]; }
|
||||
|
||||
unsigned row_count() const { return m_m; }
|
||||
unsigned column_count() const { return m_n; }
|
||||
|
||||
void set_elem(unsigned i, unsigned j, const T& val) { m_values[i * m_n + j] = val; }
|
||||
|
||||
// This method pivots row i to row i0 by muliplying row i by
|
||||
// alpha and adding it to row i0.
|
||||
void pivot_row_to_row(unsigned i, const T& alpha, unsigned i0,
|
||||
const double & pivot_epsilon);
|
||||
|
||||
void swap_columns(unsigned a, unsigned b);
|
||||
|
||||
void swap_rows(unsigned a, unsigned b);
|
||||
|
||||
void multiply_row_by_constant(unsigned row, T & t);
|
||||
|
||||
};
|
||||
template <typename T, typename X>
|
||||
dense_matrix<T, X> operator* (matrix<T, X> & a, matrix<T, X> & b);
|
||||
}
|
||||
#endif
|
186
src/util/lp/dense_matrix.hpp
Normal file
186
src/util/lp/dense_matrix.hpp
Normal file
|
@ -0,0 +1,186 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/lp_settings.h"
|
||||
#ifdef LEAN_DEBUG
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/dense_matrix.h"
|
||||
namespace lean {
|
||||
template <typename T> void print_vector(const vector<T> & t, std::ostream & out);
|
||||
template <typename T, typename X> dense_matrix<T, X>::dense_matrix(unsigned m, unsigned n) : m_m(m), m_n(n), m_values(m * n, numeric_traits<T>::zero()) {
|
||||
}
|
||||
|
||||
template <typename T, typename X> dense_matrix<T, X>&
|
||||
dense_matrix<T, X>::operator=(matrix<T, X> const & other){
|
||||
if ( this == & other)
|
||||
return *this;
|
||||
m_values = new T[m_m * m_n];
|
||||
for (unsigned i = 0; i < m_m; i ++)
|
||||
for (unsigned j = 0; j < m_n; j++)
|
||||
m_values[i * m_n + j] = other.get_elem(i, j);
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T, typename X> dense_matrix<T, X>&
|
||||
dense_matrix<T, X>::operator=(dense_matrix const & other){
|
||||
if ( this == & other)
|
||||
return *this;
|
||||
m_m = other.m_m;
|
||||
m_n = other.m_n;
|
||||
m_values.resize(m_m * m_n);
|
||||
for (unsigned i = 0; i < m_m; i ++)
|
||||
for (unsigned j = 0; j < m_n; j++)
|
||||
m_values[i * m_n + j] = other.get_elem(i, j);
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T, typename X> dense_matrix<T, X>::dense_matrix(matrix<T, X> const * other) :
|
||||
m_m(other->row_count()),
|
||||
m_n(other->column_count()) {
|
||||
m_values.resize(m_m*m_n);
|
||||
for (unsigned i = 0; i < m_m; i++)
|
||||
for (unsigned j = 0; j < m_n; j++)
|
||||
m_values[i * m_n + j] = other->get_elem(i, j);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::apply_from_right(T * w) {
|
||||
T * t = new T[m_m];
|
||||
for (int i = 0; i < m_m; i ++) {
|
||||
T v = numeric_traits<T>::zero();
|
||||
for (int j = 0; j < m_m; j++) {
|
||||
v += w[j]* get_elem(j, i);
|
||||
}
|
||||
t[i] = v;
|
||||
}
|
||||
|
||||
for (int i = 0; i < m_m; i++) {
|
||||
w[i] = t[i];
|
||||
}
|
||||
delete [] t;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::apply_from_right(vector <T> & w) {
|
||||
vector<T> t(m_m, numeric_traits<T>::zero());
|
||||
for (unsigned i = 0; i < m_m; i ++) {
|
||||
auto & v = t[i];
|
||||
for (unsigned j = 0; j < m_m; j++)
|
||||
v += w[j]* get_elem(j, i);
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < m_m; i++)
|
||||
w[i] = t[i];
|
||||
}
|
||||
|
||||
template <typename T, typename X> T* dense_matrix<T, X>::
|
||||
apply_from_left_with_different_dims(vector<T> & w) {
|
||||
T * t = new T[m_m];
|
||||
for (int i = 0; i < m_m; i ++) {
|
||||
T v = numeric_traits<T>::zero();
|
||||
for (int j = 0; j < m_n; j++) {
|
||||
v += w[j]* get_elem(i, j);
|
||||
}
|
||||
t[i] = v;
|
||||
}
|
||||
|
||||
return t;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::apply_from_left(vector<T> & w) {
|
||||
T * t = new T[m_m];
|
||||
for (unsigned i = 0; i < m_m; i ++) {
|
||||
T v = numeric_traits<T>::zero();
|
||||
for (unsigned j = 0; j < m_m; j++) {
|
||||
v += w[j]* get_elem(i, j);
|
||||
}
|
||||
t[i] = v;
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < m_m; i ++) {
|
||||
w[i] = t[i];
|
||||
}
|
||||
delete [] t;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::apply_from_left(X * w, lp_settings & ) {
|
||||
T * t = new T[m_m];
|
||||
for (int i = 0; i < m_m; i ++) {
|
||||
T v = numeric_traits<T>::zero();
|
||||
for (int j = 0; j < m_m; j++) {
|
||||
v += w[j]* get_elem(i, j);
|
||||
}
|
||||
t[i] = v;
|
||||
}
|
||||
|
||||
for (int i = 0; i < m_m; i ++) {
|
||||
w[i] = t[i];
|
||||
}
|
||||
delete [] t;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::apply_from_left_to_X(vector<X> & w, lp_settings & ) {
|
||||
vector<X> t(m_m);
|
||||
for (int i = 0; i < m_m; i ++) {
|
||||
X v = zero_of_type<X>();
|
||||
for (int j = 0; j < m_m; j++) {
|
||||
v += w[j]* get_elem(i, j);
|
||||
}
|
||||
t[i] = v;
|
||||
}
|
||||
|
||||
for (int i = 0; i < m_m; i ++) {
|
||||
w[i] = t[i];
|
||||
}
|
||||
}
|
||||
|
||||
// This method pivots row i to row i0 by muliplying row i by
|
||||
// alpha and adding it to row i0.
|
||||
template <typename T, typename X> void dense_matrix<T, X>::pivot_row_to_row(unsigned i, const T& alpha, unsigned i0,
|
||||
const double & pivot_epsilon) {
|
||||
for (unsigned j = 0; j < m_n; j++) {
|
||||
m_values[i0 * m_n + j] += m_values[i * m_n + j] * alpha;
|
||||
if (fabs(m_values[i0 + m_n + j]) < pivot_epsilon) {
|
||||
m_values[i0 + m_n + j] = numeric_traits<T>::zero();;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::swap_columns(unsigned a, unsigned b) {
|
||||
for (unsigned i = 0; i < m_m; i++) {
|
||||
T t = get_elem(i, a);
|
||||
set_elem(i, a, get_elem(i, b));
|
||||
set_elem(i, b, t);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::swap_rows(unsigned a, unsigned b) {
|
||||
for (unsigned i = 0; i < m_n; i++) {
|
||||
T t = get_elem(a, i);
|
||||
set_elem(a, i, get_elem(b, i));
|
||||
set_elem(b, i, t);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::multiply_row_by_constant(unsigned row, T & t) {
|
||||
for (unsigned i = 0; i < m_n; i++) {
|
||||
set_elem(row, i, t * get_elem(row, i));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
dense_matrix<T, X> operator* (matrix<T, X> & a, matrix<T, X> & b){
|
||||
lean_assert(a.column_count() == b.row_count());
|
||||
dense_matrix<T, X> ret(a.row_count(), b.column_count());
|
||||
for (unsigned i = 0; i < ret.m_m; i++)
|
||||
for (unsigned j = 0; j< ret.m_n; j++) {
|
||||
T v = numeric_traits<T>::zero();
|
||||
for (unsigned k = 0; k < a.column_count(); k ++){
|
||||
v += (a.get_elem(i, k) * b.get_elem(k, j));
|
||||
}
|
||||
ret.set_elem(i, j, v);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
#endif
|
24
src/util/lp/dense_matrix_instances.cpp
Normal file
24
src/util/lp/dense_matrix_instances.cpp
Normal file
|
@ -0,0 +1,24 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/lp/dense_matrix.hpp"
|
||||
#ifdef LEAN_DEBUG
|
||||
#include "util/vector.h"
|
||||
template lean::dense_matrix<double, double> lean::operator*<double, double>(lean::matrix<double, double>&, lean::matrix<double, double>&);
|
||||
template void lean::dense_matrix<double, double>::apply_from_left(vector<double> &);
|
||||
template lean::dense_matrix<double, double>::dense_matrix(lean::matrix<double, double> const*);
|
||||
template lean::dense_matrix<double, double>::dense_matrix(unsigned int, unsigned int);
|
||||
template lean::dense_matrix<double, double>& lean::dense_matrix<double, double>::operator=(lean::dense_matrix<double, double> const&);
|
||||
template lean::dense_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::dense_matrix(lean::matrix<lean::mpq, lean::numeric_pair<lean::mpq> > const*);
|
||||
template void lean::dense_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_from_left(vector<lean::mpq>&);
|
||||
template lean::dense_matrix<lean::mpq, lean::mpq> lean::operator*<lean::mpq, lean::mpq>(lean::matrix<lean::mpq, lean::mpq>&, lean::matrix<lean::mpq, lean::mpq>&);
|
||||
template lean::dense_matrix<lean::mpq, lean::mpq> & lean::dense_matrix<lean::mpq, lean::mpq>::operator=(lean::dense_matrix<lean::mpq, lean::mpq> const&);
|
||||
template lean::dense_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::dense_matrix(unsigned int, unsigned int);
|
||||
template lean::dense_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >& lean::dense_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::operator=(lean::dense_matrix<lean::mpq, lean::numeric_pair<lean::mpq> > const&);
|
||||
template lean::dense_matrix<lean::mpq, lean::numeric_pair<lean::mpq> > lean::operator*<lean::mpq, lean::numeric_pair<lean::mpq> >(lean::matrix<lean::mpq, lean::numeric_pair<lean::mpq> >&, lean::matrix<lean::mpq, lean::numeric_pair<lean::mpq> >&);
|
||||
template void lean::dense_matrix<lean::mpq, lean::numeric_pair< lean::mpq> >::apply_from_right( vector< lean::mpq> &);
|
||||
template void lean::dense_matrix<double,double>::apply_from_right(class vector<double> &);
|
||||
template void lean::dense_matrix<lean::mpq, lean::mpq>::apply_from_left(vector<lean::mpq>&);
|
||||
#endif
|
83
src/util/lp/eta_matrix.h
Normal file
83
src/util/lp/eta_matrix.h
Normal file
|
@ -0,0 +1,83 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/tail_matrix.h"
|
||||
#include "util/lp/permutation_matrix.h"
|
||||
namespace lean {
|
||||
|
||||
// This is the sum of a unit matrix and a one-column matrix
|
||||
template <typename T, typename X>
|
||||
class eta_matrix
|
||||
: public tail_matrix<T, X> {
|
||||
#ifdef LEAN_DEBUG
|
||||
unsigned m_length;
|
||||
#endif
|
||||
unsigned m_column_index;
|
||||
public:
|
||||
sparse_vector<T> m_column_vector;
|
||||
T m_diagonal_element;
|
||||
#ifdef LEAN_DEBUG
|
||||
eta_matrix(unsigned column_index, unsigned length):
|
||||
#else
|
||||
eta_matrix(unsigned column_index):
|
||||
#endif
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
m_length(length),
|
||||
#endif
|
||||
m_column_index(column_index) {}
|
||||
|
||||
bool is_dense() const { return false; }
|
||||
|
||||
void print(std::ostream & out) {
|
||||
print_matrix(*this, out);
|
||||
}
|
||||
|
||||
bool is_unit() {
|
||||
return m_column_vector.size() == 0 && m_diagonal_element == 1;
|
||||
}
|
||||
|
||||
bool set_diagonal_element(T const & diagonal_element) {
|
||||
m_diagonal_element = diagonal_element;
|
||||
return !lp_settings::is_eps_small_general(diagonal_element, 1e-12);
|
||||
}
|
||||
|
||||
const T & get_diagonal_element() const {
|
||||
return m_diagonal_element;
|
||||
}
|
||||
|
||||
void apply_from_left(vector<X> & w, lp_settings & );
|
||||
|
||||
template <typename L>
|
||||
void apply_from_left_local(indexed_vector<L> & w, lp_settings & settings);
|
||||
|
||||
void apply_from_left_to_T(indexed_vector<T> & w, lp_settings & settings) {
|
||||
apply_from_left_local(w, settings);
|
||||
}
|
||||
|
||||
|
||||
void push_back(unsigned row_index, T val ) {
|
||||
lean_assert(row_index != m_column_index);
|
||||
m_column_vector.push_back(row_index, val);
|
||||
}
|
||||
|
||||
void apply_from_right(vector<T> & w);
|
||||
void apply_from_right(indexed_vector<T> & w);
|
||||
|
||||
T get_elem(unsigned i, unsigned j) const;
|
||||
#ifdef LEAN_DEBUG
|
||||
unsigned row_count() const { return m_length; }
|
||||
unsigned column_count() const { return m_length; }
|
||||
void set_number_of_rows(unsigned m) { m_length = m; }
|
||||
void set_number_of_columns(unsigned n) { m_length = n; }
|
||||
#endif
|
||||
void divide_by_diagonal_element() {
|
||||
m_column_vector.divide(m_diagonal_element);
|
||||
}
|
||||
void conjugate_by_permutation(permutation_matrix<T, X> & p);
|
||||
};
|
||||
}
|
136
src/util/lp/eta_matrix.hpp
Normal file
136
src/util/lp/eta_matrix.hpp
Normal file
|
@ -0,0 +1,136 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/eta_matrix.h"
|
||||
namespace lean {
|
||||
|
||||
// This is the sum of a unit matrix and a one-column matrix
|
||||
template <typename T, typename X>
|
||||
void eta_matrix<T, X>::apply_from_left(vector<X> & w, lp_settings & ) {
|
||||
auto & w_at_column_index = w[m_column_index];
|
||||
for (auto & it : m_column_vector.m_data) {
|
||||
w[it.first] += w_at_column_index * it.second;
|
||||
}
|
||||
w_at_column_index /= m_diagonal_element;
|
||||
}
|
||||
template <typename T, typename X>
|
||||
template <typename L>
|
||||
void eta_matrix<T, X>::
|
||||
apply_from_left_local(indexed_vector<L> & w, lp_settings & settings) {
|
||||
const L w_at_column_index = w[m_column_index];
|
||||
if (is_zero(w_at_column_index)) return;
|
||||
|
||||
if (settings.abs_val_is_smaller_than_drop_tolerance(w[m_column_index] /= m_diagonal_element)) {
|
||||
w[m_column_index] = zero_of_type<L>();
|
||||
w.erase_from_index(m_column_index);
|
||||
}
|
||||
|
||||
for (auto & it : m_column_vector.m_data) {
|
||||
unsigned i = it.first;
|
||||
if (is_zero(w[i])) {
|
||||
L v = w[i] = w_at_column_index * it.second;
|
||||
if (settings.abs_val_is_smaller_than_drop_tolerance(v)) {
|
||||
w[i] = zero_of_type<L>();
|
||||
continue;
|
||||
}
|
||||
w.m_index.push_back(i);
|
||||
} else {
|
||||
L v = w[i] += w_at_column_index * it.second;
|
||||
if (settings.abs_val_is_smaller_than_drop_tolerance(v)) {
|
||||
w[i] = zero_of_type<L>();
|
||||
w.erase_from_index(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void eta_matrix<T, X>::apply_from_right(vector<T> & w) {
|
||||
#ifdef LEAN_DEBUG
|
||||
// dense_matrix<T, X> deb(*this);
|
||||
// auto clone_w = clone_vector<T>(w, get_number_of_rows());
|
||||
// deb.apply_from_right(clone_w);
|
||||
#endif
|
||||
T t = w[m_column_index] / m_diagonal_element;
|
||||
for (auto & it : m_column_vector.m_data) {
|
||||
t += w[it.first] * it.second;
|
||||
}
|
||||
w[m_column_index] = t;
|
||||
#ifdef LEAN_DEBUG
|
||||
// lean_assert(vectors_are_equal<T>(clone_w, w, get_number_of_rows()));
|
||||
// delete clone_w;
|
||||
#endif
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void eta_matrix<T, X>::apply_from_right(indexed_vector<T> & w) {
|
||||
if (w.m_index.size() == 0)
|
||||
return;
|
||||
#ifdef LEAN_DEBUG
|
||||
// vector<T> wcopy(w.m_data);
|
||||
// apply_from_right(wcopy);
|
||||
#endif
|
||||
T & t = w[m_column_index];
|
||||
t /= m_diagonal_element;
|
||||
bool was_in_index = (!numeric_traits<T>::is_zero(t));
|
||||
|
||||
for (auto & it : m_column_vector.m_data) {
|
||||
t += w[it.first] * it.second;
|
||||
}
|
||||
|
||||
if (numeric_traits<T>::precise() ) {
|
||||
if (!numeric_traits<T>::is_zero(t)) {
|
||||
if (!was_in_index)
|
||||
w.m_index.push_back(m_column_index);
|
||||
} else {
|
||||
if (was_in_index)
|
||||
w.erase_from_index(m_column_index);
|
||||
}
|
||||
} else {
|
||||
if (!lp_settings::is_eps_small_general(t, 1e-14)) {
|
||||
if (!was_in_index)
|
||||
w.m_index.push_back(m_column_index);
|
||||
} else {
|
||||
if (was_in_index)
|
||||
w.erase_from_index(m_column_index);
|
||||
t = zero_of_type<T>();
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
// lean_assert(w.is_OK());
|
||||
// lean_assert(vectors_are_equal<T>(wcopy, w.m_data));
|
||||
#endif
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X>
|
||||
T eta_matrix<T, X>::get_elem(unsigned i, unsigned j) const {
|
||||
if (j == m_column_index){
|
||||
if (i == j) {
|
||||
return 1 / m_diagonal_element;
|
||||
}
|
||||
return m_column_vector[i];
|
||||
}
|
||||
|
||||
return i == j ? numeric_traits<T>::one() : numeric_traits<T>::zero();
|
||||
}
|
||||
#endif
|
||||
template <typename T, typename X>
|
||||
void eta_matrix<T, X>::conjugate_by_permutation(permutation_matrix<T, X> & p) {
|
||||
// this = p * this * p(-1)
|
||||
#ifdef LEAN_DEBUG
|
||||
// auto rev = p.get_reverse();
|
||||
// auto deb = ((*this) * rev);
|
||||
// deb = p * deb;
|
||||
#endif
|
||||
m_column_index = p.get_rev(m_column_index);
|
||||
for (auto & pair : m_column_vector.m_data) {
|
||||
pair.first = p.get_rev(pair.first);
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
// lean_assert(deb == *this);
|
||||
#endif
|
||||
}
|
||||
}
|
28
src/util/lp/eta_matrix_instances.cpp
Normal file
28
src/util/lp/eta_matrix_instances.cpp
Normal file
|
@ -0,0 +1,28 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <memory>
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/eta_matrix.hpp"
|
||||
#ifdef LEAN_DEBUG
|
||||
template double lean::eta_matrix<double, double>::get_elem(unsigned int, unsigned int) const;
|
||||
template lean::mpq lean::eta_matrix<lean::mpq, lean::mpq>::get_elem(unsigned int, unsigned int) const;
|
||||
template lean::mpq lean::eta_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::get_elem(unsigned int, unsigned int) const;
|
||||
#endif
|
||||
template void lean::eta_matrix<double, double>::apply_from_left(vector<double>&, lean::lp_settings&);
|
||||
template void lean::eta_matrix<double, double>::apply_from_right(vector<double>&);
|
||||
template void lean::eta_matrix<double, double>::conjugate_by_permutation(lean::permutation_matrix<double, double>&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::mpq>::apply_from_left(vector<lean::mpq>&, lean::lp_settings&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::mpq>::apply_from_right(vector<lean::mpq>&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::mpq>::conjugate_by_permutation(lean::permutation_matrix<lean::mpq, lean::mpq>&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_from_left(vector<lean::numeric_pair<lean::mpq> >&, lean::lp_settings&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_from_right(vector<lean::mpq>&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::conjugate_by_permutation(lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >&);
|
||||
template void lean::eta_matrix<double, double>::apply_from_left_local<double>(lean::indexed_vector<double>&, lean::lp_settings&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::mpq>::apply_from_left_local<lean::mpq>(lean::indexed_vector<lean::mpq>&, lean::lp_settings&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_from_left_local<lean::mpq>(lean::indexed_vector<lean::mpq>&, lean::lp_settings&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_from_right(lean::indexed_vector<lean::mpq>&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::mpq>::apply_from_right(lean::indexed_vector<lean::mpq>&);
|
||||
template void lean::eta_matrix<double, double>::apply_from_right(lean::indexed_vector<double>&);
|
39
src/util/lp/hash_helper.h
Normal file
39
src/util/lp/hash_helper.h
Normal file
|
@ -0,0 +1,39 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include <utility>
|
||||
#include <functional>
|
||||
#include "util/numerics/mpq.h"
|
||||
#ifdef __CLANG__
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wmismatched-tags"
|
||||
#endif
|
||||
namespace std {
|
||||
template<>
|
||||
struct hash<lean::mpq> {
|
||||
inline size_t operator()(const lean::mpq & v) const {
|
||||
return v.hash();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
template <class T>
|
||||
inline void hash_combine(std::size_t & seed, const T & v) {
|
||||
seed ^= std::hash<T>()(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
|
||||
}
|
||||
|
||||
namespace std {
|
||||
template<typename S, typename T> struct hash<pair<S, T>> {
|
||||
inline size_t operator()(const pair<S, T> & v) const {
|
||||
size_t seed = 0;
|
||||
hash_combine(seed, v.first);
|
||||
hash_combine(seed, v.second);
|
||||
return seed;
|
||||
}
|
||||
};
|
||||
}
|
||||
#ifdef __CLANG__
|
||||
#pragma clang diagnostic pop
|
||||
#endif
|
42
src/util/lp/implied_bound.h
Normal file
42
src/util/lp/implied_bound.h
Normal file
|
@ -0,0 +1,42 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/lp/lar_constraints.h"
|
||||
namespace lean {
|
||||
struct implied_bound {
|
||||
mpq m_bound;
|
||||
unsigned m_j; // the column for which the bound has been found
|
||||
bool m_is_low_bound;
|
||||
bool m_coeff_before_j_is_pos;
|
||||
unsigned m_row_or_term_index;
|
||||
bool m_strict;
|
||||
|
||||
lconstraint_kind kind() const {
|
||||
lconstraint_kind k = m_is_low_bound? GE : LE;
|
||||
if (m_strict)
|
||||
k = static_cast<lconstraint_kind>(k / 2);
|
||||
return k;
|
||||
}
|
||||
bool operator==(const implied_bound & o) const {
|
||||
return m_j == o.m_j && m_is_low_bound == o.m_is_low_bound && m_bound == o.m_bound &&
|
||||
m_coeff_before_j_is_pos == o.m_coeff_before_j_is_pos &&
|
||||
m_row_or_term_index == o.m_row_or_term_index && m_strict == o.m_strict;
|
||||
}
|
||||
implied_bound(){}
|
||||
implied_bound(const mpq & a,
|
||||
unsigned j,
|
||||
bool low_bound,
|
||||
bool coeff_before_j_is_pos,
|
||||
unsigned row_or_term_index,
|
||||
bool strict):
|
||||
m_bound(a),
|
||||
m_j(j),
|
||||
m_is_low_bound(low_bound),
|
||||
m_coeff_before_j_is_pos(coeff_before_j_is_pos),
|
||||
m_row_or_term_index(row_or_term_index),
|
||||
m_strict(strict) {}
|
||||
};
|
||||
}
|
55
src/util/lp/indexed_value.h
Normal file
55
src/util/lp/indexed_value.h
Normal file
|
@ -0,0 +1,55 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
namespace lean {
|
||||
template <typename T>
|
||||
class indexed_value {
|
||||
public:
|
||||
T m_value;
|
||||
// the idea is that m_index for a row element gives its column, and for a column element its row
|
||||
unsigned m_index;
|
||||
// m_other point is the offset of the corresponding element in its vector : for a row element it point to the column element offset,
|
||||
// for a column element it points to the row element offset
|
||||
unsigned m_other;
|
||||
indexed_value() {}
|
||||
indexed_value(T v, unsigned i) : m_value(v), m_index(i) {}
|
||||
indexed_value(T v, unsigned i, unsigned other) :
|
||||
m_value(v), m_index(i), m_other(other) {
|
||||
}
|
||||
|
||||
indexed_value(const indexed_value & iv) {
|
||||
m_value = iv.m_value;
|
||||
m_index = iv.m_index;
|
||||
m_other = iv.m_other;
|
||||
}
|
||||
|
||||
indexed_value & operator=(const indexed_value & right_side) {
|
||||
m_value = right_side.m_value;
|
||||
m_index = right_side.m_index;
|
||||
m_other = right_side.m_other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
const T & value() const {
|
||||
return m_value;
|
||||
}
|
||||
|
||||
void set_value(T val) {
|
||||
m_value = val;
|
||||
}
|
||||
};
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename X>
|
||||
bool check_vector_for_small_values(indexed_vector<X> & w, lp_settings & settings) {
|
||||
for (unsigned i : w.m_index) {
|
||||
const X & v = w[i];
|
||||
if ((!is_zero(v)) && settings.abs_val_is_smaller_than_drop_tolerance(v))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
}
|
169
src/util/lp/indexed_vector.h
Normal file
169
src/util/lp/indexed_vector.h
Normal file
|
@ -0,0 +1,169 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/debug.h"
|
||||
#include <string>
|
||||
#include <iomanip>
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include <unordered_set>
|
||||
namespace lean {
|
||||
|
||||
template <typename T> void print_vector(const vector<T> & t, std::ostream & out);
|
||||
template <typename T> void print_vector(const buffer<T> & t, std::ostream & out);
|
||||
template <typename T> void print_sparse_vector(const vector<T> & t, std::ostream & out);
|
||||
|
||||
void print_vector(const vector<mpq> & t, std::ostream & out);
|
||||
template <typename T>
|
||||
class indexed_vector {
|
||||
public:
|
||||
// m_index points to non-zero elements of m_data
|
||||
vector<T> m_data;
|
||||
vector<unsigned> m_index;
|
||||
indexed_vector(unsigned data_size) {
|
||||
m_data.resize(data_size, numeric_traits<T>::zero());
|
||||
}
|
||||
|
||||
indexed_vector& operator=(const indexed_vector<T>& y) {
|
||||
for (unsigned i: m_index)
|
||||
m_data[i] = zero_of_type<T>();
|
||||
|
||||
m_index = y.m_index;
|
||||
|
||||
m_data.resize(y.data_size());
|
||||
for (unsigned i : m_index)
|
||||
m_data[i] = y[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool operator==(const indexed_vector<T>& y) const {
|
||||
std::unordered_set<unsigned> y_index;
|
||||
for (unsigned i : y.m_index)
|
||||
y_index.insert(i);
|
||||
|
||||
std::unordered_set<unsigned> this_index;
|
||||
for (unsigned i : m_index)
|
||||
this_index.insert(i);
|
||||
|
||||
for (unsigned i : y.m_index) {
|
||||
if (this_index.find(i) == this_index.end())
|
||||
return false;
|
||||
}
|
||||
|
||||
for (unsigned i : m_index) {
|
||||
if (y_index.find(i) == y_index.end())
|
||||
return false;
|
||||
}
|
||||
|
||||
return vectors_are_equal(m_data, m_data);
|
||||
|
||||
}
|
||||
|
||||
indexed_vector() {}
|
||||
|
||||
void resize(unsigned data_size);
|
||||
unsigned data_size() const {
|
||||
return m_data.size();
|
||||
}
|
||||
|
||||
unsigned size() {
|
||||
return m_index.size();
|
||||
}
|
||||
|
||||
void set_value(const T& value, unsigned index);
|
||||
void set_value_as_in_dictionary(unsigned index) {
|
||||
lean_assert(index < m_data.size());
|
||||
T & loc = m_data[index];
|
||||
if (is_zero(loc)) {
|
||||
m_index.push_back(index);
|
||||
loc = one_of_type<T>(); // use as a characteristic function
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void clear();
|
||||
void clear_all();
|
||||
const T& operator[] (unsigned i) const {
|
||||
return m_data[i];
|
||||
}
|
||||
|
||||
T& operator[] (unsigned i) {
|
||||
return m_data[i];
|
||||
}
|
||||
|
||||
void clean_up() {
|
||||
#if 0==1
|
||||
for (unsigned k = 0; k < m_index.size(); k++) {
|
||||
unsigned i = m_index[k];
|
||||
T & v = m_data[i];
|
||||
if (lp_settings::is_eps_small_general(v, 1e-14)) {
|
||||
v = zero_of_type<T>();
|
||||
m_index.erase(m_index.begin() + k--);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
vector<unsigned> index_copy;
|
||||
for (unsigned i : m_index) {
|
||||
T & v = m_data[i];
|
||||
if (!lp_settings::is_eps_small_general(v, 1e-14)) {
|
||||
index_copy.push_back(i);
|
||||
} else if (!numeric_traits<T>::is_zero(v)) {
|
||||
v = zero_of_type<T>();
|
||||
}
|
||||
}
|
||||
m_index = index_copy;
|
||||
}
|
||||
|
||||
|
||||
void erase_from_index(unsigned j);
|
||||
|
||||
void add_value_at_index_with_drop_tolerance(unsigned j, const T& val_to_add) {
|
||||
T & v = m_data[j];
|
||||
bool was_zero = is_zero(v);
|
||||
v += val_to_add;
|
||||
if (lp_settings::is_eps_small_general(v, 1e-14)) {
|
||||
v = zero_of_type<T>();
|
||||
if (!was_zero) {
|
||||
erase_from_index(j);
|
||||
}
|
||||
} else {
|
||||
if (was_zero)
|
||||
m_index.push_back(j);
|
||||
}
|
||||
}
|
||||
|
||||
void add_value_at_index(unsigned j, const T& val_to_add) {
|
||||
T & v = m_data[j];
|
||||
bool was_zero = is_zero(v);
|
||||
v += val_to_add;
|
||||
if (is_zero(v)) {
|
||||
if (!was_zero)
|
||||
erase_from_index(j);
|
||||
} else {
|
||||
if (was_zero)
|
||||
m_index.push_back(j);
|
||||
}
|
||||
}
|
||||
|
||||
void restore_index_and_clean_from_data() {
|
||||
m_index.resize(0);
|
||||
for (unsigned i = 0; i < m_data.size(); i++) {
|
||||
T & v = m_data[i];
|
||||
if (lp_settings::is_eps_small_general(v, 1e-14)) {
|
||||
v = zero_of_type<T>();
|
||||
} else {
|
||||
m_index.push_back(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
bool is_OK() const;
|
||||
void print(std::ostream & out);
|
||||
#endif
|
||||
};
|
||||
}
|
110
src/util/lp/indexed_vector.hpp
Normal file
110
src/util/lp/indexed_vector.hpp
Normal file
|
@ -0,0 +1,110 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/indexed_vector.h"
|
||||
#include "util/lp/lp_settings.h"
|
||||
namespace lean {
|
||||
|
||||
template <typename T>
|
||||
void print_vector(const vector<T> & t, std::ostream & out) {
|
||||
for (unsigned i = 0; i < t.size(); i++)
|
||||
out << t[i] << " ";
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
void print_vector(const buffer<T> & t, std::ostream & out) {
|
||||
for (unsigned i = 0; i < t.size(); i++)
|
||||
out << t[i] << " ";
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void print_sparse_vector(const vector<T> & t, std::ostream & out) {
|
||||
for (unsigned i = 0; i < t.size(); i++) {
|
||||
if (is_zero(t[i]))continue;
|
||||
out << "[" << i << "] = " << t[i] << ", ";
|
||||
}
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
void print_vector(const vector<mpq> & t, std::ostream & out) {
|
||||
for (unsigned i = 0; i < t.size(); i++)
|
||||
out << t[i].get_double() << std::setprecision(3) << " ";
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void indexed_vector<T>::resize(unsigned data_size) {
|
||||
clear();
|
||||
m_data.resize(data_size, numeric_traits<T>::zero());
|
||||
lean_assert(is_OK());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void indexed_vector<T>::set_value(const T& value, unsigned index) {
|
||||
m_data[index] = value;
|
||||
lean_assert(std::find(m_index.begin(), m_index.end(), index) == m_index.end());
|
||||
m_index.push_back(index);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void indexed_vector<T>::clear() {
|
||||
for (unsigned i : m_index)
|
||||
m_data[i] = numeric_traits<T>::zero();
|
||||
m_index.resize(0);
|
||||
}
|
||||
template <typename T>
|
||||
void indexed_vector<T>::clear_all() {
|
||||
unsigned i = m_data.size();
|
||||
while (i--) m_data[i] = numeric_traits<T>::zero();
|
||||
m_index.resize(0);
|
||||
}
|
||||
template <typename T>
|
||||
void indexed_vector<T>::erase_from_index(unsigned j) {
|
||||
auto it = std::find(m_index.begin(), m_index.end(), j);
|
||||
if (it != m_index.end())
|
||||
m_index.erase(it);
|
||||
}
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T>
|
||||
bool indexed_vector<T>::is_OK() const {
|
||||
return true;
|
||||
const double drop_eps = 1e-14;
|
||||
for (unsigned i = 0; i < m_data.size(); i++) {
|
||||
if (!is_zero(m_data[i]) && lp_settings::is_eps_small_general(m_data[i], drop_eps)) {
|
||||
return false;
|
||||
}
|
||||
if (lp_settings::is_eps_small_general(m_data[i], drop_eps) != (std::find(m_index.begin(), m_index.end(), i) == m_index.end())) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
std::unordered_set<unsigned> s;
|
||||
for (unsigned i : m_index) {
|
||||
//no duplicates!!!
|
||||
if (s.find(i) != s.end())
|
||||
return false;
|
||||
s.insert(i);
|
||||
if (i >= m_data.size())
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
template <typename T>
|
||||
void indexed_vector<T>::print(std::ostream & out) {
|
||||
out << "m_index " << std::endl;
|
||||
for (unsigned i = 0; i < m_index.size(); i++) {
|
||||
out << m_index[i] << " ";
|
||||
}
|
||||
out << std::endl;
|
||||
print_vector(m_data, out);
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
36
src/util/lp/indexed_vector_instances.cpp
Normal file
36
src/util/lp/indexed_vector_instances.cpp
Normal file
|
@ -0,0 +1,36 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/indexed_vector.hpp"
|
||||
namespace lean {
|
||||
template void indexed_vector<double>::clear();
|
||||
template void indexed_vector<double>::clear_all();
|
||||
template void indexed_vector<double>::erase_from_index(unsigned int);
|
||||
template void indexed_vector<double>::set_value(const double&, unsigned int);
|
||||
template void indexed_vector<mpq>::clear();
|
||||
template void indexed_vector<unsigned>::clear();
|
||||
template void indexed_vector<mpq>::clear_all();
|
||||
template void indexed_vector<mpq>::erase_from_index(unsigned int);
|
||||
template void indexed_vector<mpq>::resize(unsigned int);
|
||||
template void indexed_vector<unsigned>::resize(unsigned int);
|
||||
template void indexed_vector<mpq>::set_value(const mpq&, unsigned int);
|
||||
template void indexed_vector<unsigned>::set_value(const unsigned&, unsigned int);
|
||||
#ifdef LEAN_DEBUG
|
||||
template bool indexed_vector<double>::is_OK() const;
|
||||
template bool indexed_vector<mpq>::is_OK() const;
|
||||
template bool indexed_vector<lean::numeric_pair<mpq> >::is_OK() const;
|
||||
template void lean::indexed_vector< lean::mpq>::print(std::basic_ostream<char,struct std::char_traits<char> > &);
|
||||
template void lean::indexed_vector<double>::print(std::basic_ostream<char,struct std::char_traits<char> > &);
|
||||
template void lean::indexed_vector<lean::numeric_pair<lean::mpq> >::print(std::ostream&);
|
||||
#endif
|
||||
}
|
||||
template void lean::print_vector<double>(vector<double> const&, std::ostream&);
|
||||
template void lean::print_vector<unsigned int>(vector<unsigned int> const&, std::ostream&);
|
||||
template void lean::print_vector<std::string>(vector<std::string> const&, std::ostream&);
|
||||
template void lean::print_vector<lean::numeric_pair<lean::mpq> >(vector<lean::numeric_pair<lean::mpq>> const&, std::ostream&);
|
||||
template void lean::indexed_vector<double>::resize(unsigned int);
|
||||
template void lean::print_vector< lean::mpq>(vector< lean::mpq> const &, std::basic_ostream<char, std::char_traits<char> > &);
|
||||
template void lean::print_vector<std::pair<lean::mpq, unsigned int> >(vector<std::pair<lean::mpq, unsigned int>> const&, std::ostream&);
|
||||
template void lean::indexed_vector<lean::numeric_pair<lean::mpq> >::erase_from_index(unsigned int);
|
66
src/util/lp/int_set.h
Normal file
66
src/util/lp/int_set.h
Normal file
|
@ -0,0 +1,66 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/indexed_vector.h"
|
||||
#include <ostream>
|
||||
namespace lean {
|
||||
// serves at a set of non-negative integers smaller than the set size
|
||||
class int_set {
|
||||
vector<int> m_data;
|
||||
public:
|
||||
vector<int> m_index;
|
||||
int_set(unsigned size): m_data(size, -1) {}
|
||||
int_set() {}
|
||||
bool contains(unsigned j) const {
|
||||
if (j >= m_data.size())
|
||||
return false;
|
||||
return m_data[j] >= 0;
|
||||
}
|
||||
void insert(unsigned j) {
|
||||
lean_assert(j < m_data.size());
|
||||
if (contains(j)) return;
|
||||
m_data[j] = m_index.size();
|
||||
m_index.push_back(j);
|
||||
}
|
||||
void erase(unsigned j) {
|
||||
if (!contains(j)) return;
|
||||
unsigned pos_j = m_data[j];
|
||||
unsigned last_pos = m_index.size() - 1;
|
||||
int last_j = m_index[last_pos];
|
||||
if (last_pos != pos_j) {
|
||||
// move last to j spot
|
||||
m_data[last_j] = pos_j;
|
||||
m_index[pos_j] = last_j;
|
||||
}
|
||||
m_index.pop_back();
|
||||
m_data[j] = -1;
|
||||
}
|
||||
|
||||
void resize(unsigned size) {
|
||||
m_data.resize(size, -1);
|
||||
}
|
||||
|
||||
void increase_size_by_one() {
|
||||
resize(m_data.size() + 1);
|
||||
}
|
||||
|
||||
unsigned data_size() const { return m_data.size(); }
|
||||
unsigned size() const { return m_index.size();}
|
||||
bool is_empty() const { return size() == 0; }
|
||||
void clear() {
|
||||
for (unsigned j : m_index)
|
||||
m_data[j] = -1;
|
||||
m_index.resize(0);
|
||||
}
|
||||
void print(std::ostream & out ) const {
|
||||
for (unsigned j : m_index) {
|
||||
out << j << " ";
|
||||
}
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
};
|
||||
}
|
50
src/util/lp/iterator_on_column.h
Normal file
50
src/util/lp/iterator_on_column.h
Normal file
|
@ -0,0 +1,50 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
#include "util/lp/static_matrix.h"
|
||||
#include "util/lp/lar_term.h"
|
||||
namespace lean {
|
||||
template <typename T, typename X>
|
||||
struct iterator_on_column:linear_combination_iterator<T> {
|
||||
const vector<column_cell>& m_column; // the offset in term coeffs
|
||||
const static_matrix<T, X> & m_A;
|
||||
int m_i = -1; // the initial offset in the column
|
||||
unsigned size() const { return m_column.size(); }
|
||||
iterator_on_column(const vector<column_cell>& column, const static_matrix<T,X> & A) // the offset in term coeffs
|
||||
:
|
||||
m_column(column),
|
||||
m_A(A),
|
||||
m_i(-1) {}
|
||||
|
||||
bool next(mpq & a, unsigned & i) {
|
||||
if (++m_i >= static_cast<int>(m_column.size()))
|
||||
return false;
|
||||
|
||||
const column_cell& c = m_column[m_i];
|
||||
a = m_A.get_val(c);
|
||||
i = c.m_i;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool next(unsigned & i) {
|
||||
if (++m_i >= static_cast<int>(m_column.size()))
|
||||
return false;
|
||||
|
||||
const column_cell& c = m_column[m_i];
|
||||
i = c.m_i;
|
||||
return true;
|
||||
}
|
||||
|
||||
void reset() {
|
||||
m_i = -1;
|
||||
}
|
||||
|
||||
linear_combination_iterator<mpq> * clone() {
|
||||
iterator_on_column * r = new iterator_on_column(m_column, m_A);
|
||||
return r;
|
||||
}
|
||||
};
|
||||
}
|
35
src/util/lp/iterator_on_indexed_vector.h
Normal file
35
src/util/lp/iterator_on_indexed_vector.h
Normal file
|
@ -0,0 +1,35 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
namespace lean {
|
||||
template <typename T>
|
||||
struct iterator_on_indexed_vector:linear_combination_iterator<T> {
|
||||
const indexed_vector<T> & m_v;
|
||||
unsigned m_offset = 0;
|
||||
iterator_on_indexed_vector(const indexed_vector<T> & v) : m_v(v){}
|
||||
unsigned size() const { return m_v.m_index.size(); }
|
||||
bool next(T & a, unsigned & i) {
|
||||
if (m_offset >= m_v.m_index.size())
|
||||
return false;
|
||||
i = m_v.m_index[m_offset++];
|
||||
a = m_v.m_data[i];
|
||||
return true;
|
||||
}
|
||||
|
||||
bool next(unsigned & i) {
|
||||
if (m_offset >= m_v.m_index.size())
|
||||
return false;
|
||||
i = m_v.m_index[m_offset++];
|
||||
return true;
|
||||
}
|
||||
void reset() {
|
||||
m_offset = 0;
|
||||
}
|
||||
linear_combination_iterator<T>* clone() {
|
||||
return new iterator_on_indexed_vector(m_v);
|
||||
}
|
||||
};
|
||||
}
|
42
src/util/lp/iterator_on_pivot_row.h
Normal file
42
src/util/lp/iterator_on_pivot_row.h
Normal file
|
@ -0,0 +1,42 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/iterator_on_indexed_vector.h"
|
||||
namespace lean {
|
||||
template <typename T>
|
||||
struct iterator_on_pivot_row:linear_combination_iterator<T> {
|
||||
bool m_basis_returned = false;
|
||||
const indexed_vector<T> & m_v;
|
||||
unsigned m_basis_j;
|
||||
iterator_on_indexed_vector<T> m_it;
|
||||
unsigned size() const { return m_it.size(); }
|
||||
iterator_on_pivot_row(const indexed_vector<T> & v, unsigned basis_j) : m_v(v), m_basis_j(basis_j), m_it(v) {}
|
||||
bool next(T & a, unsigned & i) {
|
||||
if (m_basis_returned == false) {
|
||||
m_basis_returned = true;
|
||||
a = one_of_type<T>();
|
||||
i = m_basis_j;
|
||||
return true;
|
||||
}
|
||||
return m_it.next(a, i);
|
||||
}
|
||||
bool next(unsigned & i) {
|
||||
if (m_basis_returned == false) {
|
||||
m_basis_returned = true;
|
||||
i = m_basis_j;
|
||||
return true;
|
||||
}
|
||||
return m_it.next(i);
|
||||
}
|
||||
void reset() {
|
||||
m_basis_returned = false;
|
||||
m_it.reset();
|
||||
}
|
||||
linear_combination_iterator<T> * clone() {
|
||||
iterator_on_pivot_row * r = new iterator_on_pivot_row(m_v, m_basis_j);
|
||||
return r;
|
||||
}
|
||||
};
|
||||
}
|
37
src/util/lp/iterator_on_row.h
Normal file
37
src/util/lp/iterator_on_row.h
Normal file
|
@ -0,0 +1,37 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
namespace lean {
|
||||
template <typename T>
|
||||
struct iterator_on_row:linear_combination_iterator<T> {
|
||||
const vector<row_cell<T>> & m_row;
|
||||
unsigned m_i= 0; // offset
|
||||
iterator_on_row(const vector<row_cell<T>> & row) : m_row(row)
|
||||
{}
|
||||
unsigned size() const { return m_row.size(); }
|
||||
bool next(T & a, unsigned & i) {
|
||||
if (m_i == m_row.size())
|
||||
return false;
|
||||
auto &c = m_row[m_i++];
|
||||
i = c.m_j;
|
||||
a = c.get_val();
|
||||
return true;
|
||||
}
|
||||
bool next(unsigned & i) {
|
||||
if (m_i == m_row.size())
|
||||
return false;
|
||||
auto &c = m_row[m_i++];
|
||||
i = c.m_j;
|
||||
return true;
|
||||
}
|
||||
void reset() {
|
||||
m_i = 0;
|
||||
}
|
||||
linear_combination_iterator<T>* clone() {
|
||||
return new iterator_on_row(m_row);
|
||||
}
|
||||
};
|
||||
}
|
56
src/util/lp/iterator_on_term_with_basis_var.h
Normal file
56
src/util/lp/iterator_on_term_with_basis_var.h
Normal file
|
@ -0,0 +1,56 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/lar_term.h"
|
||||
namespace lean {
|
||||
struct iterator_on_term_with_basis_var:linear_combination_iterator<mpq> {
|
||||
std::unordered_map<unsigned, mpq>::const_iterator m_i; // the offset in term coeffs
|
||||
bool m_term_j_returned = false;
|
||||
const lar_term & m_term;
|
||||
unsigned m_term_j;
|
||||
unsigned size() const {return static_cast<unsigned>(m_term.m_coeffs.size() + 1);}
|
||||
iterator_on_term_with_basis_var(const lar_term & t, unsigned term_j) :
|
||||
m_i(t.m_coeffs.begin()),
|
||||
m_term(t),
|
||||
m_term_j(term_j) {}
|
||||
|
||||
bool next(mpq & a, unsigned & i) {
|
||||
if (m_term_j_returned == false) {
|
||||
m_term_j_returned = true;
|
||||
a = - one_of_type<mpq>();
|
||||
i = m_term_j;
|
||||
return true;
|
||||
}
|
||||
if (m_i == m_term.m_coeffs.end())
|
||||
return false;
|
||||
i = m_i->first;
|
||||
a = m_i->second;
|
||||
m_i++;
|
||||
return true;
|
||||
}
|
||||
bool next(unsigned & i) {
|
||||
if (m_term_j_returned == false) {
|
||||
m_term_j_returned = true;
|
||||
i = m_term_j;
|
||||
return true;
|
||||
}
|
||||
if (m_i == m_term.m_coeffs.end())
|
||||
return false;
|
||||
i = m_i->first;
|
||||
m_i++;
|
||||
return true;
|
||||
}
|
||||
void reset() {
|
||||
m_term_j_returned = false;
|
||||
m_i = m_term.m_coeffs.begin();
|
||||
}
|
||||
linear_combination_iterator<mpq> * clone() {
|
||||
iterator_on_term_with_basis_var * r = new iterator_on_term_with_basis_var(m_term, m_term_j);
|
||||
return r;
|
||||
}
|
||||
};
|
||||
}
|
86
src/util/lp/lar_constraints.h
Normal file
86
src/util/lp/lar_constraints.h
Normal file
|
@ -0,0 +1,86 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include <utility>
|
||||
#include <unordered_map>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/ul_pair.h"
|
||||
#include "util/lp/lar_term.h"
|
||||
namespace lean {
|
||||
inline lconstraint_kind flip_kind(lconstraint_kind t) {
|
||||
return static_cast<lconstraint_kind>( - static_cast<int>(t));
|
||||
}
|
||||
|
||||
inline std::string lconstraint_kind_string(lconstraint_kind t) {
|
||||
switch (t) {
|
||||
case LE: return std::string("<=");
|
||||
case LT: return std::string("<");
|
||||
case GE: return std::string(">=");
|
||||
case GT: return std::string(">");
|
||||
case EQ: return std::string("=");
|
||||
}
|
||||
lean_unreachable();
|
||||
return std::string(); // it is unreachable
|
||||
}
|
||||
|
||||
class lar_base_constraint {
|
||||
public:
|
||||
lconstraint_kind m_kind;
|
||||
mpq m_right_side;
|
||||
virtual vector<std::pair<mpq, var_index>> get_left_side_coefficients() const = 0;
|
||||
lar_base_constraint() {}
|
||||
lar_base_constraint(lconstraint_kind kind, const mpq& right_side) :m_kind(kind), m_right_side(right_side) {}
|
||||
|
||||
virtual unsigned size() const = 0;
|
||||
virtual ~lar_base_constraint(){}
|
||||
virtual mpq get_free_coeff_of_left_side() const { return zero_of_type<mpq>();}
|
||||
};
|
||||
|
||||
struct lar_var_constraint: public lar_base_constraint {
|
||||
unsigned m_j;
|
||||
vector<std::pair<mpq, var_index>> get_left_side_coefficients() const {
|
||||
vector<std::pair<mpq, var_index>> ret;
|
||||
ret.push_back(std::make_pair(one_of_type<mpq>(), m_j));
|
||||
return ret;
|
||||
}
|
||||
unsigned size() const { return 1;}
|
||||
lar_var_constraint(unsigned j, lconstraint_kind kind, const mpq& right_side) : lar_base_constraint(kind, right_side), m_j(j) { }
|
||||
};
|
||||
|
||||
|
||||
struct lar_term_constraint: public lar_base_constraint {
|
||||
const lar_term * m_term;
|
||||
vector<std::pair<mpq, var_index>> get_left_side_coefficients() const {
|
||||
return m_term->coeffs_as_vector();
|
||||
}
|
||||
unsigned size() const { return m_term->size();}
|
||||
lar_term_constraint(const lar_term *t, lconstraint_kind kind, const mpq& right_side) : lar_base_constraint(kind, right_side), m_term(t) { }
|
||||
virtual mpq get_free_coeff_of_left_side() const { return m_term->m_v;}
|
||||
|
||||
};
|
||||
|
||||
|
||||
class lar_constraint : public lar_base_constraint {
|
||||
public:
|
||||
vector<std::pair<mpq, var_index>> m_coeffs;
|
||||
lar_constraint() {}
|
||||
lar_constraint(const vector<std::pair<mpq, var_index>> & left_side, lconstraint_kind kind, const mpq & right_side)
|
||||
: lar_base_constraint(kind, right_side), m_coeffs(left_side) {}
|
||||
|
||||
lar_constraint(const lar_base_constraint & c) {
|
||||
lean_assert(false); // should not be called : todo!
|
||||
}
|
||||
|
||||
unsigned size() const {
|
||||
return static_cast<unsigned>(m_coeffs.size());
|
||||
}
|
||||
|
||||
vector<std::pair<mpq, var_index>> get_left_side_coefficients() const { return m_coeffs; }
|
||||
};
|
||||
}
|
802
src/util/lp/lar_core_solver.h
Normal file
802
src/util/lp/lar_core_solver.h
Normal file
|
@ -0,0 +1,802 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include "util/lp/lp_core_solver_base.h"
|
||||
#include <algorithm>
|
||||
#include "util/lp/indexed_vector.h"
|
||||
#include "util/lp/binary_heap_priority_queue.h"
|
||||
#include "util/lp/breakpoint.h"
|
||||
#include "util/lp/stacked_unordered_set.h"
|
||||
#include "util/lp/lp_primal_core_solver.h"
|
||||
#include "util/lp/stacked_vector.h"
|
||||
#include "util/lp/lar_solution_signature.h"
|
||||
#include "util/lp/iterator_on_column.h"
|
||||
#include "util/lp/iterator_on_indexed_vector.h"
|
||||
#include "util/lp/stacked_value.h"
|
||||
namespace lean {
|
||||
|
||||
class lar_core_solver {
|
||||
// m_sign_of_entering is set to 1 if the entering variable needs
|
||||
// to grow and is set to -1 otherwise
|
||||
int m_sign_of_entering_delta;
|
||||
vector<std::pair<mpq, unsigned>> m_infeasible_linear_combination;
|
||||
int m_infeasible_sum_sign = 0; // todo: get rid of this field
|
||||
vector<numeric_pair<mpq>> m_right_sides_dummy;
|
||||
vector<mpq> m_costs_dummy;
|
||||
vector<double> m_d_right_sides_dummy;
|
||||
vector<double> m_d_costs_dummy;
|
||||
public:
|
||||
stacked_value<simplex_strategy_enum> m_stacked_simplex_strategy;
|
||||
stacked_vector<column_type> m_column_types;
|
||||
// r - solver fields, for rational numbers
|
||||
vector<numeric_pair<mpq>> m_r_x; // the solution
|
||||
stacked_vector<numeric_pair<mpq>> m_r_low_bounds;
|
||||
stacked_vector<numeric_pair<mpq>> m_r_upper_bounds;
|
||||
static_matrix<mpq, numeric_pair<mpq>> m_r_A;
|
||||
stacked_vector<unsigned> m_r_pushed_basis;
|
||||
vector<unsigned> m_r_basis;
|
||||
vector<unsigned> m_r_nbasis;
|
||||
vector<int> m_r_heading;
|
||||
stacked_vector<unsigned> m_r_columns_nz;
|
||||
stacked_vector<unsigned> m_r_rows_nz;
|
||||
|
||||
// d - solver fields, for doubles
|
||||
vector<double> m_d_x; // the solution in doubles
|
||||
vector<double> m_d_low_bounds;
|
||||
vector<double> m_d_upper_bounds;
|
||||
static_matrix<double, double> m_d_A;
|
||||
stacked_vector<unsigned> m_d_pushed_basis;
|
||||
vector<unsigned> m_d_basis;
|
||||
vector<unsigned> m_d_nbasis;
|
||||
vector<int> m_d_heading;
|
||||
|
||||
|
||||
lp_primal_core_solver<mpq, numeric_pair<mpq>> m_r_solver; // solver in rational numbers
|
||||
|
||||
lp_primal_core_solver<double, double> m_d_solver; // solver in doubles
|
||||
|
||||
lar_core_solver(
|
||||
lp_settings & settings,
|
||||
const column_namer & column_names
|
||||
);
|
||||
|
||||
lp_settings & settings() { return m_r_solver.m_settings;}
|
||||
const lp_settings & settings() const { return m_r_solver.m_settings;}
|
||||
|
||||
int get_infeasible_sum_sign() const { return m_infeasible_sum_sign; }
|
||||
|
||||
const vector<std::pair<mpq, unsigned>> & get_infeasibility_info(int & inf_sign) const {
|
||||
inf_sign = m_infeasible_sum_sign;
|
||||
return m_infeasible_linear_combination;
|
||||
}
|
||||
|
||||
void fill_not_improvable_zero_sum_from_inf_row();
|
||||
|
||||
column_type get_column_type(unsigned j) { return m_column_types[j];}
|
||||
|
||||
void init_costs(bool first_time);
|
||||
|
||||
void init_cost_for_column(unsigned j);
|
||||
|
||||
// returns m_sign_of_alpha_r
|
||||
int column_is_out_of_bounds(unsigned j);
|
||||
|
||||
void calculate_pivot_row(unsigned i);
|
||||
|
||||
void print_pivot_row(std::ostream & out, unsigned row_index) const { // remove later debug !!!!
|
||||
for (unsigned j : m_r_solver.m_pivot_row.m_index) {
|
||||
if (numeric_traits<mpq>::is_pos(m_r_solver.m_pivot_row.m_data[j]))
|
||||
out << "+";
|
||||
out << m_r_solver.m_pivot_row.m_data[j] << m_r_solver.column_name(j) << " ";
|
||||
}
|
||||
|
||||
out << " +" << m_r_solver.column_name(m_r_solver.m_basis[row_index]) << std::endl;
|
||||
|
||||
for (unsigned j : m_r_solver.m_pivot_row.m_index) {
|
||||
m_r_solver.print_column_bound_info(j, out);
|
||||
}
|
||||
m_r_solver.print_column_bound_info(m_r_solver.m_basis[row_index], out);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void advance_on_sorted_breakpoints(unsigned entering);
|
||||
|
||||
void change_slope_on_breakpoint(unsigned entering, breakpoint<numeric_pair<mpq>> * b, mpq & slope_at_entering);
|
||||
|
||||
bool row_is_infeasible(unsigned row);
|
||||
|
||||
bool row_is_evidence(unsigned row);
|
||||
|
||||
bool find_evidence_row();
|
||||
|
||||
void prefix_r();
|
||||
|
||||
void prefix_d();
|
||||
|
||||
unsigned m_m() const {
|
||||
return m_r_A.row_count();
|
||||
}
|
||||
|
||||
unsigned m_n() const {
|
||||
return m_r_A.column_count();
|
||||
}
|
||||
|
||||
bool is_tiny() const { return this->m_m() < 10 && this->m_n() < 20; }
|
||||
|
||||
bool is_empty() const { return this->m_m() == 0 && this->m_n() == 0; }
|
||||
|
||||
template <typename L>
|
||||
int get_sign(const L & v) {
|
||||
return v > zero_of_type<L>() ? 1 : (v < zero_of_type<L>() ? -1 : 0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void fill_evidence(unsigned row);
|
||||
|
||||
|
||||
|
||||
void solve();
|
||||
|
||||
bool low_bounds_are_set() const { return true; }
|
||||
|
||||
const indexed_vector<mpq> & get_pivot_row() const {
|
||||
return m_r_solver.m_pivot_row;
|
||||
}
|
||||
|
||||
void fill_not_improvable_zero_sum();
|
||||
|
||||
void pop_basis(unsigned k) {
|
||||
if (!settings().use_tableau()) {
|
||||
m_r_pushed_basis.pop(k);
|
||||
m_r_basis = m_r_pushed_basis();
|
||||
m_r_solver.init_basis_heading_and_non_basic_columns_vector();
|
||||
m_d_pushed_basis.pop(k);
|
||||
m_d_basis = m_d_pushed_basis();
|
||||
m_d_solver.init_basis_heading_and_non_basic_columns_vector();
|
||||
} else {
|
||||
m_d_basis = m_r_basis;
|
||||
m_d_nbasis = m_r_nbasis;
|
||||
m_d_heading = m_r_heading;
|
||||
}
|
||||
}
|
||||
|
||||
void push() {
|
||||
lean_assert(m_r_solver.basis_heading_is_correct());
|
||||
lean_assert(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct());
|
||||
lean_assert(m_column_types.size() == m_r_A.column_count());
|
||||
m_stacked_simplex_strategy = settings().simplex_strategy();
|
||||
m_stacked_simplex_strategy.push();
|
||||
m_column_types.push();
|
||||
// rational
|
||||
if (!settings().use_tableau())
|
||||
m_r_A.push();
|
||||
m_r_low_bounds.push();
|
||||
m_r_upper_bounds.push();
|
||||
if (!settings().use_tableau()) {
|
||||
push_vector(m_r_pushed_basis, m_r_basis);
|
||||
push_vector(m_r_columns_nz, m_r_solver.m_columns_nz);
|
||||
push_vector(m_r_rows_nz, m_r_solver.m_rows_nz);
|
||||
}
|
||||
|
||||
m_d_A.push();
|
||||
if (!settings().use_tableau())
|
||||
push_vector(m_d_pushed_basis, m_d_basis);
|
||||
}
|
||||
|
||||
template <typename K>
|
||||
void push_vector(stacked_vector<K> & pushed_vector, const vector<K> & vector) {
|
||||
lean_assert(pushed_vector.size() <= vector.size());
|
||||
for (unsigned i = 0; i < vector.size();i++) {
|
||||
if (i == pushed_vector.size()) {
|
||||
pushed_vector.push_back(vector[i]);
|
||||
} else {
|
||||
pushed_vector[i] = vector[i];
|
||||
}
|
||||
}
|
||||
pushed_vector.push();
|
||||
}
|
||||
|
||||
void pop_markowitz_counts(unsigned k) {
|
||||
m_r_columns_nz.pop(k);
|
||||
m_r_rows_nz.pop(k);
|
||||
m_r_solver.m_columns_nz.resize(m_r_columns_nz.size());
|
||||
m_r_solver.m_rows_nz.resize(m_r_rows_nz.size());
|
||||
for (unsigned i = 0; i < m_r_columns_nz.size(); i++)
|
||||
m_r_solver.m_columns_nz[i] = m_r_columns_nz[i];
|
||||
for (unsigned i = 0; i < m_r_rows_nz.size(); i++)
|
||||
m_r_solver.m_rows_nz[i] = m_r_rows_nz[i];
|
||||
}
|
||||
|
||||
|
||||
void pop(unsigned k) {
|
||||
m_stacked_simplex_strategy.pop(k);
|
||||
bool use_tableau = m_stacked_simplex_strategy() != simplex_strategy_enum::no_tableau;
|
||||
// rationals
|
||||
if (!settings().use_tableau())
|
||||
m_r_A.pop(k);
|
||||
m_r_low_bounds.pop(k);
|
||||
m_r_upper_bounds.pop(k);
|
||||
m_column_types.pop(k);
|
||||
|
||||
if (m_r_solver.m_factorization != nullptr) {
|
||||
delete m_r_solver.m_factorization;
|
||||
m_r_solver.m_factorization = nullptr;
|
||||
}
|
||||
m_r_x.resize(m_r_A.column_count());
|
||||
m_r_solver.m_costs.resize(m_r_A.column_count());
|
||||
m_r_solver.m_d.resize(m_r_A.column_count());
|
||||
if(!use_tableau)
|
||||
pop_markowitz_counts(k);
|
||||
m_d_A.pop(k);
|
||||
if (m_d_solver.m_factorization != nullptr) {
|
||||
delete m_d_solver.m_factorization;
|
||||
m_d_solver.m_factorization = nullptr;
|
||||
}
|
||||
|
||||
m_d_x.resize(m_d_A.column_count());
|
||||
pop_basis(k);
|
||||
|
||||
lean_assert(m_r_solver.basis_heading_is_correct());
|
||||
lean_assert(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct());
|
||||
}
|
||||
|
||||
bool need_to_presolve_with_double_solver() const {
|
||||
return settings().presolve_with_double_solver_for_lar && !settings().use_tableau();
|
||||
}
|
||||
|
||||
template <typename L>
|
||||
bool is_zero_vector(const vector<L> & b) {
|
||||
for (const L & m: b)
|
||||
if (!is_zero(m)) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool update_xj_and_get_delta(unsigned j, non_basic_column_value_position pos_type, numeric_pair<mpq> & delta) {
|
||||
auto & x = m_r_x[j];
|
||||
switch (pos_type) {
|
||||
case at_low_bound:
|
||||
if (x == m_r_solver.m_low_bounds[j])
|
||||
return false;
|
||||
delta = m_r_solver.m_low_bounds[j] - x;
|
||||
m_r_solver.m_x[j] = m_r_solver.m_low_bounds[j];
|
||||
break;
|
||||
case at_fixed:
|
||||
case at_upper_bound:
|
||||
if (x == m_r_solver.m_upper_bounds[j])
|
||||
return false;
|
||||
delta = m_r_solver.m_upper_bounds[j] - x;
|
||||
x = m_r_solver.m_upper_bounds[j];
|
||||
break;
|
||||
case free_of_bounds: {
|
||||
return false;
|
||||
}
|
||||
case not_at_bound:
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
return false;
|
||||
case column_type::upper_bound:
|
||||
delta = m_r_solver.m_upper_bounds[j] - x;
|
||||
x = m_r_solver.m_upper_bounds[j];
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
delta = m_r_solver.m_low_bounds[j] - x;
|
||||
x = m_r_solver.m_low_bounds[j];
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (x > m_r_solver.m_upper_bounds[j]) {
|
||||
delta = m_r_solver.m_upper_bounds[j] - x;
|
||||
x += m_r_solver.m_upper_bounds[j];
|
||||
} else {
|
||||
delta = m_r_solver.m_low_bounds[j] - x;
|
||||
x = m_r_solver.m_low_bounds[j];
|
||||
}
|
||||
break;
|
||||
case column_type::fixed:
|
||||
delta = m_r_solver.m_low_bounds[j] - x;
|
||||
x = m_r_solver.m_low_bounds[j];
|
||||
break;
|
||||
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
m_r_solver.remove_column_from_inf_set(j);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void prepare_solver_x_with_signature_tableau(const lar_solution_signature & signature) {
|
||||
lean_assert(m_r_solver.inf_set_is_correct());
|
||||
for (auto &t : signature) {
|
||||
unsigned j = t.first;
|
||||
if (m_r_heading[j] >= 0)
|
||||
continue;
|
||||
auto pos_type = t.second;
|
||||
numeric_pair<mpq> delta;
|
||||
if (!update_xj_and_get_delta(j, pos_type, delta))
|
||||
continue;
|
||||
for (const auto & cc : m_r_solver.m_A.m_columns[j]){
|
||||
unsigned i = cc.m_i;
|
||||
unsigned jb = m_r_solver.m_basis[i];
|
||||
m_r_solver.m_x[jb] -= delta * m_r_solver.m_A.get_val(cc);
|
||||
m_r_solver.update_column_in_inf_set(jb);
|
||||
}
|
||||
lean_assert(m_r_solver.A_mult_x_is_off() == false);
|
||||
}
|
||||
lean_assert(m_r_solver.inf_set_is_correct());
|
||||
}
|
||||
|
||||
|
||||
template <typename L, typename K>
|
||||
void prepare_solver_x_with_signature(const lar_solution_signature & signature, lp_primal_core_solver<L,K> & s) {
|
||||
for (auto &t : signature) {
|
||||
unsigned j = t.first;
|
||||
lean_assert(m_r_heading[j] < 0);
|
||||
auto pos_type = t.second;
|
||||
switch (pos_type) {
|
||||
case at_low_bound:
|
||||
s.m_x[j] = s.m_low_bounds[j];
|
||||
break;
|
||||
case at_fixed:
|
||||
case at_upper_bound:
|
||||
s.m_x[j] = s.m_upper_bounds[j];
|
||||
break;
|
||||
case free_of_bounds: {
|
||||
s.m_x[j] = zero_of_type<K>();
|
||||
continue;
|
||||
}
|
||||
case not_at_bound:
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
lean_assert(false); // unreachable
|
||||
case column_type::upper_bound:
|
||||
s.m_x[j] = s.m_upper_bounds[j];
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
s.m_x[j] = s.m_low_bounds[j];
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (my_random() % 2) {
|
||||
s.m_x[j] = s.m_low_bounds[j];
|
||||
} else {
|
||||
s.m_x[j] = s.m_upper_bounds[j];
|
||||
}
|
||||
break;
|
||||
case column_type::fixed:
|
||||
s.m_x[j] = s.m_low_bounds[j];
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
lean_assert(is_zero_vector(s.m_b));
|
||||
s.solve_Ax_eq_b();
|
||||
}
|
||||
|
||||
template <typename L, typename K>
|
||||
void catch_up_in_lu_in_reverse(const vector<unsigned> & trace_of_basis_change, lp_primal_core_solver<L,K> & cs) {
|
||||
// recover the previous working basis
|
||||
for (unsigned i = trace_of_basis_change.size(); i > 0; i-= 2) {
|
||||
unsigned entering = trace_of_basis_change[i-1];
|
||||
unsigned leaving = trace_of_basis_change[i-2];
|
||||
cs.change_basis_unconditionally(entering, leaving);
|
||||
}
|
||||
cs.init_lu();
|
||||
}
|
||||
|
||||
//basis_heading is the basis heading of the solver owning trace_of_basis_change
|
||||
// here we compact the trace as we go to avoid unnecessary column changes
|
||||
template <typename L, typename K>
|
||||
void catch_up_in_lu(const vector<unsigned> & trace_of_basis_change, const vector<int> & basis_heading, lp_primal_core_solver<L,K> & cs) {
|
||||
if (cs.m_factorization == nullptr || cs.m_factorization->m_refactor_counter + trace_of_basis_change.size()/2 >= 200) {
|
||||
for (unsigned i = 0; i < trace_of_basis_change.size(); i+= 2) {
|
||||
unsigned entering = trace_of_basis_change[i];
|
||||
unsigned leaving = trace_of_basis_change[i+1];
|
||||
cs.change_basis_unconditionally(entering, leaving);
|
||||
}
|
||||
if (cs.m_factorization != nullptr)
|
||||
delete cs.m_factorization;
|
||||
cs.m_factorization = nullptr;
|
||||
} else {
|
||||
indexed_vector<L> w(cs.m_A.row_count());
|
||||
// the queues of delayed indices
|
||||
std::queue<unsigned> entr_q, leav_q;
|
||||
auto * l = cs.m_factorization;
|
||||
lean_assert(l->get_status() == LU_status::OK);
|
||||
for (unsigned i = 0; i < trace_of_basis_change.size(); i+= 2) {
|
||||
unsigned entering = trace_of_basis_change[i];
|
||||
unsigned leaving = trace_of_basis_change[i+1];
|
||||
bool good_e = basis_heading[entering] >= 0 && cs.m_basis_heading[entering] < 0;
|
||||
bool good_l = basis_heading[leaving] < 0 && cs.m_basis_heading[leaving] >= 0;
|
||||
if (!good_e && !good_l) continue;
|
||||
if (good_e && !good_l) {
|
||||
while (!leav_q.empty() && cs.m_basis_heading[leav_q.front()] < 0)
|
||||
leav_q.pop();
|
||||
if (!leav_q.empty()) {
|
||||
leaving = leav_q.front();
|
||||
leav_q.pop();
|
||||
} else {
|
||||
entr_q.push(entering);
|
||||
continue;
|
||||
}
|
||||
} else if (!good_e && good_l) {
|
||||
while (!entr_q.empty() && cs.m_basis_heading[entr_q.front()] >= 0)
|
||||
entr_q.pop();
|
||||
if (!entr_q.empty()) {
|
||||
entering = entr_q.front();
|
||||
entr_q.pop();
|
||||
} else {
|
||||
leav_q.push(leaving);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
lean_assert(cs.m_basis_heading[entering] < 0);
|
||||
lean_assert(cs.m_basis_heading[leaving] >= 0);
|
||||
if (l->get_status() == LU_status::OK) {
|
||||
l->prepare_entering(entering, w); // to init vector w
|
||||
l->replace_column(zero_of_type<L>(), w, cs.m_basis_heading[leaving]);
|
||||
}
|
||||
cs.change_basis_unconditionally(entering, leaving);
|
||||
}
|
||||
if (l->get_status() != LU_status::OK) {
|
||||
delete l;
|
||||
cs.m_factorization = nullptr;
|
||||
}
|
||||
}
|
||||
if (cs.m_factorization == nullptr) {
|
||||
if (numeric_traits<L>::precise())
|
||||
init_factorization(cs.m_factorization, cs.m_A, cs.m_basis, settings());
|
||||
}
|
||||
}
|
||||
|
||||
bool no_r_lu() const {
|
||||
return m_r_solver.m_factorization == nullptr || m_r_solver.m_factorization->get_status() == LU_status::Degenerated;
|
||||
}
|
||||
|
||||
void solve_on_signature_tableau(const lar_solution_signature & signature, const vector<unsigned> & changes_of_basis) {
|
||||
r_basis_is_OK();
|
||||
lean_assert(settings().use_tableau());
|
||||
bool r = catch_up_in_lu_tableau(changes_of_basis, m_d_solver.m_basis_heading);
|
||||
|
||||
if (!r) { // it is the case where m_d_solver gives a degenerated basis
|
||||
prepare_solver_x_with_signature_tableau(signature); // still are going to use the signature partially
|
||||
m_r_solver.find_feasible_solution();
|
||||
m_d_basis = m_r_basis;
|
||||
m_d_heading = m_r_heading;
|
||||
m_d_nbasis = m_r_nbasis;
|
||||
delete m_d_solver.m_factorization;
|
||||
m_d_solver.m_factorization = nullptr;
|
||||
} else {
|
||||
prepare_solver_x_with_signature_tableau(signature);
|
||||
m_r_solver.start_tracing_basis_changes();
|
||||
m_r_solver.find_feasible_solution();
|
||||
if (settings().get_cancel_flag())
|
||||
return;
|
||||
m_r_solver.stop_tracing_basis_changes();
|
||||
// and now catch up in the double solver
|
||||
lean_assert(m_r_solver.total_iterations() >= m_r_solver.m_trace_of_basis_change_vector.size() /2);
|
||||
catch_up_in_lu(m_r_solver.m_trace_of_basis_change_vector, m_r_solver.m_basis_heading, m_d_solver);
|
||||
}
|
||||
lean_assert(r_basis_is_OK());
|
||||
}
|
||||
|
||||
bool adjust_x_of_column(unsigned j) {
|
||||
/*
|
||||
if (m_r_solver.m_basis_heading[j] >= 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (m_r_solver.column_is_feasible(j)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
m_r_solver.snap_column_to_bound_tableau(j);
|
||||
lean_assert(m_r_solver.column_is_feasible(j));
|
||||
m_r_solver.m_inf_set.erase(j);
|
||||
*/
|
||||
lean_assert(false);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool catch_up_in_lu_tableau(const vector<unsigned> & trace_of_basis_change, const vector<int> & basis_heading) {
|
||||
lean_assert(r_basis_is_OK());
|
||||
// the queues of delayed indices
|
||||
std::queue<unsigned> entr_q, leav_q;
|
||||
for (unsigned i = 0; i < trace_of_basis_change.size(); i+= 2) {
|
||||
unsigned entering = trace_of_basis_change[i];
|
||||
unsigned leaving = trace_of_basis_change[i+1];
|
||||
bool good_e = basis_heading[entering] >= 0 && m_r_solver.m_basis_heading[entering] < 0;
|
||||
bool good_l = basis_heading[leaving] < 0 && m_r_solver.m_basis_heading[leaving] >= 0;
|
||||
if (!good_e && !good_l) continue;
|
||||
if (good_e && !good_l) {
|
||||
while (!leav_q.empty() && m_r_solver.m_basis_heading[leav_q.front()] < 0)
|
||||
leav_q.pop();
|
||||
if (!leav_q.empty()) {
|
||||
leaving = leav_q.front();
|
||||
leav_q.pop();
|
||||
} else {
|
||||
entr_q.push(entering);
|
||||
continue;
|
||||
}
|
||||
} else if (!good_e && good_l) {
|
||||
while (!entr_q.empty() && m_r_solver.m_basis_heading[entr_q.front()] >= 0)
|
||||
entr_q.pop();
|
||||
if (!entr_q.empty()) {
|
||||
entering = entr_q.front();
|
||||
entr_q.pop();
|
||||
} else {
|
||||
leav_q.push(leaving);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
lean_assert(m_r_solver.m_basis_heading[entering] < 0);
|
||||
lean_assert(m_r_solver.m_basis_heading[leaving] >= 0);
|
||||
m_r_solver.change_basis_unconditionally(entering, leaving);
|
||||
if(!m_r_solver.pivot_column_tableau(entering, m_r_solver.m_basis_heading[entering])) {
|
||||
// unroll the last step
|
||||
m_r_solver.change_basis_unconditionally(leaving, entering);
|
||||
#ifdef LEAN_DEBUG
|
||||
bool t =
|
||||
#endif
|
||||
m_r_solver.pivot_column_tableau(leaving, m_r_solver.m_basis_heading[leaving]);
|
||||
#ifdef LEAN_DEBUG
|
||||
lean_assert(t);
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
}
|
||||
lean_assert(r_basis_is_OK());
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool r_basis_is_OK() const {
|
||||
#ifdef LEAN_DEBUG
|
||||
if (!m_r_solver.m_settings.use_tableau())
|
||||
return true;
|
||||
for (unsigned j : m_r_solver.m_basis) {
|
||||
lean_assert(m_r_solver.m_A.m_columns[j].size() == 1);
|
||||
lean_assert(m_r_solver.m_A.get_val(m_r_solver.m_A.m_columns[j][0]) == one_of_type<mpq>());
|
||||
}
|
||||
for (unsigned j =0; j < m_r_solver.m_basis_heading.size(); j++) {
|
||||
if (m_r_solver.m_basis_heading[j] >= 0) continue;
|
||||
if (m_r_solver.m_column_types[j] == column_type::fixed) continue;
|
||||
lean_assert(static_cast<unsigned>(- m_r_solver.m_basis_heading[j] - 1) < m_r_solver.m_column_types.size());
|
||||
lean_assert( m_r_solver.m_basis_heading[j] <= -1);
|
||||
}
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
|
||||
void solve_on_signature(const lar_solution_signature & signature, const vector<unsigned> & changes_of_basis) {
|
||||
lean_assert(!settings().use_tableau());
|
||||
if (m_r_solver.m_factorization == nullptr) {
|
||||
for (unsigned j = 0; j < changes_of_basis.size(); j+=2) {
|
||||
unsigned entering = changes_of_basis[j];
|
||||
unsigned leaving = changes_of_basis[j + 1];
|
||||
m_r_solver.change_basis_unconditionally(entering, leaving);
|
||||
}
|
||||
init_factorization(m_r_solver.m_factorization, m_r_A, m_r_basis, settings());
|
||||
} else {
|
||||
catch_up_in_lu(changes_of_basis, m_d_solver.m_basis_heading, m_r_solver);
|
||||
}
|
||||
|
||||
if (no_r_lu()) { // it is the case where m_d_solver gives a degenerated basis, we need to roll back
|
||||
std::cout << "no_r_lu" << std::endl;
|
||||
catch_up_in_lu_in_reverse(changes_of_basis, m_r_solver);
|
||||
m_r_solver.find_feasible_solution();
|
||||
m_d_basis = m_r_basis;
|
||||
m_d_heading = m_r_heading;
|
||||
m_d_nbasis = m_r_nbasis;
|
||||
delete m_d_solver.m_factorization;
|
||||
m_d_solver.m_factorization = nullptr;
|
||||
} else {
|
||||
prepare_solver_x_with_signature(signature, m_r_solver);
|
||||
m_r_solver.start_tracing_basis_changes();
|
||||
m_r_solver.find_feasible_solution();
|
||||
if (settings().get_cancel_flag())
|
||||
return;
|
||||
m_r_solver.stop_tracing_basis_changes();
|
||||
// and now catch up in the double solver
|
||||
lean_assert(m_r_solver.total_iterations() >= m_r_solver.m_trace_of_basis_change_vector.size() /2);
|
||||
catch_up_in_lu(m_r_solver.m_trace_of_basis_change_vector, m_r_solver.m_basis_heading, m_d_solver);
|
||||
}
|
||||
}
|
||||
|
||||
void create_double_matrix(static_matrix<double, double> & A) {
|
||||
for (unsigned i = 0; i < m_r_A.row_count(); i++) {
|
||||
auto & row = m_r_A.m_rows[i];
|
||||
for (row_cell<mpq> & c : row) {
|
||||
A.set(i, c.m_j, c.get_val().get_double());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void fill_basis_d(
|
||||
vector<unsigned>& basis_d,
|
||||
vector<int>& heading_d,
|
||||
vector<unsigned>& nbasis_d){
|
||||
basis_d = m_r_basis;
|
||||
heading_d = m_r_heading;
|
||||
nbasis_d = m_r_nbasis;
|
||||
}
|
||||
|
||||
template <typename L, typename K>
|
||||
void extract_signature_from_lp_core_solver(const lp_primal_core_solver<L, K> & solver, lar_solution_signature & signature) {
|
||||
signature.clear();
|
||||
lean_assert(signature.size() == 0);
|
||||
for (unsigned j = 0; j < solver.m_basis_heading.size(); j++) {
|
||||
if (solver.m_basis_heading[j] < 0) {
|
||||
signature[j] = solver.get_non_basic_column_value_position(j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void get_bounds_for_double_solver() {
|
||||
unsigned n = m_n();
|
||||
m_d_low_bounds.resize(n);
|
||||
m_d_upper_bounds.resize(n);
|
||||
double delta = find_delta_for_strict_boxed_bounds().get_double();
|
||||
if (delta > 0.000001)
|
||||
delta = 0.000001;
|
||||
for (unsigned j = 0; j < n; j++) {
|
||||
if (low_bound_is_set(j)) {
|
||||
const auto & lb = m_r_solver.m_low_bounds[j];
|
||||
m_d_low_bounds[j] = lb.x.get_double() + delta * lb.y.get_double();
|
||||
}
|
||||
if (upper_bound_is_set(j)) {
|
||||
const auto & ub = m_r_solver.m_upper_bounds[j];
|
||||
m_d_upper_bounds[j] = ub.x.get_double() + delta * ub.y.get_double();
|
||||
lean_assert(!low_bound_is_set(j) || (m_d_upper_bounds[j] >= m_d_low_bounds[j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void scale_problem_for_doubles(
|
||||
static_matrix<double, double>& A,
|
||||
vector<double> & low_bounds,
|
||||
vector<double> & upper_bounds) {
|
||||
vector<double> column_scale_vector;
|
||||
vector<double> right_side_vector(A.column_count());
|
||||
settings().reps_in_scaler = 5;
|
||||
scaler<double, double > scaler(right_side_vector,
|
||||
A,
|
||||
settings().scaling_minimum,
|
||||
settings().scaling_maximum,
|
||||
column_scale_vector,
|
||||
settings());
|
||||
if (! scaler.scale()) {
|
||||
// the scale did not succeed, unscaling
|
||||
A.clear();
|
||||
create_double_matrix(A);
|
||||
} else {
|
||||
for (unsigned j = 0; j < A.column_count(); j++) {
|
||||
if (m_r_solver.column_has_upper_bound(j)) {
|
||||
upper_bounds[j] /= column_scale_vector[j];
|
||||
}
|
||||
if (m_r_solver.column_has_low_bound(j)) {
|
||||
low_bounds[j] /= column_scale_vector[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
// returns the trace of basis changes
|
||||
vector<unsigned> find_solution_signature_with_doubles(lar_solution_signature & signature) {
|
||||
if (m_d_solver.m_factorization == nullptr || m_d_solver.m_factorization->get_status() != LU_status::OK) {
|
||||
vector<unsigned> ret;
|
||||
return ret;
|
||||
}
|
||||
get_bounds_for_double_solver();
|
||||
|
||||
extract_signature_from_lp_core_solver(m_r_solver, signature);
|
||||
prepare_solver_x_with_signature(signature, m_d_solver);
|
||||
m_d_solver.start_tracing_basis_changes();
|
||||
m_d_solver.find_feasible_solution();
|
||||
if (settings().get_cancel_flag())
|
||||
return vector<unsigned>();
|
||||
|
||||
m_d_solver.stop_tracing_basis_changes();
|
||||
extract_signature_from_lp_core_solver(m_d_solver, signature);
|
||||
return m_d_solver.m_trace_of_basis_change_vector;
|
||||
}
|
||||
|
||||
|
||||
bool low_bound_is_set(unsigned j) const {
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
case column_type::upper_bound:
|
||||
return false;
|
||||
case column_type::low_bound:
|
||||
case column_type::boxed:
|
||||
case column_type::fixed:
|
||||
return true;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool upper_bound_is_set(unsigned j) const {
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
case column_type::low_bound:
|
||||
return false;
|
||||
case column_type::upper_bound:
|
||||
case column_type::boxed:
|
||||
case column_type::fixed:
|
||||
return true;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void update_delta(mpq& delta, numeric_pair<mpq> const& l, numeric_pair<mpq> const& u) const {
|
||||
lean_assert(l <= u);
|
||||
if (l.x < u.x && l.y > u.y) {
|
||||
mpq delta1 = (u.x - l.x) / (l.y - u.y);
|
||||
if (delta1 < delta) {
|
||||
delta = delta1;
|
||||
}
|
||||
}
|
||||
lean_assert(l.x + delta * l.y <= u.x + delta * u.y);
|
||||
}
|
||||
|
||||
|
||||
mpq find_delta_for_strict_boxed_bounds() const{
|
||||
mpq delta = numeric_traits<mpq>::one();
|
||||
for (unsigned j = 0; j < m_r_A.column_count(); j++ ) {
|
||||
if (m_column_types()[j] != column_type::boxed)
|
||||
continue;
|
||||
update_delta(delta, m_r_low_bounds[j], m_r_upper_bounds[j]);
|
||||
|
||||
}
|
||||
return delta;
|
||||
}
|
||||
|
||||
|
||||
mpq find_delta_for_strict_bounds() const{
|
||||
mpq delta = numeric_traits<mpq>::one();
|
||||
for (unsigned j = 0; j < m_r_A.column_count(); j++ ) {
|
||||
if (low_bound_is_set(j))
|
||||
update_delta(delta, m_r_low_bounds[j], m_r_x[j]);
|
||||
if (upper_bound_is_set(j))
|
||||
update_delta(delta, m_r_x[j], m_r_upper_bounds[j]);
|
||||
}
|
||||
return delta;
|
||||
}
|
||||
|
||||
void init_column_row_nz_for_r_solver() {
|
||||
m_r_solver.init_column_row_non_zeroes();
|
||||
}
|
||||
|
||||
linear_combination_iterator<mpq> * get_column_iterator(unsigned j) {
|
||||
if (settings().use_tableau()) {
|
||||
return new iterator_on_column<mpq, numeric_pair<mpq>>(m_r_solver.m_A.m_columns[j], m_r_solver.m_A);
|
||||
} else {
|
||||
m_r_solver.solve_Bd(j);
|
||||
return new iterator_on_indexed_vector<mpq>(m_r_solver.m_ed);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
}
|
292
src/util/lp/lar_core_solver.hpp
Normal file
292
src/util/lp/lar_core_solver.hpp
Normal file
|
@ -0,0 +1,292 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/lar_core_solver.h"
|
||||
#include "util/lp/lar_solution_signature.h"
|
||||
namespace lean {
|
||||
lar_core_solver::lar_core_solver(
|
||||
lp_settings & settings,
|
||||
const column_namer & column_names
|
||||
):
|
||||
m_r_solver(m_r_A,
|
||||
m_right_sides_dummy,
|
||||
m_r_x,
|
||||
m_r_basis,
|
||||
m_r_nbasis,
|
||||
m_r_heading,
|
||||
m_costs_dummy,
|
||||
m_column_types(),
|
||||
m_r_low_bounds(),
|
||||
m_r_upper_bounds(),
|
||||
settings,
|
||||
column_names),
|
||||
m_d_solver(m_d_A,
|
||||
m_d_right_sides_dummy,
|
||||
m_d_x,
|
||||
m_d_basis,
|
||||
m_d_nbasis,
|
||||
m_d_heading,
|
||||
m_d_costs_dummy,
|
||||
m_column_types(),
|
||||
m_d_low_bounds,
|
||||
m_d_upper_bounds,
|
||||
settings,
|
||||
column_names){}
|
||||
|
||||
void lar_core_solver::init_costs(bool first_time) {
|
||||
lean_assert(false); // should not be called
|
||||
// lean_assert(this->m_x.size() >= this->m_n());
|
||||
// lean_assert(this->m_column_types.size() >= this->m_n());
|
||||
// if (first_time)
|
||||
// this->m_costs.resize(this->m_n());
|
||||
// X inf = this->m_infeasibility;
|
||||
// this->m_infeasibility = zero_of_type<X>();
|
||||
// for (unsigned j = this->m_n(); j--;)
|
||||
// init_cost_for_column(j);
|
||||
// if (!(first_time || inf >= this->m_infeasibility)) {
|
||||
// LP_OUT(this->m_settings, "iter = " << this->total_iterations() << std::endl);
|
||||
// LP_OUT(this->m_settings, "inf was " << T_to_string(inf) << " and now " << T_to_string(this->m_infeasibility) << std::endl);
|
||||
// lean_assert(false);
|
||||
// }
|
||||
// if (inf == this->m_infeasibility)
|
||||
// this->m_iters_with_no_cost_growing++;
|
||||
}
|
||||
|
||||
|
||||
void lar_core_solver::init_cost_for_column(unsigned j) {
|
||||
/*
|
||||
// If j is a breakpoint column, then we set the cost zero.
|
||||
// When anylyzing an entering column candidate we update the cost of the breakpoints columns to get the left or the right derivative if the infeasibility function
|
||||
const numeric_pair<mpq> & x = this->m_x[j];
|
||||
// set zero cost for each non-basis column
|
||||
if (this->m_basis_heading[j] < 0) {
|
||||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
return;
|
||||
}
|
||||
// j is a basis column
|
||||
switch (this->m_column_types[j]) {
|
||||
case fixed:
|
||||
case column_type::boxed:
|
||||
if (x > this->m_upper_bounds[j]) {
|
||||
this->m_costs[j] = 1;
|
||||
this->m_infeasibility += x - this->m_upper_bounds[j];
|
||||
} else if (x < this->m_low_bounds[j]) {
|
||||
this->m_infeasibility += this->m_low_bounds[j] - x;
|
||||
this->m_costs[j] = -1;
|
||||
} else {
|
||||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
break;
|
||||
case low_bound:
|
||||
if (x < this->m_low_bounds[j]) {
|
||||
this->m_costs[j] = -1;
|
||||
this->m_infeasibility += this->m_low_bounds[j] - x;
|
||||
} else {
|
||||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
break;
|
||||
case upper_bound:
|
||||
if (x > this->m_upper_bounds[j]) {
|
||||
this->m_costs[j] = 1;
|
||||
this->m_infeasibility += x - this->m_upper_bounds[j];
|
||||
} else {
|
||||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
break;
|
||||
case free_column:
|
||||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
break;
|
||||
}*/
|
||||
}
|
||||
|
||||
|
||||
// returns m_sign_of_alpha_r
|
||||
int lar_core_solver::column_is_out_of_bounds(unsigned j) {
|
||||
/*
|
||||
switch (this->m_column_type[j]) {
|
||||
case fixed:
|
||||
case column_type::boxed:
|
||||
if (this->x_below_low_bound(j)) {
|
||||
return -1;
|
||||
}
|
||||
if (this->x_above_upper_bound(j)) {
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
case low_bound:
|
||||
if (this->x_below_low_bound(j)) {
|
||||
return -1;
|
||||
}
|
||||
return 0;
|
||||
case upper_bound:
|
||||
if (this->x_above_upper_bound(j)) {
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
default:
|
||||
return 0;
|
||||
break;
|
||||
}*/
|
||||
lean_assert(false);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void lar_core_solver::calculate_pivot_row(unsigned i) {
|
||||
lean_assert(!m_r_solver.use_tableau());
|
||||
lean_assert(m_r_solver.m_pivot_row.is_OK());
|
||||
m_r_solver.m_pivot_row_of_B_1.clear();
|
||||
m_r_solver.m_pivot_row_of_B_1.resize(m_r_solver.m_m());
|
||||
m_r_solver.m_pivot_row.clear();
|
||||
m_r_solver.m_pivot_row.resize(m_r_solver.m_n());
|
||||
if (m_r_solver.m_settings.use_tableau()) {
|
||||
unsigned basis_j = m_r_solver.m_basis[i];
|
||||
for (auto & c : m_r_solver.m_A.m_rows[i]) {
|
||||
if (c.m_j != basis_j)
|
||||
m_r_solver.m_pivot_row.set_value(c.get_val(), c.m_j);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
m_r_solver.calculate_pivot_row_of_B_1(i);
|
||||
m_r_solver.calculate_pivot_row_when_pivot_row_of_B1_is_ready(i);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void lar_core_solver::prefix_r() {
|
||||
if (!m_r_solver.m_settings.use_tableau()) {
|
||||
m_r_solver.m_copy_of_xB.resize(m_r_solver.m_n());
|
||||
m_r_solver.m_ed.resize(m_r_solver.m_m());
|
||||
m_r_solver.m_pivot_row.resize(m_r_solver.m_n());
|
||||
m_r_solver.m_pivot_row_of_B_1.resize(m_r_solver.m_m());
|
||||
m_r_solver.m_w.resize(m_r_solver.m_m());
|
||||
m_r_solver.m_y.resize(m_r_solver.m_m());
|
||||
m_r_solver.m_rows_nz.resize(m_r_solver.m_m(), 0);
|
||||
m_r_solver.m_columns_nz.resize(m_r_solver.m_n(), 0);
|
||||
init_column_row_nz_for_r_solver();
|
||||
}
|
||||
|
||||
m_r_solver.m_b.resize(m_r_solver.m_m());
|
||||
if (m_r_solver.m_settings.simplex_strategy() != simplex_strategy_enum::tableau_rows) {
|
||||
if(m_r_solver.m_settings.use_breakpoints_in_feasibility_search)
|
||||
m_r_solver.m_breakpoint_indices_queue.resize(m_r_solver.m_n());
|
||||
m_r_solver.m_costs.resize(m_r_solver.m_n());
|
||||
m_r_solver.m_d.resize(m_r_solver.m_n());
|
||||
m_r_solver.m_using_infeas_costs = true;
|
||||
}
|
||||
}
|
||||
|
||||
void lar_core_solver::prefix_d() {
|
||||
m_d_solver.m_b.resize(m_d_solver.m_m());
|
||||
m_d_solver.m_breakpoint_indices_queue.resize(m_d_solver.m_n());
|
||||
m_d_solver.m_copy_of_xB.resize(m_d_solver.m_n());
|
||||
m_d_solver.m_costs.resize(m_d_solver.m_n());
|
||||
m_d_solver.m_d.resize(m_d_solver.m_n());
|
||||
m_d_solver.m_ed.resize(m_d_solver.m_m());
|
||||
m_d_solver.m_pivot_row.resize(m_d_solver.m_n());
|
||||
m_d_solver.m_pivot_row_of_B_1.resize(m_d_solver.m_m());
|
||||
m_d_solver.m_w.resize(m_d_solver.m_m());
|
||||
m_d_solver.m_y.resize(m_d_solver.m_m());
|
||||
m_d_solver.m_steepest_edge_coefficients.resize(m_d_solver.m_n());
|
||||
m_d_solver.m_column_norms.clear();
|
||||
m_d_solver.m_column_norms.resize(m_d_solver.m_n(), 2);
|
||||
m_d_solver.m_inf_set.clear();
|
||||
m_d_solver.m_inf_set.resize(m_d_solver.m_n());
|
||||
}
|
||||
|
||||
void lar_core_solver::fill_not_improvable_zero_sum_from_inf_row() {
|
||||
lean_assert(m_r_solver.A_mult_x_is_off() == false);
|
||||
unsigned bj = m_r_basis[m_r_solver.m_inf_row_index_for_tableau];
|
||||
m_infeasible_sum_sign = m_r_solver.inf_sign_of_column(bj);
|
||||
m_infeasible_linear_combination.clear();
|
||||
for (auto & rc : m_r_solver.m_A.m_rows[m_r_solver.m_inf_row_index_for_tableau]) {
|
||||
m_infeasible_linear_combination.push_back(std::make_pair( rc.get_val(), rc.m_j));
|
||||
}
|
||||
}
|
||||
|
||||
void lar_core_solver::fill_not_improvable_zero_sum() {
|
||||
if (m_r_solver.m_settings.simplex_strategy() == simplex_strategy_enum::tableau_rows) {
|
||||
fill_not_improvable_zero_sum_from_inf_row();
|
||||
return;
|
||||
}
|
||||
// reusing the existing mechanism for row_feasibility_loop
|
||||
m_infeasible_sum_sign = m_r_solver.m_settings.use_breakpoints_in_feasibility_search? -1 : 1;
|
||||
m_infeasible_linear_combination.clear();
|
||||
for (auto j : m_r_solver.m_basis) {
|
||||
const mpq & cost_j = m_r_solver.m_costs[j];
|
||||
if (!numeric_traits<mpq>::is_zero(cost_j)) {
|
||||
m_infeasible_linear_combination.push_back(std::make_pair(cost_j, j));
|
||||
}
|
||||
}
|
||||
// m_costs are expressed by m_d ( additional costs), substructing the latter gives 0
|
||||
for (unsigned j = 0; j < m_r_solver.m_n(); j++) {
|
||||
if (m_r_solver.m_basis_heading[j] >= 0) continue;
|
||||
const mpq & d_j = m_r_solver.m_d[j];
|
||||
if (!numeric_traits<mpq>::is_zero(d_j)) {
|
||||
m_infeasible_linear_combination.push_back(std::make_pair(-d_j, j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void lar_core_solver::solve() {
|
||||
lean_assert(m_r_solver.non_basic_columns_are_set_correctly());
|
||||
lean_assert(m_r_solver.inf_set_is_correct());
|
||||
if (m_r_solver.current_x_is_feasible() && m_r_solver.m_look_for_feasible_solution_only) {
|
||||
m_r_solver.set_status(OPTIMAL);
|
||||
return;
|
||||
}
|
||||
++settings().st().m_need_to_solve_inf;
|
||||
lean_assert(!m_r_solver.A_mult_x_is_off());
|
||||
lean_assert((!settings().use_tableau()) || r_basis_is_OK());
|
||||
if (need_to_presolve_with_double_solver()) {
|
||||
prefix_d();
|
||||
lar_solution_signature solution_signature;
|
||||
vector<unsigned> changes_of_basis = find_solution_signature_with_doubles(solution_signature);
|
||||
if (m_d_solver.get_status() == TIME_EXHAUSTED) {
|
||||
m_r_solver.set_status(TIME_EXHAUSTED);
|
||||
return;
|
||||
}
|
||||
if (settings().use_tableau())
|
||||
solve_on_signature_tableau(solution_signature, changes_of_basis);
|
||||
else
|
||||
solve_on_signature(solution_signature, changes_of_basis);
|
||||
lean_assert(!settings().use_tableau() || r_basis_is_OK());
|
||||
} else {
|
||||
if (!settings().use_tableau()) {
|
||||
bool snapped = m_r_solver.snap_non_basic_x_to_bound();
|
||||
lean_assert(m_r_solver.non_basic_columns_are_set_correctly());
|
||||
if (snapped)
|
||||
m_r_solver.solve_Ax_eq_b();
|
||||
}
|
||||
if (m_r_solver.m_look_for_feasible_solution_only)
|
||||
m_r_solver.find_feasible_solution();
|
||||
else
|
||||
m_r_solver.solve();
|
||||
lean_assert(!settings().use_tableau() || r_basis_is_OK());
|
||||
}
|
||||
if (m_r_solver.get_status() == INFEASIBLE) {
|
||||
fill_not_improvable_zero_sum();
|
||||
} else if (m_r_solver.get_status() != UNBOUNDED) {
|
||||
m_r_solver.set_status(OPTIMAL);
|
||||
}
|
||||
lean_assert(r_basis_is_OK());
|
||||
lean_assert(m_r_solver.non_basic_columns_are_set_correctly());
|
||||
lean_assert(m_r_solver.inf_set_is_correct());
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
10
src/util/lp/lar_core_solver_instances.cpp
Normal file
10
src/util/lp/lar_core_solver_instances.cpp
Normal file
|
@ -0,0 +1,10 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lar_core_solver.hpp"
|
13
src/util/lp/lar_solution_signature.h
Normal file
13
src/util/lp/lar_solution_signature.h
Normal file
|
@ -0,0 +1,13 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/debug.h"
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include <unordered_map>
|
||||
namespace lean {
|
||||
typedef std::unordered_map<unsigned, non_basic_column_value_position> lar_solution_signature;
|
||||
}
|
2138
src/util/lp/lar_solver.h
Normal file
2138
src/util/lp/lar_solver.h
Normal file
File diff suppressed because it is too large
Load diff
64
src/util/lp/lar_term.h
Normal file
64
src/util/lp/lar_term.h
Normal file
|
@ -0,0 +1,64 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/indexed_vector.h"
|
||||
namespace lean {
|
||||
struct lar_term {
|
||||
// the term evaluates to sum of m_coeffs + m_v
|
||||
std::unordered_map<unsigned, mpq> m_coeffs;
|
||||
mpq m_v;
|
||||
lar_term() {}
|
||||
void add_to_map(unsigned j, const mpq& c) {
|
||||
auto it = m_coeffs.find(j);
|
||||
if (it == m_coeffs.end()) {
|
||||
m_coeffs.emplace(j, c);
|
||||
} else {
|
||||
it->second += c;
|
||||
if (is_zero(it->second))
|
||||
m_coeffs.erase(it);
|
||||
}
|
||||
}
|
||||
|
||||
unsigned size() const { return static_cast<unsigned>(m_coeffs.size()); }
|
||||
|
||||
const std::unordered_map<unsigned, mpq> & coeffs() const {
|
||||
return m_coeffs;
|
||||
}
|
||||
|
||||
lar_term(const vector<std::pair<mpq, unsigned>>& coeffs,
|
||||
const mpq & v) : m_v(v) {
|
||||
for (const auto & p : coeffs) {
|
||||
add_to_map(p.second, p.first);
|
||||
}
|
||||
}
|
||||
bool operator==(const lar_term & a) const { return false; } // take care not to create identical terms
|
||||
bool operator!=(const lar_term & a) const { return ! (*this == a);}
|
||||
// some terms get used in add constraint
|
||||
// it is the same as the offset in the m_constraints
|
||||
|
||||
vector<std::pair<mpq, unsigned>> coeffs_as_vector() const {
|
||||
vector<std::pair<mpq, unsigned>> ret;
|
||||
for (const auto & p : m_coeffs) {
|
||||
ret.push_back(std::make_pair(p.second, p.first));
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// j is the basic variable to substitute
|
||||
void subst(unsigned j, indexed_vector<mpq> & li) {
|
||||
auto it = m_coeffs.find(j);
|
||||
if (it == m_coeffs.end()) return;
|
||||
const mpq & b = it->second;
|
||||
for (unsigned it_j :li.m_index) {
|
||||
add_to_map(it_j, - b * li.m_data[it_j]);
|
||||
}
|
||||
m_coeffs.erase(it);
|
||||
}
|
||||
|
||||
bool contains(unsigned j) const {
|
||||
return m_coeffs.find(j) != m_coeffs.end();
|
||||
}
|
||||
};
|
||||
}
|
47
src/util/lp/linear_combination_iterator.h
Normal file
47
src/util/lp/linear_combination_iterator.h
Normal file
|
@ -0,0 +1,47 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
namespace lean {
|
||||
template <typename T>
|
||||
struct linear_combination_iterator {
|
||||
virtual bool next(T & a, unsigned & i) = 0;
|
||||
virtual bool next(unsigned & i) = 0;
|
||||
virtual void reset() = 0;
|
||||
virtual linear_combination_iterator * clone() = 0;
|
||||
virtual ~linear_combination_iterator(){}
|
||||
virtual unsigned size() const = 0;
|
||||
};
|
||||
template <typename T>
|
||||
struct linear_combination_iterator_on_vector : linear_combination_iterator<T> {
|
||||
vector<std::pair<T, unsigned>> & m_vector;
|
||||
int m_offset = 0;
|
||||
bool next(T & a, unsigned & i) {
|
||||
if(m_offset >= m_vector.size())
|
||||
return false;
|
||||
auto & p = m_vector[m_offset];
|
||||
a = p.first;
|
||||
i = p.second;
|
||||
m_offset++;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool next(unsigned & i) {
|
||||
if(m_offset >= m_vector.size())
|
||||
return false;
|
||||
auto & p = m_vector[m_offset];
|
||||
i = p.second;
|
||||
m_offset++;
|
||||
return true;
|
||||
}
|
||||
|
||||
void reset() {m_offset = 0;}
|
||||
linear_combination_iterator<T> * clone() {
|
||||
return new linear_combination_iterator_on_vector(m_vector);
|
||||
}
|
||||
linear_combination_iterator_on_vector(vector<std::pair<T, unsigned>> & vec): m_vector(vec) {}
|
||||
unsigned size() const { return m_vector.size(); }
|
||||
};
|
||||
|
||||
}
|
683
src/util/lp/lp_core_solver_base.h
Normal file
683
src/util/lp/lp_core_solver_base.h
Normal file
|
@ -0,0 +1,683 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include <set>
|
||||
#include "util/vector.h"
|
||||
#include <string>
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/core_solver_pretty_printer.h"
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/static_matrix.h"
|
||||
#include "util/lp/lu.h"
|
||||
#include "util/lp/permutation_matrix.h"
|
||||
#include "util/lp/column_namer.h"
|
||||
namespace lean {
|
||||
|
||||
template <typename T, typename X> // X represents the type of the x variable and the bounds
|
||||
class lp_core_solver_base {
|
||||
unsigned m_total_iterations = 0;
|
||||
unsigned inc_total_iterations() { ++m_settings.st().m_total_iterations; return m_total_iterations++; }
|
||||
private:
|
||||
lp_status m_status;
|
||||
public:
|
||||
bool current_x_is_feasible() const { return m_inf_set.size() == 0; }
|
||||
bool current_x_is_infeasible() const { return m_inf_set.size() != 0; }
|
||||
int_set m_inf_set;
|
||||
bool m_using_infeas_costs = false;
|
||||
|
||||
|
||||
vector<unsigned> m_columns_nz; // m_columns_nz[i] keeps an approximate value of non zeroes the i-th column
|
||||
vector<unsigned> m_rows_nz; // m_rows_nz[i] keeps an approximate value of non zeroes in the i-th row
|
||||
indexed_vector<T> m_pivot_row_of_B_1; // the pivot row of the reverse of B
|
||||
indexed_vector<T> m_pivot_row; // this is the real pivot row of the simplex tableu
|
||||
static_matrix<T, X> & m_A; // the matrix A
|
||||
vector<X> & m_b; // the right side
|
||||
vector<unsigned> & m_basis;
|
||||
vector<unsigned>& m_nbasis;
|
||||
vector<int>& m_basis_heading;
|
||||
vector<X> & m_x; // a feasible solution, the fist time set in the constructor
|
||||
vector<T> & m_costs;
|
||||
lp_settings & m_settings;
|
||||
vector<T> m_y; // the buffer for yB = cb
|
||||
// a device that is able to solve Bx=c, xB=d, and change the basis
|
||||
lu<T, X> * m_factorization = nullptr;
|
||||
const column_namer & m_column_names;
|
||||
indexed_vector<T> m_w; // the vector featuring in 24.3 of the Chvatal book
|
||||
vector<T> m_d; // the vector of reduced costs
|
||||
indexed_vector<T> m_ed; // the solution of B*m_ed = a
|
||||
unsigned m_iters_with_no_cost_growing = 0;
|
||||
const vector<column_type> & m_column_types;
|
||||
const vector<X> & m_low_bounds;
|
||||
const vector<X> & m_upper_bounds;
|
||||
vector<T> m_column_norms; // the approximate squares of column norms that help choosing a profitable column
|
||||
vector<X> m_copy_of_xB;
|
||||
unsigned m_basis_sort_counter = 0;
|
||||
vector<T> m_steepest_edge_coefficients;
|
||||
vector<unsigned> m_trace_of_basis_change_vector; // the even positions are entering, the odd positions are leaving
|
||||
bool m_tracing_basis_changes = false;
|
||||
int_set* m_pivoted_rows = nullptr;
|
||||
bool m_look_for_feasible_solution_only = false;
|
||||
void start_tracing_basis_changes() {
|
||||
m_trace_of_basis_change_vector.resize(0);
|
||||
m_tracing_basis_changes = true;
|
||||
}
|
||||
|
||||
void stop_tracing_basis_changes() {
|
||||
m_tracing_basis_changes = false;
|
||||
}
|
||||
|
||||
void trace_basis_change(unsigned entering, unsigned leaving) {
|
||||
unsigned size = m_trace_of_basis_change_vector.size();
|
||||
if (size >= 2 && m_trace_of_basis_change_vector[size-2] == leaving
|
||||
&& m_trace_of_basis_change_vector[size -1] == entering) {
|
||||
m_trace_of_basis_change_vector.pop_back();
|
||||
m_trace_of_basis_change_vector.pop_back();
|
||||
} else {
|
||||
m_trace_of_basis_change_vector.push_back(entering);
|
||||
m_trace_of_basis_change_vector.push_back(leaving);
|
||||
}
|
||||
}
|
||||
|
||||
unsigned m_m() const { return m_A.row_count(); } // it is the length of basis. The matrix m_A has m_m rows and the dimension of the matrix A is m_m
|
||||
unsigned m_n() const { return m_A.column_count(); } // the number of columns in the matrix m_A
|
||||
|
||||
lp_core_solver_base(static_matrix<T, X> & A,
|
||||
vector<X> & b, // the right side vector
|
||||
vector<unsigned> & basis,
|
||||
vector<unsigned> & nbasis,
|
||||
vector<int> & heading,
|
||||
vector<X> & x,
|
||||
vector<T> & costs,
|
||||
lp_settings & settings,
|
||||
const column_namer& column_names,
|
||||
const vector<column_type> & column_types,
|
||||
const vector<X> & low_bound_values,
|
||||
const vector<X> & upper_bound_values);
|
||||
|
||||
void allocate_basis_heading();
|
||||
void init();
|
||||
|
||||
virtual ~lp_core_solver_base() {
|
||||
if (m_factorization != nullptr)
|
||||
delete m_factorization;
|
||||
}
|
||||
|
||||
vector<unsigned> & non_basis() {
|
||||
return m_nbasis;
|
||||
}
|
||||
|
||||
const vector<unsigned> & non_basis() const { return m_nbasis; }
|
||||
|
||||
|
||||
|
||||
void set_status(lp_status status) {
|
||||
m_status = status;
|
||||
}
|
||||
lp_status get_status() const{
|
||||
return m_status;
|
||||
}
|
||||
|
||||
void fill_cb(T * y);
|
||||
|
||||
void fill_cb(vector<T> & y);
|
||||
|
||||
void solve_yB(vector<T> & y);
|
||||
|
||||
void solve_Bd(unsigned entering);
|
||||
|
||||
void solve_Bd(unsigned entering, indexed_vector<T> & column);
|
||||
|
||||
void pretty_print(std::ostream & out);
|
||||
|
||||
void save_state(T * w_buffer, T * d_buffer);
|
||||
|
||||
void restore_state(T * w_buffer, T * d_buffer);
|
||||
|
||||
X get_cost() {
|
||||
return dot_product(m_costs, m_x);
|
||||
}
|
||||
|
||||
void copy_m_w(T * buffer);
|
||||
|
||||
void restore_m_w(T * buffer);
|
||||
|
||||
// needed for debugging
|
||||
void copy_m_ed(T * buffer);
|
||||
|
||||
void restore_m_ed(T * buffer);
|
||||
|
||||
bool A_mult_x_is_off() const;
|
||||
|
||||
bool A_mult_x_is_off_on_index(const vector<unsigned> & index) const;
|
||||
// from page 182 of Istvan Maros's book
|
||||
void calculate_pivot_row_of_B_1(unsigned pivot_row);
|
||||
|
||||
void calculate_pivot_row_when_pivot_row_of_B1_is_ready(unsigned pivot_row);
|
||||
|
||||
void update_x(unsigned entering, const X & delta);
|
||||
|
||||
const T & get_var_value(unsigned j) const {
|
||||
return m_x[j];
|
||||
}
|
||||
|
||||
void print_statistics(char const* str, X cost, std::ostream & message_stream);
|
||||
|
||||
bool print_statistics_with_iterations_and_check_that_the_time_is_over(std::ostream & message_stream);
|
||||
|
||||
bool print_statistics_with_iterations_and_nonzeroes_and_cost_and_check_that_the_time_is_over(char const* str, std::ostream & message_stream);
|
||||
|
||||
bool print_statistics_with_cost_and_check_that_the_time_is_over(X cost, std::ostream & message_stream);
|
||||
|
||||
unsigned total_iterations() const { return m_total_iterations; }
|
||||
|
||||
void set_total_iterations(unsigned s) { m_total_iterations = s; }
|
||||
|
||||
void set_non_basic_x_to_correct_bounds();
|
||||
|
||||
bool at_bound(const X &x, const X & bound) const {
|
||||
return !below_bound(x, bound) && !above_bound(x, bound);
|
||||
}
|
||||
|
||||
|
||||
bool need_to_pivot_to_basis_tableau() const {
|
||||
lean_assert(m_A.is_correct());
|
||||
unsigned m = m_A.row_count();
|
||||
for (unsigned i = 0; i < m; i++) {
|
||||
unsigned bj = m_basis[i];
|
||||
lean_assert(m_A.m_columns[bj].size() > 0);
|
||||
if (m_A.m_columns[bj].size() > 1 || m_A.get_val(m_A.m_columns[bj][0]) != one_of_type<mpq>()) return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool reduced_costs_are_correct_tableau() const {
|
||||
if (m_settings.simplex_strategy() == simplex_strategy_enum::tableau_rows)
|
||||
return true;
|
||||
lean_assert(m_A.is_correct());
|
||||
if (m_using_infeas_costs) {
|
||||
if (infeasibility_costs_are_correct() == false) {
|
||||
std::cout << "infeasibility_costs_are_correct() does not hold" << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
unsigned n = m_A.column_count();
|
||||
for (unsigned j = 0; j < n; j++) {
|
||||
if (m_basis_heading[j] >= 0) {
|
||||
if (!is_zero(m_d[j])) {
|
||||
|
||||
std::cout << "case a\n";
|
||||
print_column_info(j, std::cout);
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
auto d = m_costs[j];
|
||||
for (auto & cc : this->m_A.m_columns[j]) {
|
||||
d -= this->m_costs[this->m_basis[cc.m_i]] * this->m_A.get_val(cc);
|
||||
}
|
||||
if (m_d[j] != d) {
|
||||
std::cout << "case b\n";
|
||||
print_column_info(j, std::cout);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool below_bound(const X & x, const X & bound) const {
|
||||
if (precise()) return x < bound;
|
||||
return below_bound_numeric<X>(x, bound, m_settings.primal_feasibility_tolerance);
|
||||
}
|
||||
|
||||
bool above_bound(const X & x, const X & bound) const {
|
||||
if (precise()) return x > bound;
|
||||
return above_bound_numeric<X>(x, bound, m_settings.primal_feasibility_tolerance);
|
||||
}
|
||||
|
||||
bool x_below_low_bound(unsigned p) const {
|
||||
return below_bound(m_x[p], m_low_bounds[p]);
|
||||
}
|
||||
|
||||
bool infeasibility_costs_are_correct() const;
|
||||
bool infeasibility_cost_is_correct_for_column(unsigned j) const;
|
||||
|
||||
bool x_above_low_bound(unsigned p) const {
|
||||
return above_bound(m_x[p], m_low_bounds[p]);
|
||||
}
|
||||
|
||||
bool x_below_upper_bound(unsigned p) const {
|
||||
return below_bound(m_x[p], m_upper_bounds[p]);
|
||||
}
|
||||
|
||||
|
||||
bool x_above_upper_bound(unsigned p) const {
|
||||
return above_bound(m_x[p], m_upper_bounds[p]);
|
||||
}
|
||||
bool x_is_at_low_bound(unsigned j) const {
|
||||
return at_bound(m_x[j], m_low_bounds[j]);
|
||||
}
|
||||
bool x_is_at_upper_bound(unsigned j) const {
|
||||
return at_bound(m_x[j], m_upper_bounds[j]);
|
||||
}
|
||||
|
||||
bool x_is_at_bound(unsigned j) const {
|
||||
return x_is_at_low_bound(j) || x_is_at_upper_bound(j);
|
||||
}
|
||||
bool column_is_feasible(unsigned j) const;
|
||||
|
||||
bool calc_current_x_is_feasible_include_non_basis() const;
|
||||
|
||||
bool inf_set_is_correct() const;
|
||||
|
||||
bool column_is_dual_feasible(unsigned j) const;
|
||||
|
||||
bool d_is_not_negative(unsigned j) const;
|
||||
|
||||
bool d_is_not_positive(unsigned j) const;
|
||||
|
||||
|
||||
bool time_is_over();
|
||||
|
||||
void rs_minus_Anx(vector<X> & rs);
|
||||
|
||||
bool find_x_by_solving();
|
||||
|
||||
bool update_basis_and_x(int entering, int leaving, X const & tt);
|
||||
|
||||
bool basis_has_no_doubles() const;
|
||||
|
||||
bool non_basis_has_no_doubles() const;
|
||||
|
||||
bool basis_is_correctly_represented_in_heading() const ;
|
||||
bool non_basis_is_correctly_represented_in_heading() const ;
|
||||
|
||||
bool basis_heading_is_correct() const;
|
||||
|
||||
void restore_x_and_refactor(int entering, int leaving, X const & t);
|
||||
|
||||
void restore_x(unsigned entering, X const & t);
|
||||
|
||||
void fill_reduced_costs_from_m_y_by_rows();
|
||||
|
||||
void copy_rs_to_xB(vector<X> & rs);
|
||||
virtual bool low_bounds_are_set() const { return false; }
|
||||
X low_bound_value(unsigned j) const { return m_low_bounds[j]; }
|
||||
X upper_bound_value(unsigned j) const { return m_upper_bounds[j]; }
|
||||
|
||||
column_type get_column_type(unsigned j) const {return m_column_types[j]; }
|
||||
|
||||
bool pivot_row_element_is_too_small_for_ratio_test(unsigned j) {
|
||||
return m_settings.abs_val_is_smaller_than_pivot_tolerance(m_pivot_row[j]);
|
||||
}
|
||||
|
||||
X bound_span(unsigned j) const {
|
||||
return m_upper_bounds[j] - m_low_bounds[j];
|
||||
}
|
||||
|
||||
std::string column_name(unsigned column) const;
|
||||
|
||||
void copy_right_side(vector<X> & rs);
|
||||
|
||||
void add_delta_to_xB(vector<X> & del);
|
||||
|
||||
void find_error_in_BxB(vector<X>& rs);
|
||||
|
||||
// recalculates the projection of x to B, such that Ax = b, whereab is the right side
|
||||
void solve_Ax_eq_b();
|
||||
|
||||
bool snap_non_basic_x_to_bound() {
|
||||
bool ret = false;
|
||||
for (unsigned j : non_basis())
|
||||
ret = snap_column_to_bound(j) || ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool snap_column_to_bound(unsigned j) {
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
if (x_is_at_bound(j))
|
||||
break;
|
||||
m_x[j] = m_low_bounds[j];
|
||||
return true;
|
||||
case column_type::boxed:
|
||||
if (x_is_at_bound(j))
|
||||
break; // we should preserve x if possible
|
||||
// snap randomly
|
||||
if (my_random() % 2 == 1)
|
||||
m_x[j] = m_low_bounds[j];
|
||||
else
|
||||
m_x[j] = m_upper_bounds[j];
|
||||
return true;
|
||||
case column_type::low_bound:
|
||||
if (x_is_at_low_bound(j))
|
||||
break;
|
||||
m_x[j] = m_low_bounds[j];
|
||||
return true;
|
||||
case column_type::upper_bound:
|
||||
if (x_is_at_upper_bound(j))
|
||||
break;
|
||||
m_x[j] = m_upper_bounds[j];
|
||||
return true;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool make_column_feasible(unsigned j, numeric_pair<mpq> & delta) {
|
||||
lean_assert(m_basis_heading[j] < 0);
|
||||
auto & x = m_x[j];
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
lean_assert(m_low_bounds[j] == m_upper_bounds[j]);
|
||||
if (x != m_low_bounds[j]) {
|
||||
delta = m_low_bounds[j] - x;
|
||||
x = m_low_bounds[j];
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (x < m_low_bounds[j]) {
|
||||
delta = m_low_bounds[j] - x;
|
||||
x = m_low_bounds[j];
|
||||
return true;
|
||||
}
|
||||
if (x > m_upper_bounds[j]) {
|
||||
delta = m_upper_bounds[j] - x;
|
||||
x = m_upper_bounds[j];
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
if (x < m_low_bounds[j]) {
|
||||
delta = m_low_bounds[j] - x;
|
||||
x = m_low_bounds[j];
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
if (x > m_upper_bounds[j]) {
|
||||
delta = m_upper_bounds[j] - x;
|
||||
x = m_upper_bounds[j];
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
case column_type::free_column:
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
void snap_non_basic_x_to_bound_and_free_to_zeroes();
|
||||
void snap_xN_to_bounds_and_fill_xB();
|
||||
|
||||
void snap_xN_to_bounds_and_free_columns_to_zeroes();
|
||||
|
||||
void init_reduced_costs_for_one_iteration();
|
||||
|
||||
non_basic_column_value_position get_non_basic_column_value_position(unsigned j) const;
|
||||
|
||||
void init_lu();
|
||||
int pivots_in_column_and_row_are_different(int entering, int leaving) const;
|
||||
void pivot_fixed_vars_from_basis();
|
||||
bool pivot_for_tableau_on_basis();
|
||||
bool pivot_row_for_tableau_on_basis(unsigned row);
|
||||
void init_basic_part_of_basis_heading() {
|
||||
unsigned m = m_basis.size();
|
||||
for (unsigned i = 0; i < m; i++) {
|
||||
unsigned column = m_basis[i];
|
||||
m_basis_heading[column] = i;
|
||||
}
|
||||
}
|
||||
|
||||
void init_non_basic_part_of_basis_heading() {
|
||||
this->m_nbasis.clear();
|
||||
for (int j = m_basis_heading.size(); j--;){
|
||||
if (m_basis_heading[j] < 0) {
|
||||
m_nbasis.push_back(j);
|
||||
// the index of column j in m_nbasis is (- basis_heading[j] - 1)
|
||||
m_basis_heading[j] = - static_cast<int>(m_nbasis.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void init_basis_heading_and_non_basic_columns_vector() {
|
||||
m_basis_heading.resize(0);
|
||||
m_basis_heading.resize(m_n(), -1);
|
||||
init_basic_part_of_basis_heading();
|
||||
init_non_basic_part_of_basis_heading();
|
||||
}
|
||||
|
||||
void change_basis_unconditionally(unsigned entering, unsigned leaving) {
|
||||
lean_assert(m_basis_heading[entering] < 0);
|
||||
int place_in_non_basis = -1 - m_basis_heading[entering];
|
||||
if (static_cast<unsigned>(place_in_non_basis) >= m_nbasis.size()) {
|
||||
// entering variable in not in m_nbasis, we need to put it back;
|
||||
m_basis_heading[entering] = place_in_non_basis = m_nbasis.size();
|
||||
m_nbasis.push_back(entering);
|
||||
}
|
||||
|
||||
int place_in_basis = m_basis_heading[leaving];
|
||||
m_basis_heading[entering] = place_in_basis;
|
||||
m_basis[place_in_basis] = entering;
|
||||
m_basis_heading[leaving] = -place_in_non_basis - 1;
|
||||
m_nbasis[place_in_non_basis] = leaving;
|
||||
if (m_tracing_basis_changes)
|
||||
trace_basis_change(entering, leaving);
|
||||
|
||||
}
|
||||
|
||||
void change_basis(unsigned entering, unsigned leaving) {
|
||||
lean_assert(m_basis_heading[entering] < 0);
|
||||
|
||||
int place_in_basis = m_basis_heading[leaving];
|
||||
int place_in_non_basis = - m_basis_heading[entering] - 1;
|
||||
m_basis_heading[entering] = place_in_basis;
|
||||
m_basis[place_in_basis] = entering;
|
||||
|
||||
m_basis_heading[leaving] = -place_in_non_basis - 1;
|
||||
m_nbasis[place_in_non_basis] = leaving;
|
||||
|
||||
if (m_tracing_basis_changes)
|
||||
trace_basis_change(entering, leaving);
|
||||
}
|
||||
|
||||
void restore_basis_change(unsigned entering, unsigned leaving) {
|
||||
if (m_basis_heading[entering] < 0) {
|
||||
return; // the basis has not been changed
|
||||
}
|
||||
change_basis_unconditionally(leaving, entering);
|
||||
}
|
||||
|
||||
bool non_basic_column_is_set_correctly(unsigned j) const {
|
||||
if (j >= this->m_n())
|
||||
return false;
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
if (!this->x_is_at_bound(j))
|
||||
return false;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
if (!this->x_is_at_low_bound(j))
|
||||
return false;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
if (!this->x_is_at_upper_bound(j))
|
||||
return false;
|
||||
break;
|
||||
case column_type::free_column:
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
break;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
bool non_basic_columns_are_set_correctly() const {
|
||||
for (unsigned j : this->m_nbasis)
|
||||
if (!column_is_feasible(j)) {
|
||||
print_column_info(j, std::cout);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void print_column_bound_info(unsigned j, std::ostream & out) const {
|
||||
out << column_name(j) << " type = " << column_type_to_string(m_column_types[j]) << std::endl;
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
out << "(" << m_low_bounds[j] << ", " << m_upper_bounds[j] << ")" << std::endl;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
out << m_low_bounds[j] << std::endl;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
out << m_upper_bounds[j] << std::endl;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void print_column_info(unsigned j, std::ostream & out) const {
|
||||
out << "column_index = " << j << ", name = "<< column_name(j) << " type = " << column_type_to_string(m_column_types[j]) << std::endl;
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
out << "(" << m_low_bounds[j] << ", " << m_upper_bounds[j] << ")" << std::endl;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
out << m_low_bounds[j] << std::endl;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
out << m_upper_bounds[j] << std::endl;
|
||||
break;
|
||||
case column_type::free_column:
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
std::cout << "basis heading = " << m_basis_heading[j] << std::endl;
|
||||
std::cout << "x = " << m_x[j] << std::endl;
|
||||
/*
|
||||
std::cout << "cost = " << m_costs[j] << std::endl;
|
||||
std:: cout << "m_d = " << m_d[j] << std::endl;*/
|
||||
}
|
||||
|
||||
bool column_is_free(unsigned j) { return this->m_column_type[j] == free; }
|
||||
|
||||
bool column_has_upper_bound(unsigned j) {
|
||||
switch(m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
case column_type::low_bound:
|
||||
return false;
|
||||
default:
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
bool bounds_for_boxed_are_set_correctly() const {
|
||||
for (unsigned j = 0; j < m_column_types.size(); j++) {
|
||||
if (m_column_types[j] != column_type::boxed) continue;
|
||||
if (m_low_bounds[j] > m_upper_bounds[j])
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool column_has_low_bound(unsigned j) {
|
||||
switch(m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
case column_type::upper_bound:
|
||||
return false;
|
||||
default:
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// only check for basic columns
|
||||
bool calc_current_x_is_feasible() const {
|
||||
unsigned i = this->m_m();
|
||||
while (i--) {
|
||||
if (!column_is_feasible(m_basis[i]))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
int find_pivot_index_in_row(unsigned i, const vector<column_cell> & col) const {
|
||||
for (const auto & c: col) {
|
||||
if (c.m_i == i)
|
||||
return c.m_offset;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
void transpose_rows_tableau(unsigned i, unsigned ii);
|
||||
|
||||
void pivot_to_reduced_costs_tableau(unsigned i, unsigned j);
|
||||
|
||||
bool pivot_column_tableau(unsigned j, unsigned row_index);
|
||||
bool divide_row_by_pivot(unsigned pivot_row, unsigned pivot_col);
|
||||
|
||||
bool precise() const { return numeric_traits<T>::precise(); }
|
||||
|
||||
simplex_strategy_enum simplex_strategy() const { return
|
||||
m_settings.simplex_strategy();
|
||||
}
|
||||
|
||||
bool use_tableau() const { return m_settings.use_tableau(); }
|
||||
|
||||
template <typename K>
|
||||
static void swap(vector<K> &v, unsigned i, unsigned j) {
|
||||
auto t = v[i];
|
||||
v[i] = v[j];
|
||||
v[j] = t;
|
||||
}
|
||||
|
||||
// called when transposing row i and ii
|
||||
void transpose_basis(unsigned i, unsigned ii) {
|
||||
swap(m_basis, i, ii);
|
||||
swap(m_basis_heading, m_basis[i], m_basis[ii]);
|
||||
}
|
||||
|
||||
bool column_is_in_inf_set(unsigned j) const {
|
||||
return m_inf_set.contains(j);
|
||||
}
|
||||
|
||||
void update_column_in_inf_set(unsigned j) {
|
||||
if (column_is_feasible(j)) {
|
||||
m_inf_set.erase(j);
|
||||
} else {
|
||||
m_inf_set.insert(j);
|
||||
}
|
||||
}
|
||||
void insert_column_into_inf_set(unsigned j) {
|
||||
m_inf_set.insert(j);
|
||||
lean_assert(!column_is_feasible(j));
|
||||
}
|
||||
void remove_column_from_inf_set(unsigned j) {
|
||||
m_inf_set.erase(j);
|
||||
lean_assert(column_is_feasible(j));
|
||||
}
|
||||
bool costs_on_nbasis_are_zeros() const {
|
||||
lean_assert(this->basis_heading_is_correct());
|
||||
for (unsigned j = 0; j < this->m_n(); j++) {
|
||||
if (this->m_basis_heading[j] < 0)
|
||||
lean_assert(is_zero(this->m_costs[j]));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
}
|
1007
src/util/lp/lp_core_solver_base.hpp
Normal file
1007
src/util/lp/lp_core_solver_base.hpp
Normal file
File diff suppressed because it is too large
Load diff
131
src/util/lp/lp_core_solver_base_instances.cpp
Normal file
131
src/util/lp/lp_core_solver_base_instances.cpp
Normal file
|
@ -0,0 +1,131 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lp_core_solver_base.hpp"
|
||||
template bool lean::lp_core_solver_base<double, double>::A_mult_x_is_off() const;
|
||||
template bool lean::lp_core_solver_base<double, double>::A_mult_x_is_off_on_index(const vector<unsigned> &) const;
|
||||
template bool lean::lp_core_solver_base<double, double>::basis_heading_is_correct() const;
|
||||
template void lean::lp_core_solver_base<double, double>::calculate_pivot_row_of_B_1(unsigned int);
|
||||
template void lean::lp_core_solver_base<double, double>::calculate_pivot_row_when_pivot_row_of_B1_is_ready(unsigned);
|
||||
template bool lean::lp_core_solver_base<double, double>::column_is_dual_feasible(unsigned int) const;
|
||||
template void lean::lp_core_solver_base<double, double>::fill_reduced_costs_from_m_y_by_rows();
|
||||
template bool lean::lp_core_solver_base<double, double>::find_x_by_solving();
|
||||
template lean::non_basic_column_value_position lean::lp_core_solver_base<double, double>::get_non_basic_column_value_position(unsigned int) const;
|
||||
template lean::non_basic_column_value_position lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::get_non_basic_column_value_position(unsigned int) const;
|
||||
template lean::non_basic_column_value_position lean::lp_core_solver_base<lean::mpq, lean::mpq>::get_non_basic_column_value_position(unsigned int) const;
|
||||
template void lean::lp_core_solver_base<double, double>::init_reduced_costs_for_one_iteration();
|
||||
template lean::lp_core_solver_base<double, double>::lp_core_solver_base(
|
||||
lean::static_matrix<double, double>&, vector<double>&,
|
||||
vector<unsigned int >&,
|
||||
vector<unsigned> &, vector<int> &,
|
||||
vector<double >&,
|
||||
vector<double >&,
|
||||
lean::lp_settings&, const column_namer&, const vector<lean::column_type >&,
|
||||
const vector<double >&,
|
||||
const vector<double >&);
|
||||
|
||||
template bool lean::lp_core_solver_base<double, double>::print_statistics_with_iterations_and_nonzeroes_and_cost_and_check_that_the_time_is_over(char const*, std::ostream &);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::print_statistics_with_iterations_and_nonzeroes_and_cost_and_check_that_the_time_is_over(char const*, std::ostream &);
|
||||
template void lean::lp_core_solver_base<double, double>::restore_x(unsigned int, double const&);
|
||||
template void lean::lp_core_solver_base<double, double>::set_non_basic_x_to_correct_bounds();
|
||||
template void lean::lp_core_solver_base<double, double>::snap_xN_to_bounds_and_free_columns_to_zeroes();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::snap_xN_to_bounds_and_free_columns_to_zeroes();
|
||||
template void lean::lp_core_solver_base<double, double>::solve_Ax_eq_b();
|
||||
template void lean::lp_core_solver_base<double, double>::solve_Bd(unsigned int);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq>>::solve_Bd(unsigned int, indexed_vector<lean::mpq>&);
|
||||
template void lean::lp_core_solver_base<double, double>::solve_yB(vector<double >&);
|
||||
template bool lean::lp_core_solver_base<double, double>::update_basis_and_x(int, int, double const&);
|
||||
template void lean::lp_core_solver_base<double, double>::update_x(unsigned int, const double&);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::A_mult_x_is_off() const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::A_mult_x_is_off_on_index(const vector<unsigned> &) const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::basis_heading_is_correct() const ;
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::calculate_pivot_row_of_B_1(unsigned int);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::calculate_pivot_row_when_pivot_row_of_B1_is_ready(unsigned);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::column_is_dual_feasible(unsigned int) const;
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::fill_reduced_costs_from_m_y_by_rows();
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::find_x_by_solving();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::init_reduced_costs_for_one_iteration();
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::print_statistics_with_iterations_and_nonzeroes_and_cost_and_check_that_the_time_is_over(char const*, std::ostream &);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::restore_x(unsigned int, lean::mpq const&);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::set_non_basic_x_to_correct_bounds();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::solve_Ax_eq_b();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::solve_Bd(unsigned int);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::solve_yB(vector<lean::mpq>&);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::update_basis_and_x(int, int, lean::mpq const&);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::update_x(unsigned int, const lean::mpq&);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::calculate_pivot_row_of_B_1(unsigned int);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::calculate_pivot_row_when_pivot_row_of_B1_is_ready(unsigned);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::init();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::init_basis_heading_and_non_basic_columns_vector();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::init_reduced_costs_for_one_iteration();
|
||||
template lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::lp_core_solver_base(lean::static_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >&, vector<lean::numeric_pair<lean::mpq> >&, vector<unsigned int >&, vector<unsigned> &, vector<int> &, vector<lean::numeric_pair<lean::mpq> >&, vector<lean::mpq>&, lean::lp_settings&, const column_namer&, const vector<lean::column_type >&,
|
||||
const vector<lean::numeric_pair<lean::mpq> >&,
|
||||
const vector<lean::numeric_pair<lean::mpq> >&);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::print_statistics_with_cost_and_check_that_the_time_is_over(lean::numeric_pair<lean::mpq>, std::ostream&);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::snap_xN_to_bounds_and_fill_xB();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::solve_Bd(unsigned int);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::update_basis_and_x(int, int, lean::numeric_pair<lean::mpq> const&);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::update_x(unsigned int, const lean::numeric_pair<lean::mpq>&);
|
||||
template lean::lp_core_solver_base<lean::mpq, lean::mpq>::lp_core_solver_base(
|
||||
lean::static_matrix<lean::mpq, lean::mpq>&,
|
||||
vector<lean::mpq>&,
|
||||
vector<unsigned int >&,
|
||||
vector<unsigned> &, vector<int> &,
|
||||
vector<lean::mpq>&,
|
||||
vector<lean::mpq>&,
|
||||
lean::lp_settings&,
|
||||
const column_namer&,
|
||||
const vector<lean::column_type >&,
|
||||
const vector<lean::mpq>&,
|
||||
const vector<lean::mpq>&);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::print_statistics_with_iterations_and_check_that_the_time_is_over(std::ostream &);
|
||||
template std::string lean::lp_core_solver_base<double, double>::column_name(unsigned int) const;
|
||||
template void lean::lp_core_solver_base<double, double>::pretty_print(std::ostream & out);
|
||||
template void lean::lp_core_solver_base<double, double>::restore_state(double*, double*);
|
||||
template void lean::lp_core_solver_base<double, double>::save_state(double*, double*);
|
||||
template std::string lean::lp_core_solver_base<lean::mpq, lean::mpq>::column_name(unsigned int) const;
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::pretty_print(std::ostream & out);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::restore_state(lean::mpq*, lean::mpq*);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::save_state(lean::mpq*, lean::mpq*);
|
||||
template std::string lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::column_name(unsigned int) const;
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::pretty_print(std::ostream & out);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::restore_state(lean::mpq*, lean::mpq*);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::save_state(lean::mpq*, lean::mpq*);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::solve_yB(vector<lean::mpq>&);
|
||||
template void lean::lp_core_solver_base<double, double>::init_lu();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::init_lu();
|
||||
template int lean::lp_core_solver_base<double, double>::pivots_in_column_and_row_are_different(int, int) const;
|
||||
template int lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::pivots_in_column_and_row_are_different(int, int) const;
|
||||
template int lean::lp_core_solver_base<lean::mpq, lean::mpq>::pivots_in_column_and_row_are_different(int, int) const;
|
||||
template bool lean::lp_core_solver_base<double, double>::calc_current_x_is_feasible_include_non_basis(void)const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::calc_current_x_is_feasible_include_non_basis(void)const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::calc_current_x_is_feasible_include_non_basis() const;
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::pivot_fixed_vars_from_basis();
|
||||
template bool lean::lp_core_solver_base<double, double>::column_is_feasible(unsigned int) const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::column_is_feasible(unsigned int) const;
|
||||
// template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::print_linear_combination_of_column_indices(vector<std::pair<lean::mpq, unsigned int>, std::allocator<std::pair<lean::mpq, unsigned int> > > const&, std::ostream&) const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::column_is_feasible(unsigned int) const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::snap_non_basic_x_to_bound();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::init_lu();
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::A_mult_x_is_off_on_index(vector<unsigned int> const&) const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::find_x_by_solving();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::restore_x(unsigned int, lean::numeric_pair<lean::mpq> const&);
|
||||
template bool lean::lp_core_solver_base<double, double>::pivot_for_tableau_on_basis();
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::pivot_for_tableau_on_basis();
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq>>::pivot_for_tableau_on_basis();
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq>>::pivot_column_tableau(unsigned int, unsigned int);
|
||||
template bool lean::lp_core_solver_base<double, double>::pivot_column_tableau(unsigned int, unsigned int);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::pivot_column_tableau(unsigned int, unsigned int);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::transpose_rows_tableau(unsigned int, unsigned int);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::inf_set_is_correct() const;
|
||||
template bool lean::lp_core_solver_base<double, double>::inf_set_is_correct() const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::inf_set_is_correct() const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::infeasibility_costs_are_correct() const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq >::infeasibility_costs_are_correct() const;
|
||||
template bool lean::lp_core_solver_base<double, double >::infeasibility_costs_are_correct() const;
|
197
src/util/lp/lp_dual_core_solver.h
Normal file
197
src/util/lp/lp_dual_core_solver.h
Normal file
|
@ -0,0 +1,197 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/static_matrix.h"
|
||||
#include "util/lp/lp_core_solver_base.h"
|
||||
#include <string>
|
||||
#include <limits>
|
||||
#include <set>
|
||||
#include <algorithm>
|
||||
#include "util/vector.h"
|
||||
|
||||
namespace lean {
|
||||
template <typename T, typename X>
|
||||
class lp_dual_core_solver:public lp_core_solver_base<T, X> {
|
||||
public:
|
||||
vector<bool> & m_can_enter_basis;
|
||||
int m_r; // the row of the leaving column
|
||||
int m_p; // leaving column; that is m_p = m_basis[m_r]
|
||||
T m_delta; // the offset of the leaving basis variable
|
||||
int m_sign_of_alpha_r; // see page 27
|
||||
T m_theta_D;
|
||||
T m_theta_P;
|
||||
int m_q;
|
||||
// todo : replace by a vector later
|
||||
std::set<unsigned> m_breakpoint_set; // it is F in "Progress in the dual simplex method ..."
|
||||
std::set<unsigned> m_flipped_boxed;
|
||||
std::set<unsigned> m_tight_set; // it is the set of all breakpoints that become tight when m_q becomes tight
|
||||
vector<T> m_a_wave;
|
||||
vector<T> m_betas; // m_betas[i] is approximately a square of the norm of the i-th row of the reverse of B
|
||||
T m_harris_tolerance;
|
||||
std::set<unsigned> m_forbidden_rows;
|
||||
|
||||
lp_dual_core_solver(static_matrix<T, X> & A,
|
||||
vector<bool> & can_enter_basis,
|
||||
vector<X> & b, // the right side vector
|
||||
vector<X> & x, // the number of elements in x needs to be at least as large as the number of columns in A
|
||||
vector<unsigned> & basis,
|
||||
vector<unsigned> & nbasis,
|
||||
vector<int> & heading,
|
||||
vector<T> & costs,
|
||||
vector<column_type> & column_type_array,
|
||||
vector<X> & low_bound_values,
|
||||
vector<X> & upper_bound_values,
|
||||
lp_settings & settings,
|
||||
const column_namer & column_names):
|
||||
lp_core_solver_base<T, X>(A,
|
||||
b,
|
||||
basis,
|
||||
nbasis,
|
||||
heading,
|
||||
x,
|
||||
costs,
|
||||
settings,
|
||||
column_names,
|
||||
column_type_array,
|
||||
low_bound_values,
|
||||
upper_bound_values),
|
||||
m_can_enter_basis(can_enter_basis),
|
||||
m_a_wave(this->m_m()),
|
||||
m_betas(this->m_m()) {
|
||||
m_harris_tolerance = numeric_traits<T>::precise()? numeric_traits<T>::zero() : T(this->m_settings.harris_feasibility_tolerance);
|
||||
this->solve_yB(this->m_y);
|
||||
this->init_basic_part_of_basis_heading();
|
||||
fill_non_basis_with_only_able_to_enter_columns();
|
||||
}
|
||||
|
||||
void init_a_wave_by_zeros();
|
||||
|
||||
void fill_non_basis_with_only_able_to_enter_columns() {
|
||||
auto & nb = this->m_nbasis;
|
||||
nb.reset();
|
||||
unsigned j = this->m_n();
|
||||
while (j--) {
|
||||
if (this->m_basis_heading[j] >= 0 || !m_can_enter_basis[j]) continue;
|
||||
nb.push_back(j);
|
||||
this->m_basis_heading[j] = - static_cast<int>(nb.size());
|
||||
}
|
||||
}
|
||||
|
||||
void restore_non_basis();
|
||||
|
||||
bool update_basis(int entering, int leaving);
|
||||
|
||||
void recalculate_xB_and_d();
|
||||
|
||||
void recalculate_d();
|
||||
|
||||
void init_betas();
|
||||
|
||||
void adjust_xb_for_changed_xn_and_init_betas();
|
||||
|
||||
void start_with_initial_basis_and_make_it_dual_feasible();
|
||||
|
||||
bool done();
|
||||
|
||||
T get_edge_steepness_for_low_bound(unsigned p);
|
||||
|
||||
T get_edge_steepness_for_upper_bound(unsigned p);
|
||||
|
||||
T pricing_for_row(unsigned i);
|
||||
|
||||
void pricing_loop(unsigned number_of_rows_to_try, unsigned offset_in_rows);
|
||||
|
||||
bool advance_on_known_p();
|
||||
|
||||
int define_sign_of_alpha_r();
|
||||
|
||||
bool can_be_breakpoint(unsigned j);
|
||||
|
||||
void fill_breakpoint_set();
|
||||
|
||||
void DSE_FTran();
|
||||
T get_delta();
|
||||
|
||||
void restore_d();
|
||||
|
||||
bool d_is_correct();
|
||||
|
||||
void xb_minus_delta_p_pivot_column();
|
||||
|
||||
void update_betas();
|
||||
|
||||
void apply_flips();
|
||||
|
||||
void snap_xN_column_to_bounds(unsigned j);
|
||||
|
||||
void snap_xN_to_bounds();
|
||||
|
||||
void init_beta_precisely(unsigned i);
|
||||
|
||||
void init_betas_precisely();
|
||||
|
||||
// step 7 of the algorithm from Progress
|
||||
bool basis_change_and_update();
|
||||
|
||||
void revert_to_previous_basis();
|
||||
|
||||
non_basic_column_value_position m_entering_boundary_position;
|
||||
bool update_basis_and_x_local(int entering, int leaving, X const & tt);
|
||||
void recover_leaving();
|
||||
|
||||
bool problem_is_dual_feasible() const;
|
||||
|
||||
bool snap_runaway_nonbasic_column(unsigned);
|
||||
|
||||
bool snap_runaway_nonbasic_columns();
|
||||
|
||||
unsigned get_number_of_rows_to_try_for_leaving();
|
||||
|
||||
void update_a_wave(const T & del, unsigned j) {
|
||||
this->m_A.add_column_to_vector(del, j, & m_a_wave[0]);
|
||||
}
|
||||
|
||||
bool delta_keeps_the_sign(int initial_delta_sign, const T & delta);
|
||||
|
||||
void set_status_to_tentative_dual_unbounded_or_dual_unbounded();
|
||||
|
||||
// it is positive if going from low bound to upper bound and negative if going from upper bound to low bound
|
||||
T signed_span_of_boxed(unsigned j) {
|
||||
return this->x_is_at_low_bound(j)? this->bound_span(j): - this->bound_span(j);
|
||||
}
|
||||
|
||||
void add_tight_breakpoints_and_q_to_flipped_set();
|
||||
|
||||
T delta_lost_on_flips_of_tight_breakpoints();
|
||||
|
||||
bool tight_breakpoinst_are_all_boxed();
|
||||
|
||||
T calculate_harris_delta_on_breakpoint_set();
|
||||
|
||||
void fill_tight_set_on_harris_delta(const T & harris_delta );
|
||||
|
||||
void find_q_on_tight_set();
|
||||
|
||||
void find_q_and_tight_set();
|
||||
|
||||
void erase_tight_breakpoints_and_q_from_breakpoint_set();
|
||||
|
||||
bool ratio_test();
|
||||
|
||||
void process_flipped();
|
||||
void update_d_and_xB();
|
||||
|
||||
void calculate_beta_r_precisely();
|
||||
// see "Progress in the dual simplex method for large scale LP problems: practical dual phase 1 algorithms"
|
||||
|
||||
void update_xb_after_bound_flips();
|
||||
|
||||
void one_iteration();
|
||||
|
||||
void solve();
|
||||
|
||||
bool low_bounds_are_set() const { return true; }
|
||||
};
|
||||
}
|
743
src/util/lp/lp_dual_core_solver.hpp
Normal file
743
src/util/lp/lp_dual_core_solver.hpp
Normal file
|
@ -0,0 +1,743 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/lp_dual_core_solver.h"
|
||||
|
||||
namespace lean {
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::init_a_wave_by_zeros() {
|
||||
unsigned j = this->m_m();
|
||||
while (j--) {
|
||||
m_a_wave[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::restore_non_basis() {
|
||||
auto & nb = this->m_nbasis;
|
||||
nb.reset();
|
||||
unsigned j = this->m_n();
|
||||
while (j--) {
|
||||
if (this->m_basis_heading[j] >= 0 ) continue;
|
||||
if (m_can_enter_basis[j]) {
|
||||
lean_assert(std::find(nb.begin(), nb.end(), j) == nb.end());
|
||||
nb.push_back(j);
|
||||
this->m_basis_heading[j] = - static_cast<int>(nb.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::update_basis(int entering, int leaving) {
|
||||
// the second argument is the element of the entering column from the pivot row - its value should be equal to the low diagonal element of the bump after all pivoting is done
|
||||
if (this->m_refactor_counter++ < 200) {
|
||||
this->m_factorization->replace_column(this->m_ed[this->m_factorization->basis_heading(leaving)], this->m_w);
|
||||
if (this->m_factorization->get_status() == LU_status::OK) {
|
||||
this->m_factorization->change_basis(entering, leaving);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
// need to refactor
|
||||
this->m_factorization->change_basis(entering, leaving);
|
||||
init_factorization(this->m_factorization, this->m_A, this->m_basis, this->m_basis_heading, this->m_settings);
|
||||
this->m_refactor_counter = 0;
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
LP_OUT(this->m_settings, "failing refactor for entering = " << entering << ", leaving = " << leaving << " total_iterations = " << this->total_iterations() << std::endl);
|
||||
this->m_iters_with_no_cost_growing++;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::recalculate_xB_and_d() {
|
||||
this->solve_Ax_eq_b();
|
||||
recalculate_d();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::recalculate_d() {
|
||||
this->solve_yB(this->m_y);
|
||||
this->fill_reduced_costs_from_m_y_by_rows();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::init_betas() {
|
||||
// todo : look at page 194 of Progress in the dual simplex algorithm for solving large scale LP problems : techniques for a fast and stable implementation
|
||||
// the current implementation is not good enough: todo
|
||||
unsigned i = this->m_m();
|
||||
while (i--) {
|
||||
m_betas[i] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::adjust_xb_for_changed_xn_and_init_betas() {
|
||||
this->solve_Ax_eq_b();
|
||||
init_betas();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::start_with_initial_basis_and_make_it_dual_feasible() {
|
||||
this->set_non_basic_x_to_correct_bounds(); // It is not an efficient version, see 3.29,
|
||||
// however this version does not require that m_x is the solution of Ax = 0 beforehand
|
||||
adjust_xb_for_changed_xn_and_init_betas();
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::done() {
|
||||
if (this->get_status() == OPTIMAL) {
|
||||
return true;
|
||||
}
|
||||
if (this->total_iterations() > this->m_settings.max_total_number_of_iterations) { // debug !!!!
|
||||
this->set_status(ITERATIONS_EXHAUSTED);
|
||||
return true;
|
||||
}
|
||||
return false; // todo, need to be more cases
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_dual_core_solver<T, X>::get_edge_steepness_for_low_bound(unsigned p) {
|
||||
lean_assert(this->m_basis_heading[p] >= 0 && static_cast<unsigned>(this->m_basis_heading[p]) < this->m_m());
|
||||
T del = this->m_x[p] - this->m_low_bounds[p];
|
||||
del *= del;
|
||||
return del / this->m_betas[this->m_basis_heading[p]];
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_dual_core_solver<T, X>::get_edge_steepness_for_upper_bound(unsigned p) {
|
||||
lean_assert(this->m_basis_heading[p] >= 0 && static_cast<unsigned>(this->m_basis_heading[p]) < this->m_m());
|
||||
T del = this->m_x[p] - this->m_upper_bounds[p];
|
||||
del *= del;
|
||||
return del / this->m_betas[this->m_basis_heading[p]];
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_dual_core_solver<T, X>::pricing_for_row(unsigned i) {
|
||||
unsigned p = this->m_basis[i];
|
||||
switch (this->m_column_types[p]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
if (this->x_below_low_bound(p)) {
|
||||
T del = get_edge_steepness_for_low_bound(p);
|
||||
return del;
|
||||
}
|
||||
if (this->x_above_upper_bound(p)) {
|
||||
T del = get_edge_steepness_for_upper_bound(p);
|
||||
return del;
|
||||
}
|
||||
return numeric_traits<T>::zero();
|
||||
case column_type::low_bound:
|
||||
if (this->x_below_low_bound(p)) {
|
||||
T del = get_edge_steepness_for_low_bound(p);
|
||||
return del;
|
||||
}
|
||||
return numeric_traits<T>::zero();
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
if (this->x_above_upper_bound(p)) {
|
||||
T del = get_edge_steepness_for_upper_bound(p);
|
||||
return del;
|
||||
}
|
||||
return numeric_traits<T>::zero();
|
||||
break;
|
||||
case column_type::free_column:
|
||||
lean_assert(numeric_traits<T>::is_zero(this->m_d[p]));
|
||||
return numeric_traits<T>::zero();
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
lean_unreachable();
|
||||
return numeric_traits<T>::zero();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::pricing_loop(unsigned number_of_rows_to_try, unsigned offset_in_rows) {
|
||||
m_r = -1;
|
||||
T steepest_edge_max = numeric_traits<T>::zero();
|
||||
unsigned initial_offset_in_rows = offset_in_rows;
|
||||
unsigned i = offset_in_rows;
|
||||
unsigned rows_left = number_of_rows_to_try;
|
||||
do {
|
||||
if (m_forbidden_rows.find(i) != m_forbidden_rows.end()) {
|
||||
if (++i == this->m_m()) {
|
||||
i = 0;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
T se = pricing_for_row(i);
|
||||
if (se > steepest_edge_max) {
|
||||
steepest_edge_max = se;
|
||||
m_r = i;
|
||||
if (rows_left > 0) {
|
||||
rows_left--;
|
||||
}
|
||||
}
|
||||
if (++i == this->m_m()) {
|
||||
i = 0;
|
||||
}
|
||||
} while (i != initial_offset_in_rows && rows_left);
|
||||
if (m_r == -1) {
|
||||
if (this->get_status() != UNSTABLE) {
|
||||
this->set_status(OPTIMAL);
|
||||
}
|
||||
} else {
|
||||
m_p = this->m_basis[m_r];
|
||||
m_delta = get_delta();
|
||||
if (advance_on_known_p()){
|
||||
m_forbidden_rows.clear();
|
||||
return;
|
||||
}
|
||||
// failure in advance_on_known_p
|
||||
if (this->get_status() == FLOATING_POINT_ERROR) {
|
||||
return;
|
||||
}
|
||||
this->set_status(UNSTABLE);
|
||||
m_forbidden_rows.insert(m_r);
|
||||
}
|
||||
}
|
||||
|
||||
// this calculation is needed for the steepest edge update,
|
||||
// it hijackes m_pivot_row_of_B_1 for this purpose since we will need it anymore to the end of the cycle
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::DSE_FTran() { // todo, see algorithm 7 from page 35
|
||||
this->m_factorization->solve_By_for_T_indexed_only(this->m_pivot_row_of_B_1, this->m_settings);
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::advance_on_known_p() {
|
||||
if (done()) {
|
||||
return true;
|
||||
}
|
||||
this->calculate_pivot_row_of_B_1(m_r);
|
||||
this->calculate_pivot_row_when_pivot_row_of_B1_is_ready(m_r);
|
||||
if (!ratio_test()) {
|
||||
return true;
|
||||
}
|
||||
calculate_beta_r_precisely();
|
||||
this->solve_Bd(m_q); // FTRAN
|
||||
int pivot_compare_result = this->pivots_in_column_and_row_are_different(m_q, m_p);
|
||||
if (!pivot_compare_result){;}
|
||||
else if (pivot_compare_result == 2) { // the sign is changed, cannot continue
|
||||
lean_unreachable(); // not implemented yet
|
||||
} else {
|
||||
lean_assert(pivot_compare_result == 1);
|
||||
this->init_lu();
|
||||
}
|
||||
DSE_FTran();
|
||||
return basis_change_and_update();
|
||||
}
|
||||
|
||||
template <typename T, typename X> int lp_dual_core_solver<T, X>::define_sign_of_alpha_r() {
|
||||
switch (this->m_column_types[m_p]) {
|
||||
case column_type::boxed:
|
||||
case column_type::fixed:
|
||||
if (this->x_below_low_bound(m_p)) {
|
||||
return -1;
|
||||
}
|
||||
if (this->x_above_upper_bound(m_p)) {
|
||||
return 1;
|
||||
}
|
||||
lean_unreachable();
|
||||
case column_type::low_bound:
|
||||
if (this->x_below_low_bound(m_p)) {
|
||||
return -1;
|
||||
}
|
||||
lean_unreachable();
|
||||
case column_type::upper_bound:
|
||||
if (this->x_above_upper_bound(m_p)) {
|
||||
return 1;
|
||||
}
|
||||
lean_unreachable();
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
lean_unreachable();
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::can_be_breakpoint(unsigned j) {
|
||||
if (this->pivot_row_element_is_too_small_for_ratio_test(j)) return false;
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::low_bound:
|
||||
lean_assert(this->m_settings.abs_val_is_smaller_than_harris_tolerance(this->m_x[j] - this->m_low_bounds[j]));
|
||||
return m_sign_of_alpha_r * this->m_pivot_row[j] > 0;
|
||||
case column_type::upper_bound:
|
||||
lean_assert(this->m_settings.abs_val_is_smaller_than_harris_tolerance(this->m_x[j] - this->m_upper_bounds[j]));
|
||||
return m_sign_of_alpha_r * this->m_pivot_row[j] < 0;
|
||||
case column_type::boxed:
|
||||
{
|
||||
bool low_bound = this->x_is_at_low_bound(j);
|
||||
bool grawing = m_sign_of_alpha_r * this->m_pivot_row[j] > 0;
|
||||
return low_bound == grawing;
|
||||
}
|
||||
case column_type::fixed: // is always dual feasible so we ingore it
|
||||
return false;
|
||||
case column_type::free_column:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::fill_breakpoint_set() {
|
||||
m_breakpoint_set.clear();
|
||||
for (unsigned j : this->non_basis()) {
|
||||
if (can_be_breakpoint(j)) {
|
||||
m_breakpoint_set.insert(j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// template <typename T, typename X> void lp_dual_core_solver<T, X>::FTran() {
|
||||
// this->solve_Bd(m_q);
|
||||
// }
|
||||
|
||||
template <typename T, typename X> T lp_dual_core_solver<T, X>::get_delta() {
|
||||
switch (this->m_column_types[m_p]) {
|
||||
case column_type::boxed:
|
||||
if (this->x_below_low_bound(m_p)) {
|
||||
return this->m_x[m_p] - this->m_low_bounds[m_p];
|
||||
}
|
||||
if (this->x_above_upper_bound(m_p)) {
|
||||
return this->m_x[m_p] - this->m_upper_bounds[m_p];
|
||||
}
|
||||
lean_unreachable();
|
||||
case column_type::low_bound:
|
||||
if (this->x_below_low_bound(m_p)) {
|
||||
return this->m_x[m_p] - this->m_low_bounds[m_p];
|
||||
}
|
||||
lean_unreachable();
|
||||
case column_type::upper_bound:
|
||||
if (this->x_above_upper_bound(m_p)) {
|
||||
return get_edge_steepness_for_upper_bound(m_p);
|
||||
}
|
||||
lean_unreachable();
|
||||
case column_type::fixed:
|
||||
return this->m_x[m_p] - this->m_upper_bounds[m_p];
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
lean_unreachable();
|
||||
return zero_of_type<T>();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::restore_d() {
|
||||
this->m_d[m_p] = numeric_traits<T>::zero();
|
||||
for (auto j : this->non_basis()) {
|
||||
this->m_d[j] += m_theta_D * this->m_pivot_row[j];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::d_is_correct() {
|
||||
this->solve_yB(this->m_y);
|
||||
for (auto j : this->non_basis()) {
|
||||
T d = this->m_costs[j] - this->m_A.dot_product_with_column(this->m_y, j);
|
||||
if (numeric_traits<T>::get_double(abs(d - this->m_d[j])) >= 0.001) {
|
||||
LP_OUT(this->m_settings, "total_iterations = " << this->total_iterations() << std::endl
|
||||
<< "d[" << j << "] = " << this->m_d[j] << " but should be " << d << std::endl);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::xb_minus_delta_p_pivot_column() {
|
||||
unsigned i = this->m_m();
|
||||
while (i--) {
|
||||
this->m_x[this->m_basis[i]] -= m_theta_P * this->m_ed[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::update_betas() { // page 194 of Progress ... todo - once in a while betas have to be reinitialized
|
||||
T one_over_arq = numeric_traits<T>::one() / this->m_pivot_row[m_q];
|
||||
T beta_r = this->m_betas[m_r] = std::max(T(0.0001), (m_betas[m_r] * one_over_arq) * one_over_arq);
|
||||
T k = -2 * one_over_arq;
|
||||
unsigned i = this->m_m();
|
||||
while (i--) {
|
||||
if (static_cast<int>(i) == m_r) continue;
|
||||
T a = this->m_ed[i];
|
||||
m_betas[i] += a * (a * beta_r + k * this->m_pivot_row_of_B_1[i]);
|
||||
if (m_betas[i] < T(0.0001))
|
||||
m_betas[i] = T(0.0001);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::apply_flips() {
|
||||
for (unsigned j : m_flipped_boxed) {
|
||||
lean_assert(this->x_is_at_bound(j));
|
||||
if (this->x_is_at_low_bound(j)) {
|
||||
this->m_x[j] = this->m_upper_bounds[j];
|
||||
} else {
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::snap_xN_column_to_bounds(unsigned j) {
|
||||
switch (this->m_column_type[j]) {
|
||||
case column_type::fixed:
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (this->x_is_at_low_bound(j)) {
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
} else {
|
||||
this->m_x[j] = this->m_upper_bounds[j];
|
||||
}
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
this->m_x[j] = this->m_upper_bounds[j];
|
||||
break;
|
||||
case column_type::free_column:
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::snap_xN_to_bounds() {
|
||||
for (auto j : this->non_basis()) {
|
||||
snap_xN_column_to_bounds(j);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::init_beta_precisely(unsigned i) {
|
||||
vector<T> vec(this->m_m(), numeric_traits<T>::zero());
|
||||
vec[i] = numeric_traits<T>::one();
|
||||
this->m_factorization->solve_yB_with_error_check(vec, this->m_basis);
|
||||
T beta = numeric_traits<T>::zero();
|
||||
for (T & v : vec) {
|
||||
beta += v * v;
|
||||
}
|
||||
this->m_betas[i] =beta;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::init_betas_precisely() {
|
||||
unsigned i = this->m_m();
|
||||
while (i--) {
|
||||
init_beta_precisely(i);
|
||||
}
|
||||
}
|
||||
|
||||
// step 7 of the algorithm from Progress
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::basis_change_and_update() {
|
||||
update_betas();
|
||||
update_d_and_xB();
|
||||
// m_theta_P = m_delta / this->m_ed[m_r];
|
||||
m_theta_P = m_delta / this->m_pivot_row[m_q];
|
||||
// xb_minus_delta_p_pivot_column();
|
||||
apply_flips();
|
||||
if (!this->update_basis_and_x(m_q, m_p, m_theta_P)) {
|
||||
init_betas_precisely();
|
||||
return false;
|
||||
}
|
||||
|
||||
if (snap_runaway_nonbasic_column(m_p)) {
|
||||
if (!this->find_x_by_solving()) {
|
||||
revert_to_previous_basis();
|
||||
this->m_iters_with_no_cost_growing++;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (!problem_is_dual_feasible()) {
|
||||
// todo : shift the costs!!!!
|
||||
revert_to_previous_basis();
|
||||
this->m_iters_with_no_cost_growing++;
|
||||
return false;
|
||||
}
|
||||
|
||||
lean_assert(d_is_correct());
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::recover_leaving() {
|
||||
switch (m_entering_boundary_position) {
|
||||
case at_low_bound:
|
||||
case at_fixed:
|
||||
this->m_x[m_q] = this->m_low_bounds[m_q];
|
||||
break;
|
||||
case at_upper_bound:
|
||||
this->m_x[m_q] = this->m_upper_bounds[m_q];
|
||||
break;
|
||||
case free_of_bounds:
|
||||
this->m_x[m_q] = zero_of_type<X>();
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::revert_to_previous_basis() {
|
||||
LP_OUT(this->m_settings, "revert to previous basis on ( " << m_p << ", " << m_q << ")" << std::endl);
|
||||
this->change_basis_unconditionally(m_p, m_q);
|
||||
init_factorization(this->m_factorization, this->m_A, this->m_basis, this->m_settings);
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(FLOATING_POINT_ERROR); // complete failure
|
||||
return;
|
||||
}
|
||||
recover_leaving();
|
||||
if (!this->find_x_by_solving()) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
return;
|
||||
}
|
||||
recalculate_xB_and_d();
|
||||
init_betas_precisely();
|
||||
}
|
||||
|
||||
// returns true if the column has been snapped
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::snap_runaway_nonbasic_column(unsigned j) {
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::low_bound:
|
||||
if (!this->x_is_at_low_bound(j)) {
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
case column_type::boxed:
|
||||
{
|
||||
bool closer_to_low_bound = abs(this->m_low_bounds[j] - this->m_x[j]) < abs(this->m_upper_bounds[j] - this->m_x[j]);
|
||||
if (closer_to_low_bound) {
|
||||
if (!this->x_is_at_low_bound(j)) {
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
if (!this->x_is_at_upper_bound(j)) {
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
if (!this->x_is_at_upper_bound(j)) {
|
||||
this->m_x[j] = this->m_upper_bounds[j];
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::problem_is_dual_feasible() const {
|
||||
for (unsigned j : this->non_basis()){
|
||||
if (!this->column_is_dual_feasible(j)) {
|
||||
// std::cout << "column " << j << " is not dual feasible" << std::endl;
|
||||
// std::cout << "m_d[" << j << "] = " << this->m_d[j] << std::endl;
|
||||
// std::cout << "x[" << j << "] = " << this->m_x[j] << std::endl;
|
||||
// std::cout << "type = " << column_type_to_string(this->m_column_type[j]) << std::endl;
|
||||
// std::cout << "bounds = " << this->m_low_bounds[j] << "," << this->m_upper_bounds[j] << std::endl;
|
||||
// std::cout << "total_iterations = " << this->total_iterations() << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> unsigned lp_dual_core_solver<T, X>::get_number_of_rows_to_try_for_leaving() {
|
||||
unsigned s = this->m_m();
|
||||
if (this->m_m() > 300) {
|
||||
s = (unsigned)((s / 100.0) * this->m_settings.percent_of_entering_to_check);
|
||||
}
|
||||
return my_random() % s + 1;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::delta_keeps_the_sign(int initial_delta_sign, const T & delta) {
|
||||
if (numeric_traits<T>::precise())
|
||||
return ((delta > numeric_traits<T>::zero()) && (initial_delta_sign == 1)) ||
|
||||
((delta < numeric_traits<T>::zero()) && (initial_delta_sign == -1));
|
||||
|
||||
double del = numeric_traits<T>::get_double(delta);
|
||||
return ( (del > this->m_settings.zero_tolerance) && (initial_delta_sign == 1)) ||
|
||||
((del < - this->m_settings.zero_tolerance) && (initial_delta_sign == -1));
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::set_status_to_tentative_dual_unbounded_or_dual_unbounded() {
|
||||
if (this->get_status() == TENTATIVE_DUAL_UNBOUNDED) {
|
||||
this->set_status(DUAL_UNBOUNDED);
|
||||
} else {
|
||||
this->set_status(TENTATIVE_DUAL_UNBOUNDED);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::add_tight_breakpoints_and_q_to_flipped_set() {
|
||||
m_flipped_boxed.insert(m_q);
|
||||
for (auto j : m_tight_set) {
|
||||
m_flipped_boxed.insert(j);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_dual_core_solver<T, X>::delta_lost_on_flips_of_tight_breakpoints() {
|
||||
T ret = abs(this->bound_span(m_q) * this->m_pivot_row[m_q]);
|
||||
for (auto j : m_tight_set) {
|
||||
ret += abs(this->bound_span(j) * this->m_pivot_row[j]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::tight_breakpoinst_are_all_boxed() {
|
||||
if (this->m_column_types[m_q] != column_type::boxed) return false;
|
||||
for (auto j : m_tight_set) {
|
||||
if (this->m_column_types[j] != column_type::boxed) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_dual_core_solver<T, X>::calculate_harris_delta_on_breakpoint_set() {
|
||||
bool first_time = true;
|
||||
T ret = zero_of_type<T>();
|
||||
lean_assert(m_breakpoint_set.size() > 0);
|
||||
for (auto j : m_breakpoint_set) {
|
||||
T t;
|
||||
if (this->x_is_at_low_bound(j)) {
|
||||
t = abs((std::max(this->m_d[j], numeric_traits<T>::zero()) + m_harris_tolerance) / this->m_pivot_row[j]);
|
||||
} else {
|
||||
t = abs((std::min(this->m_d[j], numeric_traits<T>::zero()) - m_harris_tolerance) / this->m_pivot_row[j]);
|
||||
}
|
||||
if (first_time) {
|
||||
ret = t;
|
||||
first_time = false;
|
||||
} else if (t < ret) {
|
||||
ret = t;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::fill_tight_set_on_harris_delta(const T & harris_delta ){
|
||||
m_tight_set.clear();
|
||||
for (auto j : m_breakpoint_set) {
|
||||
if (this->x_is_at_low_bound(j)) {
|
||||
if (abs(std::max(this->m_d[j], numeric_traits<T>::zero()) / this->m_pivot_row[j]) <= harris_delta){
|
||||
m_tight_set.insert(j);
|
||||
}
|
||||
} else {
|
||||
if (abs(std::min(this->m_d[j], numeric_traits<T>::zero() ) / this->m_pivot_row[j]) <= harris_delta){
|
||||
m_tight_set.insert(j);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::find_q_on_tight_set() {
|
||||
m_q = -1;
|
||||
T max_pivot;
|
||||
for (auto j : m_tight_set) {
|
||||
T r = abs(this->m_pivot_row[j]);
|
||||
if (m_q != -1) {
|
||||
if (r > max_pivot) {
|
||||
max_pivot = r;
|
||||
m_q = j;
|
||||
}
|
||||
} else {
|
||||
max_pivot = r;
|
||||
m_q = j;
|
||||
}
|
||||
}
|
||||
m_tight_set.erase(m_q);
|
||||
lean_assert(m_q != -1);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::find_q_and_tight_set() {
|
||||
T harris_del = calculate_harris_delta_on_breakpoint_set();
|
||||
fill_tight_set_on_harris_delta(harris_del);
|
||||
find_q_on_tight_set();
|
||||
m_entering_boundary_position = this->get_non_basic_column_value_position(m_q);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::erase_tight_breakpoints_and_q_from_breakpoint_set() {
|
||||
m_breakpoint_set.erase(m_q);
|
||||
for (auto j : m_tight_set) {
|
||||
m_breakpoint_set.erase(j);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::ratio_test() {
|
||||
m_sign_of_alpha_r = define_sign_of_alpha_r();
|
||||
fill_breakpoint_set();
|
||||
m_flipped_boxed.clear();
|
||||
int initial_delta_sign = m_delta >= numeric_traits<T>::zero()? 1: -1;
|
||||
do {
|
||||
if (m_breakpoint_set.size() == 0) {
|
||||
set_status_to_tentative_dual_unbounded_or_dual_unbounded();
|
||||
return false;
|
||||
}
|
||||
this->set_status(FEASIBLE);
|
||||
find_q_and_tight_set();
|
||||
if (!tight_breakpoinst_are_all_boxed()) break;
|
||||
T del = m_delta - delta_lost_on_flips_of_tight_breakpoints() * initial_delta_sign;
|
||||
if (!delta_keeps_the_sign(initial_delta_sign, del)) break;
|
||||
if (m_tight_set.size() + 1 == m_breakpoint_set.size()) {
|
||||
break; // deciding not to flip since we might get stuck without finding m_q, the column entering the basis
|
||||
}
|
||||
// we can flip m_q together with the tight set and look for another breakpoint candidate for m_q and another tight set
|
||||
add_tight_breakpoints_and_q_to_flipped_set();
|
||||
m_delta = del;
|
||||
erase_tight_breakpoints_and_q_from_breakpoint_set();
|
||||
} while (true);
|
||||
m_theta_D = this->m_d[m_q] / this->m_pivot_row[m_q];
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::process_flipped() {
|
||||
init_a_wave_by_zeros();
|
||||
for (auto j : m_flipped_boxed) {
|
||||
update_a_wave(signed_span_of_boxed(j), j);
|
||||
}
|
||||
}
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::update_d_and_xB() {
|
||||
for (auto j : this->non_basis()) {
|
||||
this->m_d[j] -= m_theta_D * this->m_pivot_row[j];
|
||||
}
|
||||
this->m_d[m_p] = - m_theta_D;
|
||||
if (m_flipped_boxed.size() > 0) {
|
||||
process_flipped();
|
||||
update_xb_after_bound_flips();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::calculate_beta_r_precisely() {
|
||||
T t = numeric_traits<T>::zero();
|
||||
unsigned i = this->m_m();
|
||||
while (i--) {
|
||||
T b = this->m_pivot_row_of_B_1[i];
|
||||
t += b * b;
|
||||
}
|
||||
m_betas[m_r] = t;
|
||||
}
|
||||
// see "Progress in the dual simplex method for large scale LP problems: practical dual phase 1 algorithms"
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::update_xb_after_bound_flips() {
|
||||
this->m_factorization->solve_By(m_a_wave);
|
||||
unsigned i = this->m_m();
|
||||
while (i--) {
|
||||
this->m_x[this->m_basis[i]] -= m_a_wave[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::one_iteration() {
|
||||
unsigned number_of_rows_to_try = get_number_of_rows_to_try_for_leaving();
|
||||
unsigned offset_in_rows = my_random() % this->m_m();
|
||||
if (this->get_status() == TENTATIVE_DUAL_UNBOUNDED) {
|
||||
number_of_rows_to_try = this->m_m();
|
||||
} else {
|
||||
this->set_status(FEASIBLE);
|
||||
}
|
||||
pricing_loop(number_of_rows_to_try, offset_in_rows);
|
||||
lean_assert(problem_is_dual_feasible());
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::solve() { // see the page 35
|
||||
lean_assert(d_is_correct());
|
||||
lean_assert(problem_is_dual_feasible());
|
||||
lean_assert(this->basis_heading_is_correct());
|
||||
this->set_total_iterations(0);
|
||||
this->m_iters_with_no_cost_growing = 0;
|
||||
do {
|
||||
if (this->print_statistics_with_iterations_and_nonzeroes_and_cost_and_check_that_the_time_is_over("", *this->m_settings.get_message_ostream())){
|
||||
return;
|
||||
}
|
||||
one_iteration();
|
||||
} while (this->get_status() != FLOATING_POINT_ERROR && this->get_status() != DUAL_UNBOUNDED && this->get_status() != OPTIMAL &&
|
||||
this->m_iters_with_no_cost_growing <= this->m_settings.max_number_of_iterations_with_no_improvements
|
||||
&& this->total_iterations() <= this->m_settings.max_total_number_of_iterations);
|
||||
}
|
||||
}
|
29
src/util/lp/lp_dual_core_solver_instances.cpp
Normal file
29
src/util/lp/lp_dual_core_solver_instances.cpp
Normal file
|
@ -0,0 +1,29 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lp_dual_core_solver.hpp"
|
||||
template void lean::lp_dual_core_solver<lean::mpq, lean::mpq>::start_with_initial_basis_and_make_it_dual_feasible();
|
||||
template void lean::lp_dual_core_solver<lean::mpq, lean::mpq>::solve();
|
||||
template lean::lp_dual_core_solver<double, double>::lp_dual_core_solver(lean::static_matrix<double, double>&, vector<bool>&,
|
||||
vector<double>&,
|
||||
vector<double>&,
|
||||
vector<unsigned int>&,
|
||||
vector<unsigned> &,
|
||||
vector<int> &,
|
||||
vector<double>&,
|
||||
vector<lean::column_type>&,
|
||||
vector<double>&,
|
||||
vector<double>&,
|
||||
lean::lp_settings&, const lean::column_namer&);
|
||||
template void lean::lp_dual_core_solver<double, double>::start_with_initial_basis_and_make_it_dual_feasible();
|
||||
template void lean::lp_dual_core_solver<double, double>::solve();
|
||||
template void lean::lp_dual_core_solver<lean::mpq, lean::mpq>::restore_non_basis();
|
||||
template void lean::lp_dual_core_solver<double, double>::restore_non_basis();
|
||||
template void lean::lp_dual_core_solver<double, double>::revert_to_previous_basis();
|
||||
template void lean::lp_dual_core_solver<lean::mpq, lean::mpq>::revert_to_previous_basis();
|
79
src/util/lp/lp_dual_simplex.h
Normal file
79
src/util/lp/lp_dual_simplex.h
Normal file
|
@ -0,0 +1,79 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/lp_solver.h"
|
||||
#include "util/lp/lp_dual_core_solver.h"
|
||||
namespace lean {
|
||||
|
||||
template <typename T, typename X>
|
||||
class lp_dual_simplex: public lp_solver<T, X> {
|
||||
lp_dual_core_solver<T, X> * m_core_solver = nullptr;
|
||||
vector<T> m_b_copy;
|
||||
vector<T> m_low_bounds; // We don't have a convention here that all low bounds are zeros. At least it does not hold for the first stage solver
|
||||
vector<column_type> m_column_types_of_core_solver;
|
||||
vector<column_type> m_column_types_of_logicals;
|
||||
vector<bool> m_can_enter_basis;
|
||||
public:
|
||||
~lp_dual_simplex() {
|
||||
if (m_core_solver != nullptr) {
|
||||
delete m_core_solver;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void decide_on_status_after_stage1();
|
||||
|
||||
void fix_logical_for_stage2(unsigned j);
|
||||
|
||||
void fix_structural_for_stage2(unsigned j);
|
||||
|
||||
void unmark_boxed_and_fixed_columns_and_fix_structural_costs();
|
||||
|
||||
void restore_right_sides();
|
||||
|
||||
void solve_for_stage2();
|
||||
|
||||
void fill_x_with_zeros();
|
||||
|
||||
void stage1();
|
||||
|
||||
void stage2();
|
||||
|
||||
void fill_first_stage_solver_fields();
|
||||
|
||||
column_type get_column_type(unsigned j);
|
||||
|
||||
void fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_structural_column(unsigned j);
|
||||
|
||||
void fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_logical_column(unsigned j);
|
||||
|
||||
void fill_costs_and_bounds_and_column_types_for_the_first_stage_solver();
|
||||
|
||||
void set_type_for_logical(unsigned j, column_type col_type) {
|
||||
this->m_column_types_of_logicals[j - this->number_of_core_structurals()] = col_type;
|
||||
}
|
||||
|
||||
void fill_first_stage_solver_fields_for_row_slack_and_artificial(unsigned row,
|
||||
unsigned & slack_var,
|
||||
unsigned & artificial);
|
||||
|
||||
void augment_matrix_A_and_fill_x_and_allocate_some_fields();
|
||||
|
||||
|
||||
|
||||
void copy_m_b_aside_and_set_it_to_zeros();
|
||||
|
||||
void find_maximal_solution();
|
||||
|
||||
virtual T get_column_value(unsigned column) const {
|
||||
return this->get_column_value_with_core_solver(column, m_core_solver);
|
||||
}
|
||||
|
||||
T get_current_cost() const;
|
||||
};
|
||||
}
|
362
src/util/lp/lp_dual_simplex.hpp
Normal file
362
src/util/lp/lp_dual_simplex.hpp
Normal file
|
@ -0,0 +1,362 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/lp_dual_simplex.h"
|
||||
namespace lean{
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::decide_on_status_after_stage1() {
|
||||
switch (m_core_solver->get_status()) {
|
||||
case OPTIMAL:
|
||||
if (this->m_settings.abs_val_is_smaller_than_artificial_tolerance(m_core_solver->get_cost())) {
|
||||
this->m_status = FEASIBLE;
|
||||
} else {
|
||||
this->m_status = UNBOUNDED;
|
||||
}
|
||||
break;
|
||||
case DUAL_UNBOUNDED:
|
||||
lean_unreachable();
|
||||
case ITERATIONS_EXHAUSTED:
|
||||
this->m_status = ITERATIONS_EXHAUSTED;
|
||||
break;
|
||||
case TIME_EXHAUSTED:
|
||||
this->m_status = TIME_EXHAUSTED;
|
||||
break;
|
||||
case FLOATING_POINT_ERROR:
|
||||
this->m_status = FLOATING_POINT_ERROR;
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fix_logical_for_stage2(unsigned j) {
|
||||
lean_assert(j >= this->number_of_core_structurals());
|
||||
switch (m_column_types_of_logicals[j - this->number_of_core_structurals()]) {
|
||||
case column_type::low_bound:
|
||||
m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
m_column_types_of_core_solver[j] = column_type::low_bound;
|
||||
m_can_enter_basis[j] = true;
|
||||
break;
|
||||
case column_type::fixed:
|
||||
this->m_upper_bounds[j] = m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
m_column_types_of_core_solver[j] = column_type::fixed;
|
||||
m_can_enter_basis[j] = false;
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fix_structural_for_stage2(unsigned j) {
|
||||
column_info<T> * ci = this->m_map_from_var_index_to_column_info[this->m_core_solver_columns_to_external_columns[j]];
|
||||
switch (ci->get_column_type()) {
|
||||
case column_type::low_bound:
|
||||
m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
m_column_types_of_core_solver[j] = column_type::low_bound;
|
||||
m_can_enter_basis[j] = true;
|
||||
break;
|
||||
case column_type::fixed:
|
||||
case column_type::upper_bound:
|
||||
lean_unreachable();
|
||||
case column_type::boxed:
|
||||
this->m_upper_bounds[j] = ci->get_adjusted_upper_bound() / this->m_column_scale[j];
|
||||
m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
m_column_types_of_core_solver[j] = column_type::boxed;
|
||||
m_can_enter_basis[j] = true;
|
||||
break;
|
||||
case column_type::free_column:
|
||||
m_can_enter_basis[j] = true;
|
||||
m_column_types_of_core_solver[j] = column_type::free_column;
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
// T cost_was = this->m_costs[j];
|
||||
this->set_scaled_cost(j);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::unmark_boxed_and_fixed_columns_and_fix_structural_costs() {
|
||||
unsigned j = this->m_A->column_count();
|
||||
while (j-- > this->number_of_core_structurals()) {
|
||||
fix_logical_for_stage2(j);
|
||||
}
|
||||
j = this->number_of_core_structurals();
|
||||
while (j--) {
|
||||
fix_structural_for_stage2(j);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::restore_right_sides() {
|
||||
unsigned i = this->m_A->row_count();
|
||||
while (i--) {
|
||||
this->m_b[i] = m_b_copy[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::solve_for_stage2() {
|
||||
m_core_solver->restore_non_basis();
|
||||
m_core_solver->solve_yB(m_core_solver->m_y);
|
||||
m_core_solver->fill_reduced_costs_from_m_y_by_rows();
|
||||
m_core_solver->start_with_initial_basis_and_make_it_dual_feasible();
|
||||
m_core_solver->set_status(FEASIBLE);
|
||||
m_core_solver->solve();
|
||||
switch (m_core_solver->get_status()) {
|
||||
case OPTIMAL:
|
||||
this->m_status = OPTIMAL;
|
||||
break;
|
||||
case DUAL_UNBOUNDED:
|
||||
this->m_status = INFEASIBLE;
|
||||
break;
|
||||
case TIME_EXHAUSTED:
|
||||
this->m_status = TIME_EXHAUSTED;
|
||||
break;
|
||||
case FLOATING_POINT_ERROR:
|
||||
this->m_status = FLOATING_POINT_ERROR;
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
this->m_second_stage_iterations = m_core_solver->total_iterations();
|
||||
this->m_total_iterations = (this->m_first_stage_iterations + this->m_second_stage_iterations);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_x_with_zeros() {
|
||||
unsigned j = this->m_A->column_count();
|
||||
while (j--) {
|
||||
this->m_x[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::stage1() {
|
||||
lean_assert(m_core_solver == nullptr);
|
||||
this->m_x.resize(this->m_A->column_count(), numeric_traits<T>::zero());
|
||||
if (this->m_settings.get_message_ostream() != nullptr)
|
||||
this->print_statistics_on_A(*this->m_settings.get_message_ostream());
|
||||
m_core_solver = new lp_dual_core_solver<T, X>(
|
||||
*this->m_A,
|
||||
m_can_enter_basis,
|
||||
this->m_b, // the right side vector
|
||||
this->m_x,
|
||||
this->m_basis,
|
||||
this->m_nbasis,
|
||||
this->m_heading,
|
||||
this->m_costs,
|
||||
this->m_column_types_of_core_solver,
|
||||
this->m_low_bounds,
|
||||
this->m_upper_bounds,
|
||||
this->m_settings,
|
||||
*this);
|
||||
m_core_solver->fill_reduced_costs_from_m_y_by_rows();
|
||||
m_core_solver->start_with_initial_basis_and_make_it_dual_feasible();
|
||||
if (this->m_settings.abs_val_is_smaller_than_artificial_tolerance(m_core_solver->get_cost())) {
|
||||
// skipping stage 1
|
||||
m_core_solver->set_status(OPTIMAL);
|
||||
m_core_solver->set_total_iterations(0);
|
||||
} else {
|
||||
m_core_solver->solve();
|
||||
}
|
||||
decide_on_status_after_stage1();
|
||||
this->m_first_stage_iterations = m_core_solver->total_iterations();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::stage2() {
|
||||
unmark_boxed_and_fixed_columns_and_fix_structural_costs();
|
||||
restore_right_sides();
|
||||
solve_for_stage2();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_solver_fields() {
|
||||
unsigned slack_var = this->number_of_core_structurals();
|
||||
unsigned artificial = this->number_of_core_structurals() + this->m_slacks;
|
||||
|
||||
for (unsigned row = 0; row < this->row_count(); row++) {
|
||||
fill_first_stage_solver_fields_for_row_slack_and_artificial(row, slack_var, artificial);
|
||||
}
|
||||
fill_costs_and_bounds_and_column_types_for_the_first_stage_solver();
|
||||
}
|
||||
|
||||
template <typename T, typename X> column_type lp_dual_simplex<T, X>::get_column_type(unsigned j) {
|
||||
lean_assert(j < this->m_A->column_count());
|
||||
if (j >= this->number_of_core_structurals()) {
|
||||
return m_column_types_of_logicals[j - this->number_of_core_structurals()];
|
||||
}
|
||||
return this->m_map_from_var_index_to_column_info[this->m_core_solver_columns_to_external_columns[j]]->get_column_type();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_structural_column(unsigned j) {
|
||||
// see 4.7 in the dissertation of Achim Koberstein
|
||||
lean_assert(this->m_core_solver_columns_to_external_columns.find(j) !=
|
||||
this->m_core_solver_columns_to_external_columns.end());
|
||||
|
||||
T free_bound = T(1e4); // see 4.8
|
||||
unsigned jj = this->m_core_solver_columns_to_external_columns[j];
|
||||
lean_assert(this->m_map_from_var_index_to_column_info.find(jj) != this->m_map_from_var_index_to_column_info.end());
|
||||
column_info<T> * ci = this->m_map_from_var_index_to_column_info[jj];
|
||||
switch (ci->get_column_type()) {
|
||||
case column_type::upper_bound: {
|
||||
std::stringstream s;
|
||||
s << "unexpected bound type " << j << " "
|
||||
<< column_type_to_string(get_column_type(j));
|
||||
throw_exception(s.str());
|
||||
break;
|
||||
}
|
||||
case column_type::low_bound: {
|
||||
m_can_enter_basis[j] = true;
|
||||
this->set_scaled_cost(j);
|
||||
this->m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
this->m_upper_bounds[j] =numeric_traits<T>::one();
|
||||
break;
|
||||
}
|
||||
case column_type::free_column: {
|
||||
m_can_enter_basis[j] = true;
|
||||
this->set_scaled_cost(j);
|
||||
this->m_upper_bounds[j] = free_bound;
|
||||
this->m_low_bounds[j] = -free_bound;
|
||||
break;
|
||||
}
|
||||
case column_type::boxed:
|
||||
m_can_enter_basis[j] = false;
|
||||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
this->m_upper_bounds[j] = this->m_low_bounds[j] = numeric_traits<T>::zero(); // is it needed?
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
m_column_types_of_core_solver[j] = column_type::boxed;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_logical_column(unsigned j) {
|
||||
this->m_costs[j] = 0;
|
||||
lean_assert(get_column_type(j) != column_type::upper_bound);
|
||||
if ((m_can_enter_basis[j] = (get_column_type(j) == column_type::low_bound))) {
|
||||
m_column_types_of_core_solver[j] = column_type::boxed;
|
||||
this->m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
this->m_upper_bounds[j] = numeric_traits<T>::one();
|
||||
} else {
|
||||
m_column_types_of_core_solver[j] = column_type::fixed;
|
||||
this->m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
this->m_upper_bounds[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_and_bounds_and_column_types_for_the_first_stage_solver() {
|
||||
unsigned j = this->m_A->column_count();
|
||||
while (j-- > this->number_of_core_structurals()) { // go over logicals here
|
||||
fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_logical_column(j);
|
||||
}
|
||||
j = this->number_of_core_structurals();
|
||||
while (j--) {
|
||||
fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_structural_column(j);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_solver_fields_for_row_slack_and_artificial(unsigned row,
|
||||
unsigned & slack_var,
|
||||
unsigned & artificial) {
|
||||
lean_assert(row < this->row_count());
|
||||
auto & constraint = this->m_constraints[this->m_core_solver_rows_to_external_rows[row]];
|
||||
// we need to bring the program to the form Ax = b
|
||||
T rs = this->m_b[row];
|
||||
switch (constraint.m_relation) {
|
||||
case Equal: // no slack variable here
|
||||
set_type_for_logical(artificial, column_type::fixed);
|
||||
this->m_basis[row] = artificial;
|
||||
this->m_costs[artificial] = numeric_traits<T>::zero();
|
||||
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
|
||||
artificial++;
|
||||
break;
|
||||
|
||||
case Greater_or_equal:
|
||||
set_type_for_logical(slack_var, column_type::low_bound);
|
||||
(*this->m_A)(row, slack_var) = - numeric_traits<T>::one();
|
||||
if (rs > 0) {
|
||||
// adding one artificial
|
||||
set_type_for_logical(artificial, column_type::fixed);
|
||||
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
|
||||
this->m_basis[row] = artificial;
|
||||
this->m_costs[artificial] = numeric_traits<T>::zero();
|
||||
artificial++;
|
||||
} else {
|
||||
// we can put a slack_var into the basis, and avoid adding an artificial variable
|
||||
this->m_basis[row] = slack_var;
|
||||
this->m_costs[slack_var] = numeric_traits<T>::zero();
|
||||
}
|
||||
slack_var++;
|
||||
break;
|
||||
case Less_or_equal:
|
||||
// introduce a non-negative slack variable
|
||||
set_type_for_logical(slack_var, column_type::low_bound);
|
||||
(*this->m_A)(row, slack_var) = numeric_traits<T>::one();
|
||||
if (rs < 0) {
|
||||
// adding one artificial
|
||||
set_type_for_logical(artificial, column_type::fixed);
|
||||
(*this->m_A)(row, artificial) = - numeric_traits<T>::one();
|
||||
this->m_basis[row] = artificial;
|
||||
this->m_costs[artificial] = numeric_traits<T>::zero();
|
||||
artificial++;
|
||||
} else {
|
||||
// we can put slack_var into the basis, and avoid adding an artificial variable
|
||||
this->m_basis[row] = slack_var;
|
||||
this->m_costs[slack_var] = numeric_traits<T>::zero();
|
||||
}
|
||||
slack_var++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::augment_matrix_A_and_fill_x_and_allocate_some_fields() {
|
||||
this->count_slacks_and_artificials();
|
||||
this->m_A->add_columns_at_the_end(this->m_slacks + this->m_artificials);
|
||||
unsigned n = this->m_A->column_count();
|
||||
this->m_column_types_of_core_solver.resize(n);
|
||||
m_column_types_of_logicals.resize(this->m_slacks + this->m_artificials);
|
||||
this->m_costs.resize(n);
|
||||
this->m_upper_bounds.resize(n);
|
||||
this->m_low_bounds.resize(n);
|
||||
m_can_enter_basis.resize(n);
|
||||
this->m_basis.resize(this->m_A->row_count());
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::copy_m_b_aside_and_set_it_to_zeros() {
|
||||
for (unsigned i = 0; i < this->m_b.size(); i++) {
|
||||
m_b_copy.push_back(this->m_b[i]);
|
||||
this->m_b[i] = numeric_traits<T>::zero(); // preparing for the first stage
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::find_maximal_solution(){
|
||||
if (this->problem_is_empty()) {
|
||||
this->m_status = lp_status::EMPTY;
|
||||
return;
|
||||
}
|
||||
|
||||
this->flip_costs(); // do it for now, todo ( remove the flipping)
|
||||
|
||||
this->cleanup();
|
||||
if (this->m_status == INFEASIBLE) {
|
||||
return;
|
||||
}
|
||||
this->fill_matrix_A_and_init_right_side();
|
||||
this->fill_m_b();
|
||||
this->scale();
|
||||
augment_matrix_A_and_fill_x_and_allocate_some_fields();
|
||||
fill_first_stage_solver_fields();
|
||||
copy_m_b_aside_and_set_it_to_zeros();
|
||||
stage1();
|
||||
if (this->m_status == FEASIBLE) {
|
||||
stage2();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> T lp_dual_simplex<T, X>::get_current_cost() const {
|
||||
T ret = numeric_traits<T>::zero();
|
||||
for (auto it : this->m_map_from_var_index_to_column_info) {
|
||||
ret += this->get_column_cost_value(it.first, it.second);
|
||||
}
|
||||
return -ret; // we flip costs for now
|
||||
}
|
||||
}
|
9
src/util/lp/lp_dual_simplex_instances.cpp
Normal file
9
src/util/lp/lp_dual_simplex_instances.cpp
Normal file
|
@ -0,0 +1,9 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/lp_dual_simplex.hpp"
|
||||
template lean::mpq lean::lp_dual_simplex<lean::mpq, lean::mpq>::get_current_cost() const;
|
||||
template void lean::lp_dual_simplex<lean::mpq, lean::mpq>::find_maximal_solution();
|
||||
template double lean::lp_dual_simplex<double, double>::get_current_cost() const;
|
||||
template void lean::lp_dual_simplex<double, double>::find_maximal_solution();
|
13
src/util/lp/lp_params.pyg
Normal file
13
src/util/lp/lp_params.pyg
Normal file
|
@ -0,0 +1,13 @@
|
|||
def_module_params('lp',
|
||||
export=True,
|
||||
params=(
|
||||
('rep_freq', UINT, 0, 'the report frequency, in how many iterations print the cost and other info '),
|
||||
('min', BOOL, False, 'minimize cost'),
|
||||
('presolve_with_dbl', BOOL, True, 'presolve with double'),
|
||||
('print_stats', BOOL, False, 'print statistic'),
|
||||
('simplex_strategy', UINT, 0, 'simplex strategy for the solver'),
|
||||
('bprop_on_pivoted_rows', BOOL, True, 'propagate bounds on rows changed by the pivot operation')
|
||||
))
|
||||
|
||||
|
||||
|
986
src/util/lp/lp_primal_core_solver.h
Normal file
986
src/util/lp/lp_primal_core_solver.h
Normal file
|
@ -0,0 +1,986 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include <list>
|
||||
#include <limits>
|
||||
#include <unordered_map>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <set>
|
||||
#include <math.h>
|
||||
#include <cstdlib>
|
||||
#include <algorithm>
|
||||
#include "util/lp/lu.h"
|
||||
#include "util/lp/lp_solver.h"
|
||||
#include "util/lp/static_matrix.h"
|
||||
#include "util/lp/core_solver_pretty_printer.h"
|
||||
#include "util/lp/lp_core_solver_base.h"
|
||||
#include "util/lp/breakpoint.h"
|
||||
#include "util/lp/binary_heap_priority_queue.h"
|
||||
#include "util/lp/int_set.h"
|
||||
#include "util/lp/iterator_on_row.h"
|
||||
namespace lean {
|
||||
|
||||
// This core solver solves (Ax=b, low_bound_values \leq x \leq upper_bound_values, maximize costs*x )
|
||||
// The right side b is given implicitly by x and the basis
|
||||
template <typename T, typename X>
|
||||
class lp_primal_core_solver:public lp_core_solver_base<T, X> {
|
||||
public:
|
||||
// m_sign_of_entering is set to 1 if the entering variable needs
|
||||
// to grow and is set to -1 otherwise
|
||||
unsigned m_column_norm_update_counter;
|
||||
T m_enter_price_eps;
|
||||
int m_sign_of_entering_delta;
|
||||
vector<breakpoint<X>> m_breakpoints;
|
||||
binary_heap_priority_queue<X> m_breakpoint_indices_queue;
|
||||
indexed_vector<T> m_beta; // see Swietanowski working vector beta for column norms
|
||||
T m_epsilon_of_reduced_cost = T(1)/T(10000000);
|
||||
vector<T> m_costs_backup;
|
||||
T m_converted_harris_eps;
|
||||
unsigned m_inf_row_index_for_tableau;
|
||||
bool m_bland_mode_tableau;
|
||||
int_set m_left_basis_tableau;
|
||||
unsigned m_bland_mode_threshold = 1000;
|
||||
unsigned m_left_basis_repeated;
|
||||
vector<unsigned> m_leaving_candidates;
|
||||
// T m_converted_harris_eps = convert_struct<T, double>::convert(this->m_settings.harris_feasibility_tolerance);
|
||||
std::list<unsigned> m_non_basis_list;
|
||||
void sort_non_basis();
|
||||
void sort_non_basis_rational();
|
||||
int choose_entering_column(unsigned number_of_benefitial_columns_to_go_over);
|
||||
int choose_entering_column_tableau();
|
||||
int choose_entering_column_presize(unsigned number_of_benefitial_columns_to_go_over);
|
||||
int find_leaving_and_t_with_breakpoints(unsigned entering, X & t);
|
||||
// int find_inf_row() {
|
||||
// // mimicing CLP : todo : use a heap
|
||||
// int j = -1;
|
||||
// for (unsigned k : this->m_inf_set.m_index) {
|
||||
// if (k < static_cast<unsigned>(j))
|
||||
// j = static_cast<int>(k);
|
||||
// }
|
||||
// if (j == -1)
|
||||
// return -1;
|
||||
// return this->m_basis_heading[j];
|
||||
// #if 0
|
||||
// vector<int> choices;
|
||||
// unsigned len = 100000000;
|
||||
// for (unsigned j : this->m_inf_set.m_index) {
|
||||
// int i = this->m_basis_heading[j];
|
||||
// lean_assert(i >= 0);
|
||||
// unsigned row_len = this->m_A.m_rows[i].size();
|
||||
// if (row_len < len) {
|
||||
// choices.clear();
|
||||
// choices.push_back(i);
|
||||
// len = row_len;
|
||||
// if (my_random() % 10) break;
|
||||
// } else if (row_len == len) {
|
||||
// choices.push_back(i);
|
||||
// if (my_random() % 10) break;
|
||||
// }
|
||||
// }
|
||||
|
||||
// if (choices.size() == 0)
|
||||
// return -1;
|
||||
|
||||
// if (choices.size() == 1)
|
||||
// return choices[0];
|
||||
|
||||
// unsigned k = my_random() % choices.size();
|
||||
// return choices[k];
|
||||
// #endif
|
||||
// }
|
||||
|
||||
|
||||
bool column_is_benefitial_for_entering_basis_on_sign_row_strategy(unsigned j, int sign) const {
|
||||
// sign = 1 means the x of the basis column of the row has to grow to become feasible, when the coeff before j is neg, or x - has to diminish when the coeff is pos
|
||||
// we have xbj = -aj * xj
|
||||
lean_assert(this->m_basis_heading[j] < 0);
|
||||
lean_assert(this->column_is_feasible(j));
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::free_column: return true;
|
||||
case column_type::fixed: return false;
|
||||
case column_type::low_bound:
|
||||
if (sign < 0)
|
||||
return true;
|
||||
return !this->x_is_at_low_bound(j);
|
||||
case column_type::upper_bound:
|
||||
if (sign > 0)
|
||||
return true;
|
||||
return !this->x_is_at_upper_bound(j);
|
||||
case column_type::boxed:
|
||||
if (sign < 0)
|
||||
return !this->x_is_at_low_bound(j);
|
||||
return !this->x_is_at_upper_bound(j);
|
||||
}
|
||||
|
||||
lean_assert(false); // cannot be here
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
bool needs_to_grow(unsigned bj) const {
|
||||
lean_assert(!this->column_is_feasible(bj));
|
||||
switch(this->m_column_types[bj]) {
|
||||
case column_type::free_column:
|
||||
return false;
|
||||
case column_type::fixed:
|
||||
case column_type::low_bound:
|
||||
case column_type::boxed:
|
||||
return this-> x_below_low_bound(bj);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
lean_assert(false); // unreachable
|
||||
return false;
|
||||
}
|
||||
|
||||
int inf_sign_of_column(unsigned bj) const {
|
||||
lean_assert(!this->column_is_feasible(bj));
|
||||
switch(this->m_column_types[bj]) {
|
||||
case column_type::free_column:
|
||||
return 0;
|
||||
case column_type::low_bound:
|
||||
return 1;
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
return this->x_above_upper_bound(bj)? -1: 1;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
lean_assert(false); // unreachable
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
||||
|
||||
bool monoid_can_decrease(const row_cell<T> & rc) const {
|
||||
unsigned j = rc.m_j;
|
||||
lean_assert(this->column_is_feasible(j));
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
return true;
|
||||
case column_type::fixed:
|
||||
return false;
|
||||
case column_type::low_bound:
|
||||
if (is_pos(rc.get_val())) {
|
||||
return this->x_above_low_bound(j);
|
||||
}
|
||||
|
||||
return true;
|
||||
case column_type::upper_bound:
|
||||
if (is_pos(rc.get_val())) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return this->x_below_upper_bound(j);
|
||||
case column_type::boxed:
|
||||
if (is_pos(rc.get_val())) {
|
||||
return this->x_above_low_bound(j);
|
||||
}
|
||||
|
||||
return this->x_below_upper_bound(j);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
lean_assert(false); // unreachable
|
||||
return false;
|
||||
}
|
||||
|
||||
bool monoid_can_increase(const row_cell<T> & rc) const {
|
||||
unsigned j = rc.m_j;
|
||||
lean_assert(this->column_is_feasible(j));
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
return true;
|
||||
case column_type::fixed:
|
||||
return false;
|
||||
case column_type::low_bound:
|
||||
if (is_neg(rc.get_val())) {
|
||||
return this->x_above_low_bound(j);
|
||||
}
|
||||
|
||||
return true;
|
||||
case column_type::upper_bound:
|
||||
if (is_neg(rc.get_val())) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return this->x_below_upper_bound(j);
|
||||
case column_type::boxed:
|
||||
if (is_neg(rc.get_val())) {
|
||||
return this->x_above_low_bound(j);
|
||||
}
|
||||
|
||||
return this->x_below_upper_bound(j);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
lean_assert(false); // unreachable
|
||||
return false;
|
||||
}
|
||||
|
||||
unsigned get_number_of_basic_vars_that_might_become_inf(unsigned j) const { // consider looking at the signs here: todo
|
||||
unsigned r = 0;
|
||||
for (auto & cc : this->m_A.m_columns[j]) {
|
||||
unsigned k = this->m_basis[cc.m_i];
|
||||
if (this->m_column_types[k] != column_type::free_column)
|
||||
r++;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
int find_beneficial_column_in_row_tableau_rows_bland_mode(int i, T & a_ent) {
|
||||
int j = -1;
|
||||
unsigned bj = this->m_basis[i];
|
||||
bool bj_needs_to_grow = needs_to_grow(bj);
|
||||
for (const row_cell<T>& rc : this->m_A.m_rows[i]) {
|
||||
if (rc.m_j == bj)
|
||||
continue;
|
||||
if (bj_needs_to_grow) {
|
||||
if (!monoid_can_decrease(rc))
|
||||
continue;
|
||||
} else {
|
||||
if (!monoid_can_increase(rc))
|
||||
continue;
|
||||
}
|
||||
if (rc.m_j < static_cast<unsigned>(j) ) {
|
||||
j = rc.m_j;
|
||||
a_ent = rc.m_value;
|
||||
}
|
||||
}
|
||||
if (j == -1) {
|
||||
m_inf_row_index_for_tableau = i;
|
||||
}
|
||||
|
||||
return j;
|
||||
}
|
||||
|
||||
int find_beneficial_column_in_row_tableau_rows(int i, T & a_ent) {
|
||||
if (m_bland_mode_tableau)
|
||||
return find_beneficial_column_in_row_tableau_rows_bland_mode(i, a_ent);
|
||||
// a short row produces short infeasibility explanation and benefits at least one pivot operation
|
||||
vector<const row_cell<T>*> choices;
|
||||
unsigned num_of_non_free_basics = 1000000;
|
||||
unsigned len = 100000000;
|
||||
unsigned bj = this->m_basis[i];
|
||||
bool bj_needs_to_grow = needs_to_grow(bj);
|
||||
for (const row_cell<T>& rc : this->m_A.m_rows[i]) {
|
||||
unsigned j = rc.m_j;
|
||||
if (j == bj)
|
||||
continue;
|
||||
if (bj_needs_to_grow) {
|
||||
if (!monoid_can_decrease(rc))
|
||||
continue;
|
||||
} else {
|
||||
if (!monoid_can_increase(rc))
|
||||
continue;
|
||||
}
|
||||
unsigned damage = get_number_of_basic_vars_that_might_become_inf(j);
|
||||
if (damage < num_of_non_free_basics) {
|
||||
num_of_non_free_basics = damage;
|
||||
len = this->m_A.m_columns[j].size();
|
||||
choices.clear();
|
||||
choices.push_back(&rc);
|
||||
} else if (damage == num_of_non_free_basics &&
|
||||
this->m_A.m_columns[j].size() <= len && (my_random() % 2)) {
|
||||
choices.push_back(&rc);
|
||||
len = this->m_A.m_columns[j].size();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (choices.size() == 0) {
|
||||
m_inf_row_index_for_tableau = i;
|
||||
return -1;
|
||||
}
|
||||
const row_cell<T>* rc = choices.size() == 1? choices[0] :
|
||||
choices[my_random() % choices.size()];
|
||||
|
||||
a_ent = rc->m_value;
|
||||
return rc->m_j;
|
||||
}
|
||||
static X positive_infinity() {
|
||||
return convert_struct<X, unsigned>::convert(std::numeric_limits<unsigned>::max());
|
||||
}
|
||||
|
||||
bool get_harris_theta(X & theta);
|
||||
|
||||
void restore_harris_eps() { m_converted_harris_eps = convert_struct<T, double>::convert(this->m_settings.harris_feasibility_tolerance); }
|
||||
void zero_harris_eps() { m_converted_harris_eps = zero_of_type<T>(); }
|
||||
int find_leaving_on_harris_theta(X const & harris_theta, X & t);
|
||||
bool try_jump_to_another_bound_on_entering(unsigned entering, const X & theta, X & t, bool & unlimited);
|
||||
bool try_jump_to_another_bound_on_entering_unlimited(unsigned entering, X & t);
|
||||
int find_leaving_and_t(unsigned entering, X & t);
|
||||
int find_leaving_and_t_precise(unsigned entering, X & t);
|
||||
int find_leaving_and_t_tableau(unsigned entering, X & t);
|
||||
|
||||
void limit_theta(const X & lim, X & theta, bool & unlimited) {
|
||||
if (unlimited) {
|
||||
theta = lim;
|
||||
unlimited = false;
|
||||
} else {
|
||||
theta = std::min(lim, theta);
|
||||
}
|
||||
}
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_neg_upper_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
lean_assert(m < 0 && this->m_column_types[j] == column_type::upper_bound);
|
||||
limit_inf_on_upper_bound_m_neg(m, this->m_x[j], this->m_upper_bounds[j], theta, unlimited);
|
||||
}
|
||||
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_neg_low_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
lean_assert(m < 0 && this->m_column_types[j] == column_type::low_bound);
|
||||
limit_inf_on_bound_m_neg(m, this->m_x[j], this->m_low_bounds[j], theta, unlimited);
|
||||
}
|
||||
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_pos_low_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
lean_assert(m > 0 && this->m_column_types[j] == column_type::low_bound);
|
||||
limit_inf_on_low_bound_m_pos(m, this->m_x[j], this->m_low_bounds[j], theta, unlimited);
|
||||
}
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_pos_upper_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
lean_assert(m > 0 && this->m_column_types[j] == column_type::upper_bound);
|
||||
limit_inf_on_bound_m_pos(m, this->m_x[j], this->m_upper_bounds[j], theta, unlimited);
|
||||
};
|
||||
|
||||
X harris_eps_for_bound(const X & bound) const { return ( convert_struct<X, int>::convert(1) + abs(bound)/10) * m_converted_harris_eps/3;
|
||||
}
|
||||
|
||||
void get_bound_on_variable_and_update_leaving_precisely(unsigned j, vector<unsigned> & leavings, T m, X & t, T & abs_of_d_of_leaving);
|
||||
|
||||
vector<T> m_low_bounds_dummy; // needed for the base class only
|
||||
|
||||
X get_max_bound(vector<X> & b);
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
void check_Ax_equal_b();
|
||||
void check_the_bounds();
|
||||
void check_bound(unsigned i);
|
||||
void check_correctness();
|
||||
#endif
|
||||
|
||||
// from page 183 of Istvan Maros's book
|
||||
// the basis structures have not changed yet
|
||||
void update_reduced_costs_from_pivot_row(unsigned entering, unsigned leaving);
|
||||
|
||||
// return 0 if the reduced cost at entering is close enough to the refreshed
|
||||
// 1 if it is way off, and 2 if it is unprofitable
|
||||
int refresh_reduced_cost_at_entering_and_check_that_it_is_off(unsigned entering);
|
||||
|
||||
void backup_and_normalize_costs();
|
||||
|
||||
void init_run();
|
||||
|
||||
void calc_working_vector_beta_for_column_norms();
|
||||
|
||||
void advance_on_entering_and_leaving(int entering, int leaving, X & t);
|
||||
void advance_on_entering_and_leaving_tableau(int entering, int leaving, X & t);
|
||||
void advance_on_entering_equal_leaving(int entering, X & t);
|
||||
void advance_on_entering_equal_leaving_tableau(int entering, X & t);
|
||||
|
||||
bool need_to_switch_costs() const {
|
||||
if (this->m_settings.simplex_strategy() == simplex_strategy_enum::tableau_rows)
|
||||
return false;
|
||||
// lean_assert(calc_current_x_is_feasible() == current_x_is_feasible());
|
||||
return this->current_x_is_feasible() == this->m_using_infeas_costs;
|
||||
}
|
||||
|
||||
|
||||
void advance_on_entering(int entering);
|
||||
void advance_on_entering_tableau(int entering);
|
||||
void advance_on_entering_precise(int entering);
|
||||
void push_forward_offset_in_non_basis(unsigned & offset_in_nb);
|
||||
|
||||
unsigned get_number_of_non_basic_column_to_try_for_enter();
|
||||
|
||||
void print_column_norms(std::ostream & out);
|
||||
|
||||
// returns the number of iterations
|
||||
unsigned solve();
|
||||
|
||||
lu<T, X> * factorization() {return this->m_factorization;}
|
||||
|
||||
void delete_factorization();
|
||||
|
||||
// according to Swietanowski, " A new steepest edge approximation for the simplex method for linear programming"
|
||||
void init_column_norms();
|
||||
|
||||
T calculate_column_norm_exactly(unsigned j);
|
||||
|
||||
void update_or_init_column_norms(unsigned entering, unsigned leaving);
|
||||
|
||||
// following Swietanowski - A new steepest ...
|
||||
void update_column_norms(unsigned entering, unsigned leaving);
|
||||
|
||||
T calculate_norm_of_entering_exactly();
|
||||
|
||||
void find_feasible_solution();
|
||||
|
||||
bool is_tiny() const {return this->m_m < 10 && this->m_n < 20;}
|
||||
|
||||
void one_iteration();
|
||||
void one_iteration_tableau();
|
||||
|
||||
void advance_on_entering_and_leaving_tableau_rows(int entering, int leaving, const X &theta ) {
|
||||
this->update_basis_and_x_tableau(entering, leaving, theta);
|
||||
this->update_column_in_inf_set(entering);
|
||||
}
|
||||
|
||||
|
||||
int find_leaving_tableau_rows(X & new_val_for_leaving) {
|
||||
int j = -1;
|
||||
for (unsigned k : this->m_inf_set.m_index) {
|
||||
if (k < static_cast<unsigned>(j))
|
||||
j = static_cast<int>(k);
|
||||
}
|
||||
if (j == -1)
|
||||
return -1;
|
||||
|
||||
lean_assert(!this->column_is_feasible(j));
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::upper_bound:
|
||||
new_val_for_leaving = this->m_upper_bounds[j];
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
new_val_for_leaving = this->m_low_bounds[j];
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (this->x_above_upper_bound(j))
|
||||
new_val_for_leaving = this->m_upper_bounds[j];
|
||||
else
|
||||
new_val_for_leaving = this->m_low_bounds[j];
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
return j;
|
||||
}
|
||||
|
||||
void one_iteration_tableau_rows() {
|
||||
X new_val_for_leaving;
|
||||
int leaving = find_leaving_tableau_rows(new_val_for_leaving);
|
||||
if (leaving == -1) {
|
||||
this->set_status(OPTIMAL);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!m_bland_mode_tableau) {
|
||||
if (m_left_basis_tableau.contains(leaving)) {
|
||||
if (++m_left_basis_repeated > m_bland_mode_threshold) {
|
||||
m_bland_mode_tableau = true;
|
||||
}
|
||||
} else {
|
||||
m_left_basis_tableau.insert(leaving);
|
||||
}
|
||||
}
|
||||
T a_ent;
|
||||
int entering = find_beneficial_column_in_row_tableau_rows(this->m_basis_heading[leaving], a_ent);
|
||||
if (entering == -1) {
|
||||
this->set_status(INFEASIBLE);
|
||||
return;
|
||||
}
|
||||
X theta = (this->m_x[leaving] - new_val_for_leaving) / a_ent;
|
||||
advance_on_entering_and_leaving_tableau_rows(entering, leaving, theta );
|
||||
lean_assert(this->m_x[leaving] == new_val_for_leaving);
|
||||
if (this->current_x_is_feasible())
|
||||
this->set_status(OPTIMAL);
|
||||
}
|
||||
|
||||
void fill_breakpoints_array(unsigned entering);
|
||||
|
||||
void try_add_breakpoint_in_row(unsigned i);
|
||||
|
||||
void clear_breakpoints();
|
||||
|
||||
void change_slope_on_breakpoint(unsigned entering, breakpoint<X> * b, T & slope_at_entering);
|
||||
void advance_on_sorted_breakpoints(unsigned entering);
|
||||
|
||||
void update_basis_and_x_with_comparison(unsigned entering, unsigned leaving, X delta);
|
||||
|
||||
void decide_on_status_when_cannot_find_entering() {
|
||||
lean_assert(!need_to_switch_costs());
|
||||
this->set_status(this->current_x_is_feasible()? OPTIMAL: INFEASIBLE);
|
||||
}
|
||||
|
||||
// void limit_theta_on_basis_column_for_feas_case_m_neg(unsigned j, const T & m, X & theta) {
|
||||
// lean_assert(m < 0);
|
||||
// lean_assert(this->m_column_type[j] == low_bound || this->m_column_type[j] == boxed);
|
||||
// const X & eps = harris_eps_for_bound(this->m_low_bounds[j]);
|
||||
// if (this->above_bound(this->m_x[j], this->m_low_bounds[j])) {
|
||||
// theta = std::min((this->m_low_bounds[j] -this->m_x[j] - eps) / m, theta);
|
||||
// if (theta < zero_of_type<X>()) theta = zero_of_type<X>();
|
||||
// }
|
||||
// }
|
||||
|
||||
void limit_theta_on_basis_column_for_feas_case_m_neg_no_check(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
lean_assert(m < 0);
|
||||
const X& eps = harris_eps_for_bound(this->m_low_bounds[j]);
|
||||
limit_theta((this->m_low_bounds[j] - this->m_x[j] - eps) / m, theta, unlimited);
|
||||
if (theta < zero_of_type<X>()) theta = zero_of_type<X>();
|
||||
}
|
||||
|
||||
bool limit_inf_on_bound_m_neg(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
|
||||
// x gets smaller
|
||||
lean_assert(m < 0);
|
||||
if (numeric_traits<T>::precise()) {
|
||||
if (this->below_bound(x, bound)) return false;
|
||||
if (this->above_bound(x, bound)) {
|
||||
limit_theta((bound - x) / m, theta, unlimited);
|
||||
} else {
|
||||
theta = zero_of_type<X>();
|
||||
unlimited = false;
|
||||
}
|
||||
} else {
|
||||
const X& eps = harris_eps_for_bound(bound);
|
||||
if (this->below_bound(x, bound)) return false;
|
||||
if (this->above_bound(x, bound)) {
|
||||
limit_theta((bound - x - eps) / m, theta, unlimited);
|
||||
} else {
|
||||
theta = zero_of_type<X>();
|
||||
unlimited = false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool limit_inf_on_bound_m_pos(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
|
||||
// x gets larger
|
||||
lean_assert(m > 0);
|
||||
if (numeric_traits<T>::precise()) {
|
||||
if (this->above_bound(x, bound)) return false;
|
||||
if (this->below_bound(x, bound)) {
|
||||
limit_theta((bound - x) / m, theta, unlimited);
|
||||
} else {
|
||||
theta = zero_of_type<X>();
|
||||
unlimited = false;
|
||||
}
|
||||
} else {
|
||||
const X& eps = harris_eps_for_bound(bound);
|
||||
if (this->above_bound(x, bound)) return false;
|
||||
if (this->below_bound(x, bound)) {
|
||||
limit_theta((bound - x + eps) / m, theta, unlimited);
|
||||
} else {
|
||||
theta = zero_of_type<X>();
|
||||
unlimited = false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void limit_inf_on_low_bound_m_pos(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
|
||||
if (numeric_traits<T>::precise()) {
|
||||
// x gets larger
|
||||
lean_assert(m > 0);
|
||||
if (this->below_bound(x, bound)) {
|
||||
limit_theta((bound - x) / m, theta, unlimited);
|
||||
}
|
||||
}
|
||||
else {
|
||||
// x gets larger
|
||||
lean_assert(m > 0);
|
||||
const X& eps = harris_eps_for_bound(bound);
|
||||
if (this->below_bound(x, bound)) {
|
||||
limit_theta((bound - x + eps) / m, theta, unlimited);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void limit_inf_on_upper_bound_m_neg(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
|
||||
// x gets smaller
|
||||
lean_assert(m < 0);
|
||||
const X& eps = harris_eps_for_bound(bound);
|
||||
if (this->above_bound(x, bound)) {
|
||||
limit_theta((bound - x - eps) / m, theta, unlimited);
|
||||
}
|
||||
}
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_pos_boxed(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
// lean_assert(m > 0 && this->m_column_type[j] == column_type::boxed);
|
||||
const X & x = this->m_x[j];
|
||||
const X & lbound = this->m_low_bounds[j];
|
||||
|
||||
if (this->below_bound(x, lbound)) {
|
||||
const X& eps = harris_eps_for_bound(this->m_upper_bounds[j]);
|
||||
limit_theta((lbound - x + eps) / m, theta, unlimited);
|
||||
} else {
|
||||
const X & ubound = this->m_upper_bounds[j];
|
||||
if (this->below_bound(x, ubound)){
|
||||
const X& eps = harris_eps_for_bound(ubound);
|
||||
limit_theta((ubound - x + eps) / m, theta, unlimited);
|
||||
} else if (!this->above_bound(x, ubound)) {
|
||||
theta = zero_of_type<X>();
|
||||
unlimited = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_neg_boxed(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
// lean_assert(m < 0 && this->m_column_type[j] == column_type::boxed);
|
||||
const X & x = this->m_x[j];
|
||||
const X & ubound = this->m_upper_bounds[j];
|
||||
if (this->above_bound(x, ubound)) {
|
||||
const X& eps = harris_eps_for_bound(ubound);
|
||||
limit_theta((ubound - x - eps) / m, theta, unlimited);
|
||||
} else {
|
||||
const X & lbound = this->m_low_bounds[j];
|
||||
if (this->above_bound(x, lbound)){
|
||||
const X& eps = harris_eps_for_bound(lbound);
|
||||
limit_theta((lbound - x - eps) / m, theta, unlimited);
|
||||
} else if (!this->below_bound(x, lbound)) {
|
||||
theta = zero_of_type<X>();
|
||||
unlimited = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
void limit_theta_on_basis_column_for_feas_case_m_pos(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
lean_assert(m > 0);
|
||||
const T& eps = harris_eps_for_bound(this->m_upper_bounds[j]);
|
||||
if (this->below_bound(this->m_x[j], this->m_upper_bounds[j])) {
|
||||
limit_theta((this->m_upper_bounds[j] - this->m_x[j] + eps) / m, theta, unlimited);
|
||||
if (theta < zero_of_type<X>()) {
|
||||
theta = zero_of_type<X>();
|
||||
unlimited = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void limit_theta_on_basis_column_for_feas_case_m_pos_no_check(unsigned j, const T & m, X & theta, bool & unlimited ) {
|
||||
lean_assert(m > 0);
|
||||
const X& eps = harris_eps_for_bound(this->m_upper_bounds[j]);
|
||||
limit_theta( (this->m_upper_bounds[j] - this->m_x[j] + eps) / m, theta, unlimited);
|
||||
if (theta < zero_of_type<X>()) {
|
||||
theta = zero_of_type<X>();
|
||||
}
|
||||
}
|
||||
|
||||
// j is a basic column or the entering, in any case x[j] has to stay feasible.
|
||||
// m is the multiplier. updating t in a way that holds the following
|
||||
// x[j] + t * m >= this->m_low_bounds[j]- harris_feasibility_tolerance ( if m < 0 )
|
||||
// or
|
||||
// x[j] + t * m <= this->m_upper_bounds[j] + harris_feasibility_tolerance ( if m > 0)
|
||||
void limit_theta_on_basis_column(unsigned j, T m, X & theta, bool & unlimited) {
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::free_column: break;
|
||||
case column_type::upper_bound:
|
||||
if (this->current_x_is_feasible()) {
|
||||
if (m > 0)
|
||||
limit_theta_on_basis_column_for_feas_case_m_pos_no_check(j, m, theta, unlimited);
|
||||
} else { // inside of feasibility_loop
|
||||
if (m > 0)
|
||||
limit_theta_on_basis_column_for_inf_case_m_pos_upper_bound(j, m, theta, unlimited);
|
||||
else
|
||||
limit_theta_on_basis_column_for_inf_case_m_neg_upper_bound(j, m, theta, unlimited);
|
||||
}
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
if (this->current_x_is_feasible()) {
|
||||
if (m < 0)
|
||||
limit_theta_on_basis_column_for_feas_case_m_neg_no_check(j, m, theta, unlimited);
|
||||
} else {
|
||||
if (m < 0)
|
||||
limit_theta_on_basis_column_for_inf_case_m_neg_low_bound(j, m, theta, unlimited);
|
||||
else
|
||||
limit_theta_on_basis_column_for_inf_case_m_pos_low_bound(j, m, theta, unlimited);
|
||||
}
|
||||
break;
|
||||
// case fixed:
|
||||
// if (get_this->current_x_is_feasible()) {
|
||||
// theta = zero_of_type<X>();
|
||||
// break;
|
||||
// }
|
||||
// if (m < 0)
|
||||
// limit_theta_on_basis_column_for_inf_case_m_neg_fixed(j, m, theta);
|
||||
// else
|
||||
// limit_theta_on_basis_column_for_inf_case_m_pos_fixed(j, m, theta);
|
||||
// break;
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
if (this->current_x_is_feasible()) {
|
||||
if (m > 0) {
|
||||
limit_theta_on_basis_column_for_feas_case_m_pos_no_check(j, m, theta, unlimited);
|
||||
} else {
|
||||
limit_theta_on_basis_column_for_feas_case_m_neg_no_check(j, m, theta, unlimited);
|
||||
}
|
||||
} else {
|
||||
if (m > 0) {
|
||||
limit_theta_on_basis_column_for_inf_case_m_pos_boxed(j, m, theta, unlimited);
|
||||
} else {
|
||||
limit_theta_on_basis_column_for_inf_case_m_neg_boxed(j, m, theta, unlimited);
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
if (!unlimited && theta < zero_of_type<X>()) {
|
||||
theta = zero_of_type<X>();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool column_is_benefitial_for_entering_basis(unsigned j) const;
|
||||
bool column_is_benefitial_for_entering_basis_precise(unsigned j) const;
|
||||
|
||||
bool column_is_benefitial_for_entering_on_breakpoints(unsigned j) const;
|
||||
|
||||
|
||||
bool can_enter_basis(unsigned j);
|
||||
bool done();
|
||||
void init_infeasibility_costs();
|
||||
|
||||
void init_infeasibility_cost_for_column(unsigned j);
|
||||
T get_infeasibility_cost_for_column(unsigned j) const;
|
||||
void init_infeasibility_costs_for_changed_basis_only();
|
||||
|
||||
void print_column(unsigned j, std::ostream & out);
|
||||
void add_breakpoint(unsigned j, X delta, breakpoint_type type);
|
||||
|
||||
// j is the basic column, x is the value at x[j]
|
||||
// d is the coefficient before m_entering in the row with j as the basis column
|
||||
void try_add_breakpoint(unsigned j, const X & x, const T & d, breakpoint_type break_type, const X & break_value);
|
||||
template <typename L>
|
||||
bool same_sign_with_entering_delta(const L & a) {
|
||||
return (a > zero_of_type<L>() && m_sign_of_entering_delta > 0) || (a < zero_of_type<L>() && m_sign_of_entering_delta < 0);
|
||||
}
|
||||
|
||||
void init_reduced_costs();
|
||||
|
||||
bool low_bounds_are_set() const { return true; }
|
||||
|
||||
int advance_on_sorted_breakpoints(unsigned entering, X & t);
|
||||
|
||||
std::string break_type_to_string(breakpoint_type type);
|
||||
|
||||
void print_breakpoint(const breakpoint<X> * b, std::ostream & out);
|
||||
|
||||
void print_bound_info_and_x(unsigned j, std::ostream & out);
|
||||
|
||||
void init_infeasibility_after_update_x_if_inf(unsigned leaving) {
|
||||
if (this->m_using_infeas_costs) {
|
||||
init_infeasibility_costs_for_changed_basis_only();
|
||||
this->m_costs[leaving] = zero_of_type<T>();
|
||||
this->m_inf_set.erase(leaving);
|
||||
}
|
||||
}
|
||||
|
||||
void init_inf_set() {
|
||||
this->m_inf_set.clear();
|
||||
for (unsigned j = 0; j < this->m_n(); j++) {
|
||||
if (this->m_basis_heading[j] < 0)
|
||||
continue;
|
||||
if (!this->column_is_feasible(j))
|
||||
this->m_inf_set.insert(j);
|
||||
}
|
||||
}
|
||||
|
||||
int get_column_out_of_bounds_delta_sign(unsigned j) {
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
if (this->x_below_low_bound(j))
|
||||
return -1;
|
||||
if (this->x_above_upper_bound(j))
|
||||
return 1;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
if (this->x_below_low_bound(j))
|
||||
return -1;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
if (this->x_above_upper_bound(j))
|
||||
return 1;
|
||||
break;
|
||||
case column_type::free_column:
|
||||
return 0;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void init_column_row_non_zeroes() {
|
||||
this->m_columns_nz.resize(this->m_A.column_count());
|
||||
this->m_rows_nz.resize(this->m_A.row_count());
|
||||
for (unsigned i = 0; i < this->m_A.column_count(); i++) {
|
||||
if (this->m_columns_nz[i] == 0)
|
||||
this->m_columns_nz[i] = this->m_A.m_columns[i].size();
|
||||
}
|
||||
for (unsigned i = 0; i < this->m_A.row_count(); i++) {
|
||||
if (this->m_rows_nz[i] == 0)
|
||||
this->m_rows_nz[i] = this->m_A.m_rows[i].size();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int x_at_bound_sign(unsigned j) {
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
return 0;
|
||||
case column_type::boxed:
|
||||
if (this->x_is_at_low_bound(j))
|
||||
return 1;
|
||||
return -1;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
return 1;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
return -1;
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
||||
unsigned solve_with_tableau();
|
||||
|
||||
bool basis_column_is_set_correctly(unsigned j) const {
|
||||
return this->m_A.m_columns[j].size() == 1;
|
||||
|
||||
}
|
||||
|
||||
bool basis_columns_are_set_correctly() const {
|
||||
for (unsigned j : this->m_basis)
|
||||
if(!basis_column_is_set_correctly(j))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
void init_run_tableau();
|
||||
void update_x_tableau(unsigned entering, const X & delta);
|
||||
void update_inf_cost_for_column_tableau(unsigned j);
|
||||
|
||||
// the delta is between the old and the new cost (old - new)
|
||||
void update_reduced_cost_for_basic_column_cost_change(const T & delta, unsigned j) {
|
||||
lean_assert(this->m_basis_heading[j] >= 0);
|
||||
unsigned i = static_cast<unsigned>(this->m_basis_heading[j]);
|
||||
for (const row_cell<T> & rc : this->m_A.m_rows[i]) {
|
||||
unsigned k = rc.m_j;
|
||||
if (k == j)
|
||||
continue;
|
||||
this->m_d[k] += delta * rc.get_val();
|
||||
}
|
||||
}
|
||||
|
||||
bool update_basis_and_x_tableau(int entering, int leaving, X const & tt);
|
||||
void init_reduced_costs_tableau();
|
||||
void init_tableau_rows() {
|
||||
m_bland_mode_tableau = false;
|
||||
m_left_basis_tableau.clear();
|
||||
m_left_basis_tableau.resize(this->m_A.column_count());
|
||||
m_left_basis_repeated = 0;
|
||||
}
|
||||
// stage1 constructor
|
||||
lp_primal_core_solver(static_matrix<T, X> & A,
|
||||
vector<X> & b, // the right side vector
|
||||
vector<X> & x, // the number of elements in x needs to be at least as large as the number of columns in A
|
||||
vector<unsigned> & basis,
|
||||
vector<unsigned> & nbasis,
|
||||
vector<int> & heading,
|
||||
vector<T> & costs,
|
||||
const vector<column_type> & column_type_array,
|
||||
const vector<X> & low_bound_values,
|
||||
const vector<X> & upper_bound_values,
|
||||
lp_settings & settings,
|
||||
const column_namer& column_names):
|
||||
lp_core_solver_base<T, X>(A, b,
|
||||
basis,
|
||||
nbasis,
|
||||
heading,
|
||||
x,
|
||||
costs,
|
||||
settings,
|
||||
column_names,
|
||||
column_type_array,
|
||||
low_bound_values,
|
||||
upper_bound_values),
|
||||
m_beta(A.row_count()) {
|
||||
|
||||
if (!(numeric_traits<T>::precise())) {
|
||||
m_converted_harris_eps = convert_struct<T, double>::convert(this->m_settings.harris_feasibility_tolerance);
|
||||
} else {
|
||||
m_converted_harris_eps = zero_of_type<T>();
|
||||
}
|
||||
this->set_status(UNKNOWN);
|
||||
}
|
||||
|
||||
// constructor
|
||||
lp_primal_core_solver(static_matrix<T, X> & A,
|
||||
vector<X> & b, // the right side vector
|
||||
vector<X> & x, // the number of elements in x needs to be at least as large as the number of columns in A
|
||||
vector<unsigned> & basis,
|
||||
vector<unsigned> & nbasis,
|
||||
vector<int> & heading,
|
||||
vector<T> & costs,
|
||||
const vector<column_type> & column_type_array,
|
||||
const vector<X> & upper_bound_values,
|
||||
lp_settings & settings,
|
||||
const column_namer& column_names):
|
||||
lp_core_solver_base<T, X>(A, b,
|
||||
basis,
|
||||
nbasis,
|
||||
heading,
|
||||
x,
|
||||
costs,
|
||||
settings,
|
||||
column_names,
|
||||
column_type_array,
|
||||
m_low_bounds_dummy,
|
||||
upper_bound_values),
|
||||
m_beta(A.row_count()),
|
||||
m_converted_harris_eps(convert_struct<T, double>::convert(this->m_settings.harris_feasibility_tolerance)) {
|
||||
lean_assert(initial_x_is_correct());
|
||||
m_low_bounds_dummy.resize(A.column_count(), zero_of_type<T>());
|
||||
m_enter_price_eps = numeric_traits<T>::precise() ? numeric_traits<T>::zero() : T(1e-5);
|
||||
#ifdef LEAN_DEBUG
|
||||
// check_correctness();
|
||||
#endif
|
||||
}
|
||||
|
||||
bool initial_x_is_correct() {
|
||||
std::set<unsigned> basis_set;
|
||||
for (unsigned i = 0; i < this->m_A.row_count(); i++) {
|
||||
basis_set.insert(this->m_basis[i]);
|
||||
}
|
||||
for (unsigned j = 0; j < this->m_n(); j++) {
|
||||
if (this->column_has_low_bound(j) && this->m_x[j] < numeric_traits<T>::zero()) {
|
||||
LP_OUT(this->m_settings, "low bound for variable " << j << " does not hold: this->m_x[" << j << "] = " << this->m_x[j] << " is negative " << std::endl);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (this->column_has_upper_bound(j) && this->m_x[j] > this->m_upper_bounds[j]) {
|
||||
LP_OUT(this->m_settings, "upper bound for " << j << " does not hold: " << this->m_upper_bounds[j] << ">" << this->m_x[j] << std::endl);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (basis_set.find(j) != basis_set.end()) continue;
|
||||
if (this->m_column_types[j] == column_type::low_bound) {
|
||||
if (numeric_traits<T>::zero() != this->m_x[j]) {
|
||||
LP_OUT(this->m_settings, "only low bound is set for " << j << " but low bound value " << numeric_traits<T>::zero() << " is not equal to " << this->m_x[j] << std::endl);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (this->m_column_types[j] == column_type::boxed) {
|
||||
if (this->m_upper_bounds[j] != this->m_x[j] && !numeric_traits<T>::is_zero(this->m_x[j])) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
friend core_solver_pretty_printer<T, X>;
|
||||
};
|
||||
}
|
1374
src/util/lp/lp_primal_core_solver.hpp
Normal file
1374
src/util/lp/lp_primal_core_solver.hpp
Normal file
File diff suppressed because it is too large
Load diff
25
src/util/lp/lp_primal_core_solver_instances.cpp
Normal file
25
src/util/lp/lp_primal_core_solver_instances.cpp
Normal file
|
@ -0,0 +1,25 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lar_solver.h"
|
||||
#include "util/lp/lp_primal_core_solver.hpp"
|
||||
#include "util/lp/lp_primal_core_solver_tableau.hpp"
|
||||
namespace lean {
|
||||
template void lp_primal_core_solver<double, double>::find_feasible_solution();
|
||||
template void lean::lp_primal_core_solver<lean::mpq, lean::numeric_pair<lean::mpq> >::find_feasible_solution();
|
||||
|
||||
template unsigned lp_primal_core_solver<double, double>::solve();
|
||||
template unsigned lp_primal_core_solver<double, double>::solve_with_tableau();
|
||||
template unsigned lp_primal_core_solver<mpq, mpq>::solve();
|
||||
template unsigned lp_primal_core_solver<mpq, numeric_pair<mpq> >::solve();
|
||||
template void lean::lp_primal_core_solver<double, double>::clear_breakpoints();
|
||||
template bool lean::lp_primal_core_solver<lean::mpq, lean::mpq>::update_basis_and_x_tableau(int, int, lean::mpq const&);
|
||||
template bool lean::lp_primal_core_solver<double, double>::update_basis_and_x_tableau(int, int, double const&);
|
||||
template bool lean::lp_primal_core_solver<lean::mpq, lean::numeric_pair<lean::mpq> >::update_basis_and_x_tableau(int, int, lean::numeric_pair<lean::mpq> const&);
|
||||
}
|
393
src/util/lp/lp_primal_core_solver_tableau.hpp
Normal file
393
src/util/lp/lp_primal_core_solver_tableau.hpp
Normal file
|
@ -0,0 +1,393 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
// this is a part of lp_primal_core_solver that deals with the tableau
|
||||
#include "util/lp/lp_primal_core_solver.h"
|
||||
namespace lean {
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::one_iteration_tableau() {
|
||||
int entering = choose_entering_column_tableau();
|
||||
if (entering == -1) {
|
||||
decide_on_status_when_cannot_find_entering();
|
||||
}
|
||||
else {
|
||||
advance_on_entering_tableau(entering);
|
||||
}
|
||||
lean_assert(this->inf_set_is_correct());
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::advance_on_entering_tableau(int entering) {
|
||||
X t;
|
||||
int leaving = find_leaving_and_t_tableau(entering, t);
|
||||
if (leaving == -1) {
|
||||
this->set_status(UNBOUNDED);
|
||||
return;
|
||||
}
|
||||
advance_on_entering_and_leaving_tableau(entering, leaving, t);
|
||||
}
|
||||
/*
|
||||
template <typename T, typename X> int lp_primal_core_solver<T, X>::choose_entering_column_tableau_rows() {
|
||||
int i = find_inf_row();
|
||||
if (i == -1)
|
||||
return -1;
|
||||
return find_shortest_beneficial_column_in_row(i);
|
||||
}
|
||||
*/
|
||||
template <typename T, typename X> int lp_primal_core_solver<T, X>::choose_entering_column_tableau() {
|
||||
//this moment m_y = cB * B(-1)
|
||||
unsigned number_of_benefitial_columns_to_go_over = get_number_of_non_basic_column_to_try_for_enter();
|
||||
|
||||
lean_assert(numeric_traits<T>::precise());
|
||||
if (number_of_benefitial_columns_to_go_over == 0)
|
||||
return -1;
|
||||
if (this->m_basis_sort_counter == 0) {
|
||||
sort_non_basis();
|
||||
this->m_basis_sort_counter = 20;
|
||||
}
|
||||
else {
|
||||
this->m_basis_sort_counter--;
|
||||
}
|
||||
unsigned j_nz = this->m_m() + 1; // this number is greater than the max column size
|
||||
std::list<unsigned>::iterator entering_iter = m_non_basis_list.end();
|
||||
for (auto non_basis_iter = m_non_basis_list.begin(); number_of_benefitial_columns_to_go_over && non_basis_iter != m_non_basis_list.end(); ++non_basis_iter) {
|
||||
unsigned j = *non_basis_iter;
|
||||
if (!column_is_benefitial_for_entering_basis(j))
|
||||
continue;
|
||||
|
||||
// if we are here then j is a candidate to enter the basis
|
||||
unsigned t = this->m_A.number_of_non_zeroes_in_column(j);
|
||||
if (t < j_nz) {
|
||||
j_nz = t;
|
||||
entering_iter = non_basis_iter;
|
||||
if (number_of_benefitial_columns_to_go_over)
|
||||
number_of_benefitial_columns_to_go_over--;
|
||||
}
|
||||
else if (t == j_nz && my_random() % 2 == 0) {
|
||||
entering_iter = non_basis_iter;
|
||||
}
|
||||
}// while (number_of_benefitial_columns_to_go_over && initial_offset_in_non_basis != offset_in_nb);
|
||||
if (entering_iter == m_non_basis_list.end())
|
||||
return -1;
|
||||
unsigned entering = *entering_iter;
|
||||
m_sign_of_entering_delta = this->m_d[entering] > 0 ? 1 : -1;
|
||||
if (this->m_using_infeas_costs && this->m_settings.use_breakpoints_in_feasibility_search)
|
||||
m_sign_of_entering_delta = -m_sign_of_entering_delta;
|
||||
m_non_basis_list.erase(entering_iter);
|
||||
m_non_basis_list.push_back(entering);
|
||||
return entering;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename T, typename X>
|
||||
unsigned lp_primal_core_solver<T, X>::solve_with_tableau() {
|
||||
init_run_tableau();
|
||||
if (this->current_x_is_feasible() && this->m_look_for_feasible_solution_only) {
|
||||
this->set_status(FEASIBLE);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if ((!numeric_traits<T>::precise()) && this->A_mult_x_is_off()) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
return 0;
|
||||
}
|
||||
do {
|
||||
if (this->print_statistics_with_iterations_and_nonzeroes_and_cost_and_check_that_the_time_is_over((this->m_using_infeas_costs? "inf t" : "feas t"), * this->m_settings.get_message_ostream())) {
|
||||
return this->total_iterations();
|
||||
}
|
||||
if (this->m_settings.use_tableau_rows())
|
||||
one_iteration_tableau_rows();
|
||||
else
|
||||
one_iteration_tableau();
|
||||
switch (this->get_status()) {
|
||||
case OPTIMAL: // double check that we are at optimum
|
||||
case INFEASIBLE:
|
||||
if (this->m_look_for_feasible_solution_only && this->current_x_is_feasible())
|
||||
break;
|
||||
if (!numeric_traits<T>::precise()) {
|
||||
if(this->m_look_for_feasible_solution_only)
|
||||
break;
|
||||
this->init_lu();
|
||||
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
break;
|
||||
}
|
||||
init_reduced_costs();
|
||||
if (choose_entering_column(1) == -1) {
|
||||
decide_on_status_when_cannot_find_entering();
|
||||
break;
|
||||
}
|
||||
this->set_status(UNKNOWN);
|
||||
} else { // precise case
|
||||
if ((!this->infeasibility_costs_are_correct())) {
|
||||
init_reduced_costs_tableau(); // forcing recalc
|
||||
if (choose_entering_column_tableau() == -1) {
|
||||
decide_on_status_when_cannot_find_entering();
|
||||
break;
|
||||
}
|
||||
this->set_status(UNKNOWN);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case TENTATIVE_UNBOUNDED:
|
||||
this->init_lu();
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
break;
|
||||
}
|
||||
|
||||
init_reduced_costs();
|
||||
break;
|
||||
case UNBOUNDED:
|
||||
if (this->current_x_is_infeasible()) {
|
||||
init_reduced_costs();
|
||||
this->set_status(UNKNOWN);
|
||||
}
|
||||
break;
|
||||
|
||||
case UNSTABLE:
|
||||
lean_assert(! (numeric_traits<T>::precise()));
|
||||
this->init_lu();
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
break;
|
||||
}
|
||||
init_reduced_costs();
|
||||
break;
|
||||
|
||||
default:
|
||||
break; // do nothing
|
||||
}
|
||||
} while (this->get_status() != FLOATING_POINT_ERROR
|
||||
&&
|
||||
this->get_status() != UNBOUNDED
|
||||
&&
|
||||
this->get_status() != OPTIMAL
|
||||
&&
|
||||
this->get_status() != INFEASIBLE
|
||||
&&
|
||||
this->m_iters_with_no_cost_growing <= this->m_settings.max_number_of_iterations_with_no_improvements
|
||||
&&
|
||||
this->total_iterations() <= this->m_settings.max_total_number_of_iterations
|
||||
&&
|
||||
!(this->current_x_is_feasible() && this->m_look_for_feasible_solution_only));
|
||||
|
||||
lean_assert(this->get_status() == FLOATING_POINT_ERROR
|
||||
||
|
||||
this->current_x_is_feasible() == false
|
||||
||
|
||||
this->calc_current_x_is_feasible_include_non_basis());
|
||||
return this->total_iterations();
|
||||
|
||||
}
|
||||
template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_entering_and_leaving_tableau(int entering, int leaving, X & t) {
|
||||
lean_assert(this->A_mult_x_is_off() == false);
|
||||
lean_assert(leaving >= 0 && entering >= 0);
|
||||
lean_assert((this->m_settings.simplex_strategy() ==
|
||||
simplex_strategy_enum::tableau_rows) ||
|
||||
m_non_basis_list.back() == static_cast<unsigned>(entering));
|
||||
lean_assert(this->m_using_infeas_costs || !is_neg(t));
|
||||
lean_assert(entering != leaving || !is_zero(t)); // otherwise nothing changes
|
||||
if (entering == leaving) {
|
||||
advance_on_entering_equal_leaving_tableau(entering, t);
|
||||
return;
|
||||
}
|
||||
if (!is_zero(t)) {
|
||||
if (this->current_x_is_feasible() || !this->m_settings.use_breakpoints_in_feasibility_search ) {
|
||||
if (m_sign_of_entering_delta == -1)
|
||||
t = -t;
|
||||
}
|
||||
this->update_basis_and_x_tableau(entering, leaving, t);
|
||||
lean_assert(this->A_mult_x_is_off() == false);
|
||||
this->m_iters_with_no_cost_growing = 0;
|
||||
} else {
|
||||
this->pivot_column_tableau(entering, this->m_basis_heading[leaving]);
|
||||
this->change_basis(entering, leaving);
|
||||
}
|
||||
|
||||
if (this->m_look_for_feasible_solution_only && this->current_x_is_feasible())
|
||||
return;
|
||||
|
||||
if (this->m_settings.simplex_strategy() != simplex_strategy_enum::tableau_rows) {
|
||||
if (need_to_switch_costs()) {
|
||||
this->init_reduced_costs_tableau();
|
||||
}
|
||||
|
||||
lean_assert(!need_to_switch_costs());
|
||||
std::list<unsigned>::iterator it = m_non_basis_list.end();
|
||||
it--;
|
||||
* it = static_cast<unsigned>(leaving);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lp_primal_core_solver<T, X>::advance_on_entering_equal_leaving_tableau(int entering, X & t) {
|
||||
lean_assert(!this->A_mult_x_is_off() );
|
||||
this->update_x_tableau(entering, t * m_sign_of_entering_delta);
|
||||
if (this->m_look_for_feasible_solution_only && this->current_x_is_feasible())
|
||||
return;
|
||||
|
||||
if (need_to_switch_costs()) {
|
||||
init_reduced_costs_tableau();
|
||||
}
|
||||
this->m_iters_with_no_cost_growing = 0;
|
||||
}
|
||||
template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_and_t_tableau(unsigned entering, X & t) {
|
||||
unsigned k = 0;
|
||||
bool unlimited = true;
|
||||
unsigned row_min_nz = this->m_n() + 1;
|
||||
m_leaving_candidates.clear();
|
||||
auto & col = this->m_A.m_columns[entering];
|
||||
unsigned col_size = col.size();
|
||||
for (;k < col_size && unlimited; k++) {
|
||||
const column_cell & c = col[k];
|
||||
unsigned i = c.m_i;
|
||||
const T & ed = this->m_A.get_val(c);
|
||||
lean_assert(!numeric_traits<T>::is_zero(ed));
|
||||
unsigned j = this->m_basis[i];
|
||||
limit_theta_on_basis_column(j, - ed * m_sign_of_entering_delta, t, unlimited);
|
||||
if (!unlimited) {
|
||||
m_leaving_candidates.push_back(j);
|
||||
row_min_nz = this->m_A.m_rows[i].size();
|
||||
}
|
||||
}
|
||||
if (unlimited) {
|
||||
if (try_jump_to_another_bound_on_entering_unlimited(entering, t))
|
||||
return entering;
|
||||
return -1;
|
||||
}
|
||||
|
||||
X ratio;
|
||||
for (;k < col_size; k++) {
|
||||
const column_cell & c = col[k];
|
||||
unsigned i = c.m_i;
|
||||
const T & ed = this->m_A.get_val(c);
|
||||
lean_assert(!numeric_traits<T>::is_zero(ed));
|
||||
unsigned j = this->m_basis[i];
|
||||
unlimited = true;
|
||||
limit_theta_on_basis_column(j, -ed * m_sign_of_entering_delta, ratio, unlimited);
|
||||
if (unlimited) continue;
|
||||
unsigned i_nz = this->m_A.m_rows[i].size();
|
||||
if (ratio < t) {
|
||||
t = ratio;
|
||||
m_leaving_candidates.clear();
|
||||
m_leaving_candidates.push_back(j);
|
||||
row_min_nz = i_nz;
|
||||
} else if (ratio == t && i_nz < row_min_nz) {
|
||||
m_leaving_candidates.clear();
|
||||
m_leaving_candidates.push_back(j);
|
||||
row_min_nz = this->m_A.m_rows[i].size();
|
||||
} else if (ratio == t && i_nz == row_min_nz) {
|
||||
m_leaving_candidates.push_back(j);
|
||||
}
|
||||
}
|
||||
|
||||
ratio = t;
|
||||
unlimited = false;
|
||||
if (try_jump_to_another_bound_on_entering(entering, t, ratio, unlimited)) {
|
||||
t = ratio;
|
||||
return entering;
|
||||
}
|
||||
if (m_leaving_candidates.size() == 1)
|
||||
return m_leaving_candidates[0];
|
||||
k = my_random() % m_leaving_candidates.size();
|
||||
return m_leaving_candidates[k];
|
||||
}
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::init_run_tableau() {
|
||||
// print_matrix(&(this->m_A), std::cout);
|
||||
lean_assert(this->A_mult_x_is_off() == false);
|
||||
lean_assert(basis_columns_are_set_correctly());
|
||||
this->m_basis_sort_counter = 0; // to initiate the sort of the basis
|
||||
this->set_total_iterations(0);
|
||||
this->m_iters_with_no_cost_growing = 0;
|
||||
lean_assert(this->inf_set_is_correct());
|
||||
if (this->current_x_is_feasible() && this->m_look_for_feasible_solution_only)
|
||||
return;
|
||||
if (this->m_settings.backup_costs)
|
||||
backup_and_normalize_costs();
|
||||
m_epsilon_of_reduced_cost = numeric_traits<X>::precise() ? zero_of_type<T>() : T(1) / T(10000000);
|
||||
if (this->m_settings.use_breakpoints_in_feasibility_search)
|
||||
m_breakpoint_indices_queue.resize(this->m_n());
|
||||
if (!numeric_traits<X>::precise()) {
|
||||
this->m_column_norm_update_counter = 0;
|
||||
init_column_norms();
|
||||
}
|
||||
if (this->m_settings.m_simplex_strategy == simplex_strategy_enum::tableau_rows)
|
||||
init_tableau_rows();
|
||||
lean_assert(this->reduced_costs_are_correct_tableau());
|
||||
lean_assert(!this->need_to_pivot_to_basis_tableau());
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_primal_core_solver<T, X>::
|
||||
update_basis_and_x_tableau(int entering, int leaving, X const & tt) {
|
||||
lean_assert(this->use_tableau());
|
||||
update_x_tableau(entering, tt);
|
||||
this->pivot_column_tableau(entering, this->m_basis_heading[leaving]);
|
||||
this->change_basis(entering, leaving);
|
||||
return true;
|
||||
}
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::
|
||||
update_x_tableau(unsigned entering, const X& delta) {
|
||||
if (!this->m_using_infeas_costs) {
|
||||
this->m_x[entering] += delta;
|
||||
for (const auto & c : this->m_A.m_columns[entering]) {
|
||||
unsigned i = c.m_i;
|
||||
this->m_x[this->m_basis[i]] -= delta * this->m_A.get_val(c);
|
||||
this->update_column_in_inf_set(this->m_basis[i]);
|
||||
}
|
||||
} else { // m_using_infeas_costs == true
|
||||
this->m_x[entering] += delta;
|
||||
lean_assert(this->column_is_feasible(entering));
|
||||
lean_assert(this->m_costs[entering] == zero_of_type<T>());
|
||||
// m_d[entering] can change because of the cost change for basic columns.
|
||||
for (const auto & c : this->m_A.m_columns[entering]) {
|
||||
unsigned i = c.m_i;
|
||||
unsigned j = this->m_basis[i];
|
||||
this->m_x[j] -= delta * this->m_A.get_val(c);
|
||||
update_inf_cost_for_column_tableau(j);
|
||||
if (is_zero(this->m_costs[j]))
|
||||
this->m_inf_set.erase(j);
|
||||
else
|
||||
this->m_inf_set.insert(j);
|
||||
}
|
||||
}
|
||||
lean_assert(this->A_mult_x_is_off() == false);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::
|
||||
update_inf_cost_for_column_tableau(unsigned j) {
|
||||
lean_assert(this->m_settings.simplex_strategy() != simplex_strategy_enum::tableau_rows);
|
||||
lean_assert(this->m_using_infeas_costs);
|
||||
T new_cost = get_infeasibility_cost_for_column(j);
|
||||
T delta = this->m_costs[j] - new_cost;
|
||||
if (is_zero(delta))
|
||||
return;
|
||||
this->m_costs[j] = new_cost;
|
||||
update_reduced_cost_for_basic_column_cost_change(delta, j);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::init_reduced_costs_tableau() {
|
||||
if (this->current_x_is_infeasible() && !this->m_using_infeas_costs) {
|
||||
init_infeasibility_costs();
|
||||
} else if (this->current_x_is_feasible() && this->m_using_infeas_costs) {
|
||||
if (this->m_look_for_feasible_solution_only)
|
||||
return;
|
||||
this->m_costs = m_costs_backup;
|
||||
this->m_using_infeas_costs = false;
|
||||
}
|
||||
unsigned size = this->m_basis_heading.size();
|
||||
for (unsigned j = 0; j < size; j++) {
|
||||
if (this->m_basis_heading[j] >= 0)
|
||||
this->m_d[j] = zero_of_type<T>();
|
||||
else {
|
||||
T& d = this->m_d[j] = this->m_costs[j];
|
||||
for (auto & cc : this->m_A.m_columns[j]) {
|
||||
d -= this->m_costs[this->m_basis[cc.m_i]] * this->m_A.get_val(cc);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
96
src/util/lp/lp_primal_simplex.h
Normal file
96
src/util/lp/lp_primal_simplex.h
Normal file
|
@ -0,0 +1,96 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include <unordered_map>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/column_info.h"
|
||||
#include "util/lp/lp_primal_core_solver.h"
|
||||
#include "util/lp/lp_solver.h"
|
||||
#include "util/lp/iterator_on_row.h"
|
||||
namespace lean {
|
||||
template <typename T, typename X>
|
||||
class lp_primal_simplex: public lp_solver<T, X> {
|
||||
lp_primal_core_solver<T, X> * m_core_solver = nullptr;
|
||||
vector<X> m_low_bounds;
|
||||
private:
|
||||
unsigned original_rows() { return this->m_external_rows_to_core_solver_rows.size(); }
|
||||
|
||||
void fill_costs_and_x_for_first_stage_solver(unsigned original_number_of_columns);
|
||||
|
||||
void init_buffer(unsigned k, vector<T> & r);
|
||||
|
||||
void refactor();
|
||||
|
||||
void set_scaled_costs();
|
||||
public:
|
||||
lp_primal_simplex() {}
|
||||
|
||||
column_info<T> * get_or_create_column_info(unsigned column);
|
||||
|
||||
void set_status(lp_status status) {
|
||||
this->m_status = status;
|
||||
}
|
||||
|
||||
lp_status get_status() {
|
||||
return this->m_status;
|
||||
}
|
||||
|
||||
void fill_acceptable_values_for_x();
|
||||
|
||||
|
||||
void set_zero_bound(bool * bound_is_set, T * bounds, unsigned i);
|
||||
|
||||
void fill_costs_and_x_for_first_stage_solver_for_row(
|
||||
int row,
|
||||
unsigned & slack_var,
|
||||
unsigned & artificial);
|
||||
|
||||
|
||||
|
||||
|
||||
void set_core_solver_bounds();
|
||||
|
||||
void update_time_limit_from_starting_time(int start_time) {
|
||||
this->m_settings.time_limit -= (get_millisecond_span(start_time) / 1000.);
|
||||
}
|
||||
|
||||
void find_maximal_solution();
|
||||
|
||||
void fill_A_x_and_basis_for_stage_one_total_inf();
|
||||
|
||||
void fill_A_x_and_basis_for_stage_one_total_inf_for_row(unsigned row);
|
||||
|
||||
void solve_with_total_inf();
|
||||
|
||||
|
||||
~lp_primal_simplex();
|
||||
|
||||
bool bounds_hold(std::unordered_map<std::string, T> const & solution);
|
||||
|
||||
T get_row_value(unsigned i, std::unordered_map<std::string, T> const & solution, std::ostream * out);
|
||||
|
||||
bool row_constraint_holds(unsigned i, std::unordered_map<std::string, T> const & solution, std::ostream * out);
|
||||
|
||||
bool row_constraints_hold(std::unordered_map<std::string, T> const & solution);
|
||||
|
||||
|
||||
T * get_array_from_map(std::unordered_map<std::string, T> const & solution);
|
||||
|
||||
bool solution_is_feasible(std::unordered_map<std::string, T> const & solution) {
|
||||
return bounds_hold(solution) && row_constraints_hold(solution);
|
||||
}
|
||||
|
||||
virtual T get_column_value(unsigned column) const {
|
||||
return this->get_column_value_with_core_solver(column, m_core_solver);
|
||||
}
|
||||
|
||||
T get_current_cost() const;
|
||||
|
||||
|
||||
};
|
||||
}
|
355
src/util/lp/lp_primal_simplex.hpp
Normal file
355
src/util/lp/lp_primal_simplex.hpp
Normal file
|
@ -0,0 +1,355 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/lp_primal_simplex.h"
|
||||
|
||||
namespace lean {
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_costs_and_x_for_first_stage_solver(unsigned original_number_of_columns) {
|
||||
unsigned slack_var = original_number_of_columns;
|
||||
unsigned artificial = original_number_of_columns + this->m_slacks;
|
||||
|
||||
for (unsigned row = 0; row < this->row_count(); row++) {
|
||||
fill_costs_and_x_for_first_stage_solver_for_row(row, slack_var, artificial);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::init_buffer(unsigned k, vector<T> & r) {
|
||||
for (unsigned i = 0; i < k; i++) {
|
||||
r[i] = 0;
|
||||
}
|
||||
r[k] = 1;
|
||||
for (unsigned i = this->row_count() -1; i > k; i--) {
|
||||
r[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::refactor() {
|
||||
m_core_solver->init_lu();
|
||||
if (m_core_solver->factorization()->get_status() != LU_status::OK) {
|
||||
throw_exception("cannot refactor");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::set_scaled_costs() {
|
||||
unsigned j = this->number_of_core_structurals();
|
||||
while (j-- > 0) {
|
||||
this->set_scaled_cost(j);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> column_info<T> * lp_primal_simplex<T, X>::get_or_create_column_info(unsigned column) {
|
||||
auto it = this->m_columns.find(column);
|
||||
return (it == this->m_columns.end())? ( this->m_columns[column] = new column_info<T>) : it->second;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_acceptable_values_for_x() {
|
||||
for (auto t : this->m_core_solver_columns_to_external_columns) {
|
||||
this->m_x[t.first] = numeric_traits<T>::zero();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::set_zero_bound(bool * bound_is_set, T * bounds, unsigned i) {
|
||||
bound_is_set[i] = true;
|
||||
bounds[i] = numeric_traits<T>::zero();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_costs_and_x_for_first_stage_solver_for_row(
|
||||
int row,
|
||||
unsigned & slack_var,
|
||||
unsigned & artificial) {
|
||||
lean_assert(row >= 0 && row < this->row_count());
|
||||
auto & constraint = this->m_constraints[this->m_core_solver_rows_to_external_rows[row]];
|
||||
// we need to bring the program to the form Ax = b
|
||||
T rs = this->m_b[row];
|
||||
T artificial_cost = - numeric_traits<T>::one();
|
||||
switch (constraint.m_relation) {
|
||||
case Equal: // no slack variable here
|
||||
this->m_column_types[artificial] = column_type::low_bound;
|
||||
this->m_costs[artificial] = artificial_cost; // we are maximizing, so the artificial, which is non-negatiive, will be pushed to zero
|
||||
this->m_basis[row] = artificial;
|
||||
if (rs >= 0) {
|
||||
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
|
||||
this->m_x[artificial] = rs;
|
||||
} else {
|
||||
(*this->m_A)(row, artificial) = - numeric_traits<T>::one();
|
||||
this->m_x[artificial] = - rs;
|
||||
}
|
||||
artificial++;
|
||||
break;
|
||||
|
||||
case Greater_or_equal:
|
||||
this->m_column_types[slack_var] = column_type::low_bound;
|
||||
(*this->m_A)(row, slack_var) = - numeric_traits<T>::one();
|
||||
|
||||
if (rs > 0) {
|
||||
lean_assert(numeric_traits<T>::is_zero(this->m_x[slack_var]));
|
||||
// adding one artificial
|
||||
this->m_column_types[artificial] = column_type::low_bound;
|
||||
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
|
||||
this->m_costs[artificial] = artificial_cost;
|
||||
this->m_basis[row] = artificial;
|
||||
this->m_x[artificial] = rs;
|
||||
artificial++;
|
||||
} else {
|
||||
// we can put a slack_var into the basis, and atemplate <typename T, typename X> void lp_primal_simplex<T, X>::adding an artificial variable
|
||||
this->m_basis[row] = slack_var;
|
||||
this->m_x[slack_var] = - rs;
|
||||
}
|
||||
slack_var++;
|
||||
break;
|
||||
case Less_or_equal:
|
||||
// introduce a non-negative slack variable
|
||||
this->m_column_types[slack_var] = column_type::low_bound;
|
||||
(*this->m_A)(row, slack_var) = numeric_traits<T>::one();
|
||||
|
||||
if (rs < 0) {
|
||||
// adding one artificial
|
||||
lean_assert(numeric_traits<T>::is_zero(this->m_x[slack_var]));
|
||||
this->m_column_types[artificial] = column_type::low_bound;
|
||||
(*this->m_A)(row, artificial) = - numeric_traits<T>::one();
|
||||
this->m_costs[artificial] = artificial_cost;
|
||||
this->m_x[artificial] = - rs;
|
||||
this->m_basis[row] = artificial++;
|
||||
} else {
|
||||
// we can put slack_var into the basis, and atemplate <typename T, typename X> void lp_primal_simplex<T, X>::adding an artificial variable
|
||||
this->m_basis[row] = slack_var;
|
||||
this->m_x[slack_var] = rs;
|
||||
}
|
||||
slack_var++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::set_core_solver_bounds() {
|
||||
unsigned total_vars = this->m_A->column_count() + this->m_slacks + this->m_artificials;
|
||||
this->m_column_types.resize(total_vars);
|
||||
this->m_upper_bounds.resize(total_vars);
|
||||
for (auto cit : this->m_map_from_var_index_to_column_info) {
|
||||
column_info<T> * ci = cit.second;
|
||||
unsigned j = ci->get_column_index();
|
||||
if (!is_valid(j))
|
||||
continue; // the variable is not mapped to a column
|
||||
switch (this->m_column_types[j] = ci->get_column_type()){
|
||||
case column_type::fixed:
|
||||
this->m_upper_bounds[j] = numeric_traits<T>::zero();
|
||||
break;
|
||||
case column_type::boxed:
|
||||
this->m_upper_bounds[j] = ci->get_adjusted_upper_bound() / this->m_column_scale[j];
|
||||
break;
|
||||
|
||||
default: break; // do nothing
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::find_maximal_solution() {
|
||||
int preprocessing_start_time = get_millisecond_count();
|
||||
if (this->problem_is_empty()) {
|
||||
this->m_status = lp_status::EMPTY;
|
||||
return;
|
||||
}
|
||||
|
||||
this->cleanup();
|
||||
this->fill_matrix_A_and_init_right_side();
|
||||
if (this->m_status == lp_status::INFEASIBLE) {
|
||||
return;
|
||||
}
|
||||
this->m_x.resize(this->m_A->column_count());
|
||||
this->fill_m_b();
|
||||
this->scale();
|
||||
fill_acceptable_values_for_x();
|
||||
this->count_slacks_and_artificials();
|
||||
set_core_solver_bounds();
|
||||
update_time_limit_from_starting_time(preprocessing_start_time);
|
||||
solve_with_total_inf();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_A_x_and_basis_for_stage_one_total_inf() {
|
||||
for (unsigned row = 0; row < this->row_count(); row++)
|
||||
fill_A_x_and_basis_for_stage_one_total_inf_for_row(row);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_A_x_and_basis_for_stage_one_total_inf_for_row(unsigned row) {
|
||||
lean_assert(row < this->row_count());
|
||||
auto ext_row_it = this->m_core_solver_rows_to_external_rows.find(row);
|
||||
lean_assert(ext_row_it != this->m_core_solver_rows_to_external_rows.end());
|
||||
unsigned ext_row = ext_row_it->second;
|
||||
auto constr_it = this->m_constraints.find(ext_row);
|
||||
lean_assert(constr_it != this->m_constraints.end());
|
||||
auto & constraint = constr_it->second;
|
||||
unsigned j = this->m_A->column_count(); // j is a slack variable
|
||||
this->m_A->add_column();
|
||||
// we need to bring the program to the form Ax = b
|
||||
this->m_basis[row] = j;
|
||||
switch (constraint.m_relation) {
|
||||
case Equal:
|
||||
this->m_x[j] = this->m_b[row];
|
||||
(*this->m_A)(row, j) = numeric_traits<T>::one();
|
||||
this->m_column_types[j] = column_type::fixed;
|
||||
this->m_upper_bounds[j] = m_low_bounds[j] = zero_of_type<X>();
|
||||
break;
|
||||
|
||||
case Greater_or_equal:
|
||||
this->m_x[j] = - this->m_b[row];
|
||||
(*this->m_A)(row, j) = - numeric_traits<T>::one();
|
||||
this->m_column_types[j] = column_type::low_bound;
|
||||
this->m_upper_bounds[j] = zero_of_type<X>();
|
||||
break;
|
||||
case Less_or_equal:
|
||||
this->m_x[j] = this->m_b[row];
|
||||
(*this->m_A)(row, j) = numeric_traits<T>::one();
|
||||
this->m_column_types[j] = column_type::low_bound;
|
||||
this->m_upper_bounds[j] = m_low_bounds[j] = zero_of_type<X>();
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::solve_with_total_inf() {
|
||||
int total_vars = this->m_A->column_count() + this->row_count();
|
||||
if (total_vars == 0) {
|
||||
this->m_status = OPTIMAL;
|
||||
return;
|
||||
}
|
||||
m_low_bounds.clear();
|
||||
m_low_bounds.resize(total_vars, zero_of_type<X>()); // low bounds are shifted ot zero
|
||||
this->m_x.resize(total_vars, numeric_traits<T>::zero());
|
||||
this->m_basis.resize(this->row_count());
|
||||
this->m_costs.clear();
|
||||
this->m_costs.resize(total_vars, zero_of_type<T>());
|
||||
fill_A_x_and_basis_for_stage_one_total_inf();
|
||||
if (this->m_settings.get_message_ostream() != nullptr)
|
||||
this->print_statistics_on_A(*this->m_settings.get_message_ostream());
|
||||
set_scaled_costs();
|
||||
|
||||
m_core_solver = new lp_primal_core_solver<T, X>(*this->m_A,
|
||||
this->m_b,
|
||||
this->m_x,
|
||||
this->m_basis,
|
||||
this->m_nbasis,
|
||||
this->m_heading,
|
||||
this->m_costs,
|
||||
this->m_column_types,
|
||||
m_low_bounds,
|
||||
this->m_upper_bounds,
|
||||
this->m_settings, *this);
|
||||
m_core_solver->solve();
|
||||
this->set_status(m_core_solver->get_status());
|
||||
this->m_total_iterations = m_core_solver->total_iterations();
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> lp_primal_simplex<T, X>::~lp_primal_simplex() {
|
||||
if (m_core_solver != nullptr) {
|
||||
delete m_core_solver;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_primal_simplex<T, X>::bounds_hold(std::unordered_map<std::string, T> const & solution) {
|
||||
for (auto it : this->m_map_from_var_index_to_column_info) {
|
||||
auto sol_it = solution.find(it.second->get_name());
|
||||
if (sol_it == solution.end()) {
|
||||
std::stringstream s;
|
||||
s << "cannot find column " << it.first << " in solution";
|
||||
throw_exception(s.str() );
|
||||
}
|
||||
|
||||
if (!it.second->bounds_hold(sol_it->second)) {
|
||||
// std::cout << "bounds do not hold for " << it.second->get_name() << std::endl;
|
||||
it.second->bounds_hold(sol_it->second);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_primal_simplex<T, X>::get_row_value(unsigned i, std::unordered_map<std::string, T> const & solution, std::ostream * out) {
|
||||
auto it = this->m_A_values.find(i);
|
||||
if (it == this->m_A_values.end()) {
|
||||
std::stringstream s;
|
||||
s << "cannot find row " << i;
|
||||
throw_exception(s.str() );
|
||||
}
|
||||
T ret = numeric_traits<T>::zero();
|
||||
for (auto & pair : it->second) {
|
||||
auto cit = this->m_map_from_var_index_to_column_info.find(pair.first);
|
||||
lean_assert(cit != this->m_map_from_var_index_to_column_info.end());
|
||||
column_info<T> * ci = cit->second;
|
||||
auto sol_it = solution.find(ci->get_name());
|
||||
lean_assert(sol_it != solution.end());
|
||||
T column_val = sol_it->second;
|
||||
if (out != nullptr) {
|
||||
(*out) << pair.second << "(" << ci->get_name() << "=" << column_val << ") ";
|
||||
}
|
||||
ret += pair.second * column_val;
|
||||
}
|
||||
if (out != nullptr) {
|
||||
(*out) << " = " << ret << std::endl;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_primal_simplex<T, X>::row_constraint_holds(unsigned i, std::unordered_map<std::string, T> const & solution, std::ostream *out) {
|
||||
T row_val = get_row_value(i, solution, out);
|
||||
auto & constraint = this->m_constraints[i];
|
||||
T rs = constraint.m_rs;
|
||||
bool print = out != nullptr;
|
||||
switch (constraint.m_relation) {
|
||||
case Equal:
|
||||
if (fabs(numeric_traits<T>::get_double(row_val - rs)) > 0.00001) {
|
||||
if (print) {
|
||||
(*out) << "should be = " << rs << std::endl;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
case Greater_or_equal:
|
||||
if (numeric_traits<T>::get_double(row_val - rs) < -0.00001) {
|
||||
if (print) {
|
||||
(*out) << "should be >= " << rs << std::endl;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return true;;
|
||||
|
||||
case Less_or_equal:
|
||||
if (numeric_traits<T>::get_double(row_val - rs) > 0.00001) {
|
||||
if (print) {
|
||||
(*out) << "should be <= " << rs << std::endl;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return true;;
|
||||
}
|
||||
lean_unreachable();
|
||||
return false; // it is unreachable
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_primal_simplex<T, X>::row_constraints_hold(std::unordered_map<std::string, T> const & solution) {
|
||||
for (auto it : this->m_A_values) {
|
||||
if (!row_constraint_holds(it.first, solution, nullptr)) {
|
||||
row_constraint_holds(it.first, solution, nullptr);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_primal_simplex<T, X>::get_current_cost() const {
|
||||
T ret = numeric_traits<T>::zero();
|
||||
for (auto it : this->m_map_from_var_index_to_column_info) {
|
||||
ret += this->get_column_cost_value(it.first, it.second);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
}
|
20
src/util/lp/lp_primal_simplex_instances.cpp
Normal file
20
src/util/lp/lp_primal_simplex_instances.cpp
Normal file
|
@ -0,0 +1,20 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lp_primal_simplex.hpp"
|
||||
template bool lean::lp_primal_simplex<double, double>::bounds_hold(std::unordered_map<std::string, double, std::hash<std::string>, std::equal_to<std::string>, std::allocator<std::pair<std::string const, double> > > const&);
|
||||
template bool lean::lp_primal_simplex<double, double>::row_constraints_hold(std::unordered_map<std::string, double, std::hash<std::string>, std::equal_to<std::string>, std::allocator<std::pair<std::string const, double> > > const&);
|
||||
template double lean::lp_primal_simplex<double, double>::get_current_cost() const;
|
||||
template double lean::lp_primal_simplex<double, double>::get_column_value(unsigned int) const;
|
||||
template lean::lp_primal_simplex<double, double>::~lp_primal_simplex();
|
||||
template lean::lp_primal_simplex<lean::mpq, lean::mpq>::~lp_primal_simplex();
|
||||
template lean::mpq lean::lp_primal_simplex<lean::mpq, lean::mpq>::get_current_cost() const;
|
||||
template lean::mpq lean::lp_primal_simplex<lean::mpq, lean::mpq>::get_column_value(unsigned int) const;
|
||||
template void lean::lp_primal_simplex<double, double>::find_maximal_solution();
|
||||
template void lean::lp_primal_simplex<lean::mpq, lean::mpq>::find_maximal_solution();
|
339
src/util/lp/lp_settings.h
Normal file
339
src/util/lp/lp_settings.h
Normal file
|
@ -0,0 +1,339 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include <sys/timeb.h>
|
||||
#include <iomanip>
|
||||
#include "util/lp/lp_utils.h"
|
||||
|
||||
namespace lean {
|
||||
typedef unsigned var_index;
|
||||
typedef unsigned constraint_index;
|
||||
typedef unsigned row_index;
|
||||
enum class column_type {
|
||||
free_column = 0,
|
||||
low_bound = 1,
|
||||
upper_bound = 2,
|
||||
boxed = 3,
|
||||
fixed = 4
|
||||
};
|
||||
|
||||
enum class simplex_strategy_enum {
|
||||
tableau_rows = 0,
|
||||
tableau_costs = 1,
|
||||
no_tableau = 2
|
||||
};
|
||||
|
||||
std::string column_type_to_string(column_type t);
|
||||
|
||||
enum lp_status {
|
||||
UNKNOWN,
|
||||
INFEASIBLE,
|
||||
TENTATIVE_UNBOUNDED,
|
||||
UNBOUNDED,
|
||||
TENTATIVE_DUAL_UNBOUNDED,
|
||||
DUAL_UNBOUNDED,
|
||||
OPTIMAL,
|
||||
FEASIBLE,
|
||||
FLOATING_POINT_ERROR,
|
||||
TIME_EXHAUSTED,
|
||||
ITERATIONS_EXHAUSTED,
|
||||
EMPTY,
|
||||
UNSTABLE
|
||||
};
|
||||
|
||||
// when the ratio of the vector lenth to domain size to is greater than the return value we switch to solve_By_for_T_indexed_only
|
||||
template <typename X>
|
||||
unsigned ratio_of_index_size_to_all_size() {
|
||||
if (numeric_traits<X>::precise())
|
||||
return 10;
|
||||
return 120;
|
||||
}
|
||||
|
||||
const char* lp_status_to_string(lp_status status);
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, lp_status status) {
|
||||
return out << lp_status_to_string(status);
|
||||
}
|
||||
|
||||
lp_status lp_status_from_string(std::string status);
|
||||
|
||||
enum non_basic_column_value_position { at_low_bound, at_upper_bound, at_fixed, free_of_bounds, not_at_bound };
|
||||
|
||||
template <typename X> bool is_epsilon_small(const X & v, const double& eps); // forward definition
|
||||
|
||||
int get_millisecond_count();
|
||||
int get_millisecond_span(int start_time);
|
||||
unsigned my_random();
|
||||
void my_random_init(long unsigned seed);
|
||||
|
||||
|
||||
class lp_resource_limit {
|
||||
public:
|
||||
virtual bool get_cancel_flag() = 0;
|
||||
};
|
||||
|
||||
struct stats {
|
||||
unsigned m_total_iterations;
|
||||
unsigned m_iters_with_no_cost_growing;
|
||||
unsigned m_num_factorizations;
|
||||
unsigned m_num_of_implied_bounds;
|
||||
unsigned m_need_to_solve_inf;
|
||||
stats() { reset(); }
|
||||
void reset() { memset(this, 0, sizeof(*this)); }
|
||||
};
|
||||
|
||||
struct lp_settings {
|
||||
private:
|
||||
class default_lp_resource_limit : public lp_resource_limit {
|
||||
lp_settings& m_settings;
|
||||
int m_start_time;
|
||||
public:
|
||||
default_lp_resource_limit(lp_settings& s): m_settings(s), m_start_time(get_millisecond_count()) {}
|
||||
virtual bool get_cancel_flag() {
|
||||
int span_in_mills = get_millisecond_span(m_start_time);
|
||||
return (span_in_mills / 1000.0 > m_settings.time_limit);
|
||||
}
|
||||
};
|
||||
|
||||
default_lp_resource_limit m_default_resource_limit;
|
||||
lp_resource_limit* m_resource_limit;
|
||||
// used for debug output
|
||||
std::ostream* m_debug_out = &std::cout;
|
||||
// used for messages, for example, the computation progress messages
|
||||
std::ostream* m_message_out = &std::cout;
|
||||
|
||||
stats m_stats;
|
||||
|
||||
public:
|
||||
unsigned reps_in_scaler = 20;
|
||||
// when the absolute value of an element is less than pivot_epsilon
|
||||
// in pivoting, we treat it as a zero
|
||||
double pivot_epsilon = 0.00000001;
|
||||
// see Chatal, page 115
|
||||
double positive_price_epsilon = 1e-7;
|
||||
// a quatation "if some choice of the entering vairable leads to an eta matrix
|
||||
// whose diagonal element in the eta column is less than e2 (entering_diag_epsilon) in magnitude, the this choice is rejected ...
|
||||
double entering_diag_epsilon = 1e-8;
|
||||
int c_partial_pivoting = 10; // this is the constant c from page 410
|
||||
unsigned depth_of_rook_search = 4;
|
||||
bool using_partial_pivoting = true;
|
||||
// dissertation of Achim Koberstein
|
||||
// if Bx - b is different at any component more that refactor_epsilon then we refactor
|
||||
double refactor_tolerance = 1e-4;
|
||||
double pivot_tolerance = 1e-6;
|
||||
double zero_tolerance = 1e-12;
|
||||
double drop_tolerance = 1e-14;
|
||||
double tolerance_for_artificials = 1e-4;
|
||||
double can_be_taken_to_basis_tolerance = 0.00001;
|
||||
|
||||
unsigned percent_of_entering_to_check = 5; // we try to find a profitable column in a percentage of the columns
|
||||
bool use_scaling = true;
|
||||
double scaling_maximum = 1;
|
||||
double scaling_minimum = 0.5;
|
||||
double harris_feasibility_tolerance = 1e-7; // page 179 of Istvan Maros
|
||||
double ignore_epsilon_of_harris = 10e-5;
|
||||
unsigned max_number_of_iterations_with_no_improvements = 2000000;
|
||||
unsigned max_total_number_of_iterations = 20000000;
|
||||
double time_limit = std::numeric_limits<double>::max(); // the maximum time limit of the total run time in seconds
|
||||
// dual section
|
||||
double dual_feasibility_tolerance = 1e-7; // // page 71 of the PhD thesis of Achim Koberstein
|
||||
double primal_feasibility_tolerance = 1e-7; // page 71 of the PhD thesis of Achim Koberstein
|
||||
double relative_primal_feasibility_tolerance = 1e-9; // page 71 of the PhD thesis of Achim Koberstein
|
||||
|
||||
bool m_bound_propagation = true;
|
||||
|
||||
bool bound_progation() const {
|
||||
return m_bound_propagation;
|
||||
}
|
||||
|
||||
bool& bound_propagation() {
|
||||
return m_bound_propagation;
|
||||
}
|
||||
|
||||
lp_settings() : m_default_resource_limit(*this), m_resource_limit(&m_default_resource_limit) {}
|
||||
|
||||
void set_resource_limit(lp_resource_limit& lim) { m_resource_limit = &lim; }
|
||||
bool get_cancel_flag() const { return m_resource_limit->get_cancel_flag(); }
|
||||
|
||||
void set_debug_ostream(std::ostream* out) { m_debug_out = out; }
|
||||
void set_message_ostream(std::ostream* out) { m_message_out = out; }
|
||||
|
||||
std::ostream* get_debug_ostream() { return m_debug_out; }
|
||||
std::ostream* get_message_ostream() { return m_message_out; }
|
||||
stats& st() { return m_stats; }
|
||||
stats const& st() const { return m_stats; }
|
||||
|
||||
template <typename T> static bool is_eps_small_general(const T & t, const double & eps) {
|
||||
return (!numeric_traits<T>::precise())? is_epsilon_small<T>(t, eps) : numeric_traits<T>::is_zero(t);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_dual_feasibility_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, dual_feasibility_tolerance);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_primal_feasibility_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, primal_feasibility_tolerance);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_can_be_taken_to_basis_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, can_be_taken_to_basis_tolerance);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_drop_tolerance(T const & t) const {
|
||||
return is_eps_small_general<T>(t, drop_tolerance);
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_zero_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, zero_tolerance);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_refactor_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, refactor_tolerance);
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_pivot_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, pivot_tolerance);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_harris_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, harris_feasibility_tolerance);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_ignore_epslilon_for_harris(T const & t) {
|
||||
return is_eps_small_general<T>(t, ignore_epsilon_of_harris);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_artificial_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, tolerance_for_artificials);
|
||||
}
|
||||
// the method of lar solver to use
|
||||
bool presolve_with_double_solver_for_lar = true;
|
||||
simplex_strategy_enum m_simplex_strategy = simplex_strategy_enum::tableau_rows;
|
||||
simplex_strategy_enum simplex_strategy() const {
|
||||
return m_simplex_strategy;
|
||||
}
|
||||
|
||||
simplex_strategy_enum & simplex_strategy() {
|
||||
return m_simplex_strategy;
|
||||
}
|
||||
|
||||
bool use_tableau() const {
|
||||
return m_simplex_strategy != simplex_strategy_enum::no_tableau;
|
||||
}
|
||||
|
||||
bool use_tableau_rows() const {
|
||||
return m_simplex_strategy == simplex_strategy_enum::tableau_rows;
|
||||
}
|
||||
|
||||
int report_frequency = 1000;
|
||||
bool print_statistics = false;
|
||||
unsigned column_norms_update_frequency = 12000;
|
||||
bool scale_with_ratio = true;
|
||||
double density_threshold = 0.7; // need to tune it up, todo
|
||||
#ifdef LEAN_DEBUG
|
||||
static unsigned ddd; // used for debugging
|
||||
#endif
|
||||
bool use_breakpoints_in_feasibility_search = false;
|
||||
unsigned random_seed = 1;
|
||||
static unsigned long random_next;
|
||||
unsigned max_row_length_for_bound_propagation = 300;
|
||||
bool backup_costs = true;
|
||||
}; // end of lp_settings class
|
||||
|
||||
|
||||
#define LP_OUT(_settings_, _msg_) { if (_settings_.get_debug_ostream()) { *_settings_.get_debug_ostream() << _msg_; } }
|
||||
|
||||
template <typename T>
|
||||
std::string T_to_string(const T & t) {
|
||||
std::ostringstream strs;
|
||||
strs << t;
|
||||
return strs.str();
|
||||
}
|
||||
|
||||
inline std::string T_to_string(const numeric_pair<mpq> & t) {
|
||||
std::ostringstream strs;
|
||||
double r = (t.x + t.y / mpq(1000)).get_double();
|
||||
strs << r;
|
||||
return strs.str();
|
||||
}
|
||||
|
||||
|
||||
inline std::string T_to_string(const mpq & t) {
|
||||
std::ostringstream strs;
|
||||
strs << t.get_double();
|
||||
return strs.str();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool val_is_smaller_than_eps(T const & t, double const & eps) {
|
||||
if (!numeric_traits<T>::precise()) {
|
||||
return numeric_traits<T>::get_double(t) < eps;
|
||||
}
|
||||
return t <= numeric_traits<T>::zero();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool vectors_are_equal(T * a, vector<T> &b, unsigned n);
|
||||
|
||||
template <typename T>
|
||||
bool vectors_are_equal(const vector<T> & a, const buffer<T> &b);
|
||||
|
||||
template <typename T>
|
||||
bool vectors_are_equal(const vector<T> & a, const vector<T> &b);
|
||||
|
||||
template <typename T>
|
||||
T abs (T const & v) { return v >= zero_of_type<T>() ? v : -v; }
|
||||
|
||||
template <typename X>
|
||||
X max_abs_in_vector(vector<X>& t){
|
||||
X r(zero_of_type<X>());
|
||||
for (auto & v : t)
|
||||
r = std::max(abs(v) , r);
|
||||
return r;
|
||||
}
|
||||
inline void print_blanks(int n, std::ostream & out) {
|
||||
while (n--) {out << ' '; }
|
||||
}
|
||||
|
||||
|
||||
// after a push of the last element we ensure that the vector increases
|
||||
// we also suppose that before the last push the vector was increasing
|
||||
inline void ensure_increasing(vector<unsigned> & v) {
|
||||
lean_assert(v.size() > 0);
|
||||
unsigned j = v.size() - 1;
|
||||
for (; j > 0; j-- )
|
||||
if (v[j] <= v[j - 1]) {
|
||||
// swap
|
||||
unsigned t = v[j];
|
||||
v[j] = v[j-1];
|
||||
v[j-1] = t;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if LEAN_DEBUG
|
||||
bool D();
|
||||
#endif
|
||||
}
|
133
src/util/lp/lp_settings.hpp
Normal file
133
src/util/lp/lp_settings.hpp
Normal file
|
@ -0,0 +1,133 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <cmath>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/lp_settings.h"
|
||||
namespace lean {
|
||||
std::string column_type_to_string(column_type t) {
|
||||
switch (t) {
|
||||
case column_type::fixed: return "fixed";
|
||||
case column_type::boxed: return "boxed";
|
||||
case column_type::low_bound: return "low_bound";
|
||||
case column_type::upper_bound: return "upper_bound";
|
||||
case column_type::free_column: return "free_column";
|
||||
default: lean_unreachable();
|
||||
}
|
||||
return "unknown"; // it is unreachable
|
||||
}
|
||||
|
||||
const char* lp_status_to_string(lp_status status) {
|
||||
switch (status) {
|
||||
case UNKNOWN: return "UNKNOWN";
|
||||
case INFEASIBLE: return "INFEASIBLE";
|
||||
case UNBOUNDED: return "UNBOUNDED";
|
||||
case TENTATIVE_DUAL_UNBOUNDED: return "TENTATIVE_DUAL_UNBOUNDED";
|
||||
case DUAL_UNBOUNDED: return "DUAL_UNBOUNDED";
|
||||
case OPTIMAL: return "OPTIMAL";
|
||||
case FEASIBLE: return "FEASIBLE";
|
||||
case FLOATING_POINT_ERROR: return "FLOATING_POINT_ERROR";
|
||||
case TIME_EXHAUSTED: return "TIME_EXHAUSTED";
|
||||
case ITERATIONS_EXHAUSTED: return "ITERATIONS_EXHAUSTED";
|
||||
case EMPTY: return "EMPTY";
|
||||
case UNSTABLE: return "UNSTABLE";
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
return "UNKNOWN"; // it is unreachable
|
||||
}
|
||||
|
||||
lp_status lp_status_from_string(std::string status) {
|
||||
if (status == "UNKNOWN") return lp_status::UNKNOWN;
|
||||
if (status == "INFEASIBLE") return lp_status::INFEASIBLE;
|
||||
if (status == "UNBOUNDED") return lp_status::UNBOUNDED;
|
||||
if (status == "OPTIMAL") return lp_status::OPTIMAL;
|
||||
if (status == "FEASIBLE") return lp_status::FEASIBLE;
|
||||
if (status == "FLOATING_POINT_ERROR") return lp_status::FLOATING_POINT_ERROR;
|
||||
if (status == "TIME_EXHAUSTED") return lp_status::TIME_EXHAUSTED;
|
||||
if (status == "ITERATIONS_EXHAUSTED") return lp_status::ITERATIONS_EXHAUSTED;
|
||||
if (status == "EMPTY") return lp_status::EMPTY;
|
||||
lean_unreachable();
|
||||
return lp_status::UNKNOWN; // it is unreachable
|
||||
}
|
||||
int get_millisecond_count() {
|
||||
timeb tb;
|
||||
ftime(&tb);
|
||||
return tb.millitm + (tb.time & 0xfffff) * 1000;
|
||||
}
|
||||
|
||||
int get_millisecond_span(int start_time) {
|
||||
int span = get_millisecond_count() - start_time;
|
||||
if (span < 0)
|
||||
span += 0x100000 * 1000;
|
||||
return span;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void my_random_init(long unsigned seed) {
|
||||
lp_settings::random_next = seed;
|
||||
}
|
||||
|
||||
unsigned my_random() {
|
||||
lp_settings::random_next = lp_settings::random_next * 1103515245 + 12345;
|
||||
return((unsigned)(lp_settings::random_next/65536) % 32768);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool vectors_are_equal(T * a, vector<T> &b, unsigned n) {
|
||||
if (numeric_traits<T>::precise()) {
|
||||
for (unsigned i = 0; i < n; i ++){
|
||||
if (!numeric_traits<T>::is_zero(a[i] - b[i])) {
|
||||
// std::cout << "a[" << i <<"]" << a[i] << ", " << "b[" << i <<"]" << b[i] << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (unsigned i = 0; i < n; i ++){
|
||||
if (std::abs(numeric_traits<T>::get_double(a[i] - b[i])) > 0.000001) {
|
||||
// std::cout << "a[" << i <<"]" << a[i] << ", " << "b[" << i <<"]" << b[i] << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
bool vectors_are_equal(const vector<T> & a, const vector<T> &b) {
|
||||
unsigned n = static_cast<unsigned>(a.size());
|
||||
if (n != b.size()) return false;
|
||||
if (numeric_traits<T>::precise()) {
|
||||
for (unsigned i = 0; i < n; i ++){
|
||||
if (!numeric_traits<T>::is_zero(a[i] - b[i])) {
|
||||
// std::cout << "a[" << i <<"]" << a[i] << ", " << "b[" << i <<"]" << b[i] << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (unsigned i = 0; i < n; i ++){
|
||||
double da = numeric_traits<T>::get_double(a[i]);
|
||||
double db = numeric_traits<T>::get_double(b[i]);
|
||||
double amax = std::max(fabs(da), fabs(db));
|
||||
if (amax > 1) {
|
||||
da /= amax;
|
||||
db /= amax;
|
||||
}
|
||||
|
||||
if (fabs(da - db) > 0.000001) {
|
||||
// std::cout << "a[" << i <<"] = " << a[i] << ", but " << "b[" << i <<"] = " << b[i] << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
unsigned long lp_settings::random_next = 1;
|
||||
#ifdef LEAN_DEBUG
|
||||
unsigned lp_settings::ddd = 0;
|
||||
#endif
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Reference in a new issue