mirror of
https://github.com/Z3Prover/z3
synced 2025-04-08 10:25:18 +00:00
stale files
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
75eba45926
commit
2800049dd4
|
@ -1,264 +0,0 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Nikolaj Bjorner
|
||||
*/
|
||||
|
||||
#include "util/lp/lar_solver.h"
|
||||
#include "util/lp/nra_solver.h"
|
||||
#include "nlsat/nlsat_solver.h"
|
||||
#include "math/polynomial/polynomial.h"
|
||||
#include "math/polynomial/algebraic_numbers.h"
|
||||
#include "util/map.h"
|
||||
|
||||
|
||||
namespace nra {
|
||||
|
||||
struct mon_eq {
|
||||
mon_eq(lp::var_index v, unsigned sz, lp::var_index const* vs):
|
||||
m_v(v), m_vs(sz, vs) {}
|
||||
lp::var_index m_v;
|
||||
svector<lp::var_index> m_vs;
|
||||
};
|
||||
|
||||
struct solver::imp {
|
||||
lp::lar_solver& s;
|
||||
reslimit& m_limit;
|
||||
params_ref m_params;
|
||||
u_map<polynomial::var> m_lp2nl; // map from lar_solver variables to nlsat::solver variables
|
||||
scoped_ptr<nlsat::solver> m_nlsat;
|
||||
vector<mon_eq> m_monomials;
|
||||
unsigned_vector m_monomials_lim;
|
||||
mutable std::unordered_map<lp::var_index, rational> m_variable_values; // current model
|
||||
|
||||
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p):
|
||||
s(s),
|
||||
m_limit(lim),
|
||||
m_params(p) {
|
||||
}
|
||||
|
||||
bool need_check() {
|
||||
return !m_monomials.empty() && !check_assignments();
|
||||
}
|
||||
|
||||
void add(lp::var_index v, unsigned sz, lp::var_index const* vs) {
|
||||
m_monomials.push_back(mon_eq(v, sz, vs));
|
||||
}
|
||||
|
||||
void push() {
|
||||
m_monomials_lim.push_back(m_monomials.size());
|
||||
}
|
||||
|
||||
void pop(unsigned n) {
|
||||
if (n == 0) return;
|
||||
m_monomials.shrink(m_monomials_lim[m_monomials_lim.size() - n]);
|
||||
m_monomials_lim.shrink(m_monomials_lim.size() - n);
|
||||
}
|
||||
|
||||
/*
|
||||
\brief Check if polynomials are well defined.
|
||||
multiply values for vs and check if they are equal to value for v.
|
||||
epsilon has been computed.
|
||||
*/
|
||||
bool check_assignment(mon_eq const& m) const {
|
||||
rational r1 = m_variable_values[m.m_v];
|
||||
rational r2(1);
|
||||
for (auto w : m.m_vs) {
|
||||
r2 *= m_variable_values[w];
|
||||
}
|
||||
return r1 == r2;
|
||||
}
|
||||
|
||||
bool check_assignments() const {
|
||||
s.get_model(m_variable_values);
|
||||
for (auto const& m : m_monomials) {
|
||||
if (!check_assignment(m)) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
\brief one-shot nlsat check.
|
||||
A one shot checker is the least functionality that can
|
||||
enable non-linear reasoning.
|
||||
In addition to checking satisfiability we would also need
|
||||
to identify equalities in the model that should be assumed
|
||||
with the remaining solver.
|
||||
|
||||
TBD: use partial model from lra_solver to prime the state of nlsat_solver.
|
||||
TBD: explore more incremental ways of applying nlsat (using assumptions)
|
||||
*/
|
||||
lbool check(lp::explanation_t& ex) {
|
||||
SASSERT(need_check());
|
||||
m_nlsat = alloc(nlsat::solver, m_limit, m_params);
|
||||
m_lp2nl.reset();
|
||||
vector<nlsat::assumption, false> core;
|
||||
|
||||
// add linear inequalities from lra_solver
|
||||
for (unsigned i = 0; i < s.constraint_count(); ++i) {
|
||||
add_constraint(i);
|
||||
}
|
||||
|
||||
// add polynomial definitions.
|
||||
for (auto const& m : m_monomials) {
|
||||
add_monomial_eq(m);
|
||||
}
|
||||
// TBD: add variable bounds?
|
||||
|
||||
lbool r = m_nlsat->check();
|
||||
TRACE("arith", m_nlsat->display(tout << r << "\n"););
|
||||
switch (r) {
|
||||
case l_true:
|
||||
break;
|
||||
case l_false:
|
||||
ex.reset();
|
||||
m_nlsat->get_core(core);
|
||||
for (auto c : core) {
|
||||
unsigned idx = static_cast<unsigned>(static_cast<imp*>(c) - this);
|
||||
ex.push_back(std::pair<rational, unsigned>(rational(1), idx));
|
||||
TRACE("arith", tout << "ex: " << idx << "\n";);
|
||||
}
|
||||
break;
|
||||
|
||||
case l_undef:
|
||||
break;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
void add_monomial_eq(mon_eq const& m) {
|
||||
polynomial::manager& pm = m_nlsat->pm();
|
||||
svector<polynomial::var> vars;
|
||||
for (auto v : m.m_vs) {
|
||||
vars.push_back(lp2nl(v));
|
||||
}
|
||||
polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.c_ptr()), pm);
|
||||
polynomial::monomial_ref m2(pm.mk_monomial(lp2nl(m.m_v), 1), pm);
|
||||
polynomial::monomial* mls[2] = { m1, m2 };
|
||||
polynomial::scoped_numeral_vector coeffs(pm.m());
|
||||
coeffs.push_back(mpz(1));
|
||||
coeffs.push_back(mpz(-1));
|
||||
polynomial::polynomial_ref p(pm.mk_polynomial(2, coeffs.c_ptr(), mls), pm);
|
||||
polynomial::polynomial* ps[1] = { p };
|
||||
bool even[1] = { false };
|
||||
nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, even);
|
||||
m_nlsat->mk_clause(1, &lit, 0);
|
||||
}
|
||||
|
||||
void add_constraint(unsigned idx) {
|
||||
auto& c = s.get_constraint(idx);
|
||||
auto& pm = m_nlsat->pm();
|
||||
auto k = c.m_kind;
|
||||
auto rhs = c.m_right_side;
|
||||
auto lhs = c.get_left_side_coefficients();
|
||||
auto sz = lhs.size();
|
||||
svector<polynomial::var> vars;
|
||||
rational den = denominator(rhs);
|
||||
for (auto kv : lhs) {
|
||||
vars.push_back(lp2nl(kv.second));
|
||||
den = lcm(den, denominator(kv.first));
|
||||
}
|
||||
vector<rational> coeffs;
|
||||
for (auto kv : lhs) {
|
||||
coeffs.push_back(den * kv.first);
|
||||
}
|
||||
rhs *= den;
|
||||
polynomial::polynomial_ref p(pm.mk_linear(sz, coeffs.c_ptr(), vars.c_ptr(), -rhs), pm);
|
||||
polynomial::polynomial* ps[1] = { p };
|
||||
bool is_even[1] = { false };
|
||||
nlsat::literal lit;
|
||||
nlsat::assumption a = this + idx;
|
||||
switch (k) {
|
||||
case lp::lconstraint_kind::LE:
|
||||
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
|
||||
break;
|
||||
case lp::lconstraint_kind::GE:
|
||||
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
|
||||
break;
|
||||
case lp::lconstraint_kind::LT:
|
||||
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
|
||||
break;
|
||||
case lp::lconstraint_kind::GT:
|
||||
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
|
||||
break;
|
||||
case lp::lconstraint_kind::EQ:
|
||||
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
|
||||
break;
|
||||
}
|
||||
m_nlsat->mk_clause(1, &lit, a);
|
||||
}
|
||||
|
||||
bool is_int(lp::var_index v) {
|
||||
return s.var_is_int(v);
|
||||
}
|
||||
|
||||
|
||||
polynomial::var lp2nl(lp::var_index v) {
|
||||
polynomial::var r;
|
||||
if (!m_lp2nl.find(v, r)) {
|
||||
r = m_nlsat->mk_var(is_int(v));
|
||||
m_lp2nl.insert(v, r);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
nlsat::anum const& value(lp::var_index v) const {
|
||||
return m_nlsat->value(m_lp2nl.find(v));
|
||||
}
|
||||
|
||||
nlsat::anum_manager& am() {
|
||||
return m_nlsat->am();
|
||||
}
|
||||
|
||||
std::ostream& display(std::ostream& out) const {
|
||||
for (auto m : m_monomials) {
|
||||
out << "v" << m.m_v << " = ";
|
||||
for (auto v : m.m_vs) {
|
||||
out << "v" << v << " ";
|
||||
}
|
||||
out << "\n";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
solver::solver(lp::lar_solver& s, reslimit& lim, params_ref const& p) {
|
||||
m_imp = alloc(imp, s, lim, p);
|
||||
}
|
||||
|
||||
solver::~solver() {
|
||||
dealloc(m_imp);
|
||||
}
|
||||
|
||||
void solver::add_monomial(lp::var_index v, unsigned sz, lp::var_index const* vs) {
|
||||
m_imp->add(v, sz, vs);
|
||||
}
|
||||
|
||||
lbool solver::check(lp::explanation_t& ex) {
|
||||
return m_imp->check(ex);
|
||||
}
|
||||
|
||||
bool solver::need_check() {
|
||||
return m_imp->need_check();
|
||||
}
|
||||
|
||||
void solver::push() {
|
||||
m_imp->push();
|
||||
}
|
||||
|
||||
void solver::pop(unsigned n) {
|
||||
m_imp->pop(n);
|
||||
}
|
||||
|
||||
std::ostream& solver::display(std::ostream& out) const {
|
||||
return m_imp->display(out);
|
||||
}
|
||||
|
||||
nlsat::anum const& solver::value(lp::var_index v) const {
|
||||
return m_imp->value(v);
|
||||
}
|
||||
|
||||
nlsat::anum_manager& solver::am() {
|
||||
return m_imp->am();
|
||||
}
|
||||
|
||||
}
|
|
@ -1,70 +0,0 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Nikolaj Bjorner
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/rlimit.h"
|
||||
#include "util/params.h"
|
||||
#include "nlsat/nlsat_solver.h"
|
||||
|
||||
namespace lp {
|
||||
class lar_solver;
|
||||
}
|
||||
|
||||
|
||||
namespace nra {
|
||||
|
||||
|
||||
|
||||
class solver {
|
||||
struct imp;
|
||||
imp* m_imp;
|
||||
|
||||
public:
|
||||
|
||||
solver(lp::lar_solver& s, reslimit& lim, params_ref const& p = params_ref());
|
||||
|
||||
~solver();
|
||||
|
||||
/*
|
||||
\brief Add a definition v = vs[0]*vs[1]*...*vs[sz-1]
|
||||
The variable v is equal to the product of variables vs.
|
||||
*/
|
||||
void add_monomial(lp::var_index v, unsigned sz, lp::var_index const* vs);
|
||||
|
||||
/*
|
||||
\brief Check feasiblity of linear constraints augmented by polynomial definitions
|
||||
that are added.
|
||||
*/
|
||||
lbool check(lp::explanation_t& ex);
|
||||
|
||||
/*
|
||||
\brief determine whether nra check is needed.
|
||||
*/
|
||||
bool need_check();
|
||||
|
||||
/*
|
||||
\brief Access model.
|
||||
*/
|
||||
nlsat::anum const& value(lp::var_index v) const;
|
||||
|
||||
nlsat::anum_manager& am();
|
||||
|
||||
/*
|
||||
\brief push and pop scope.
|
||||
Monomial definitions are retraced when popping scope.
|
||||
*/
|
||||
void push();
|
||||
|
||||
void pop(unsigned n);
|
||||
|
||||
/*
|
||||
\brief display state
|
||||
*/
|
||||
std::ostream& display(std::ostream& out) const;
|
||||
|
||||
};
|
||||
}
|
Loading…
Reference in a new issue