3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-12 12:08:18 +00:00

updated ml api test expected output following recent formatting changes

This commit is contained in:
Josh Berdine 2012-10-07 00:33:22 +01:00
parent 4c8044176d
commit 27b8eefa67
2 changed files with 23 additions and 23 deletions

View file

@ -1,4 +1,4 @@
Z3 4.0.0.0 Z3 4.2.0.0
simple_example simple_example
CONTEXT: CONTEXT:
@ -47,13 +47,13 @@ valid
disprove: not(g(g(x) - g(y)) = g(z)), x + z <= y <= x implies z < -1 disprove: not(g(g(x) - g(y)) = g(z)), x + z <= y <= x implies z < -1
invalid invalid
counterexample: counterexample:
z -> -1 z -> (- 1)
y -> -7719 y -> (- 7719)
x -> -7719 x -> (- 7719)
g -> { g -> {
-7719 -> 0 (- 7719) -> 0
0 -> 2 0 -> 2
-1 -> 3 (- 1) -> 3
else -> 0 else -> 0
} }
@ -100,8 +100,8 @@ reason for last failure: 7 (7 = quantifiers)
array_example1 array_example1
prove: store(a1, i1, v1) = store(a2, i2, v2) implies (i1 = i3 or i2 = i3 or select(a1, i3) = select(a2, i3)) prove: store(a1, i1, v1) = store(a2, i2, v2) implies (i1 = i3 or i2 = i3 or select(a1, i3) = select(a2, i3))
(implies (= (store a1 i1 v1) (store a2 i2 v2)) (=> (= (store a1 i1 v1) (store a2 i2 v2))
(or (= i1 i3) (= i2 i3) (= (select a1 i3) (select a2 i3)))) (or (= i1 i3) (= i2 i3) (= (select a1 i3) (select a2 i3))))
valid valid
array_example2 array_example2
@ -214,14 +214,14 @@ x -> 1
parser_example2 parser_example2
formula: (> x y) formula: (> x y)
sat sat
y -> -1 y -> (- 1)
x -> 0 x -> 0
parser_example3 parser_example3
assert axiom: assert axiom:
(forall (x Int) (y Int) (= (g x y) (g y x)) :qid {k!1}) (forall (x Int) (y Int) (= (g x y) (g y x)) :qid {k!1})
formula: (forall (x Int) (y Int) (implies (= x y) (= (g x 0) (g 0 y))) :qid {k!1}) formula: (forall (x Int) (y Int) (=> (= x y) (= (g x 0) (g 0 y))) :qid {k!1})
valid valid
parser_example4 parser_example4
@ -240,7 +240,7 @@ Error message: 'ERROR: line 1 column 41: could not find sort symbol 'y'.
numeral_example numeral_example
Numerals n1:1/2 n2:1/2 Numerals n1:1/2 n2:1/2
valid valid
Numerals n1:-1/3 n2:-33333333333333333333333333333333333333333333333333/100000000000000000000000000000000000000000000000000 Numerals n1:(- 1/3) n2:(- 33333333333333333333333333333333333333333333333333/100000000000000000000000000000000000000000000000000)
valid valid
ite_example ite_example
@ -254,7 +254,7 @@ valid
valid valid
valid valid
valid valid
Formula (implies (is_cons u) (= u (cons (head u) (tail u)))) Formula (=> (is_cons u) (= u (cons (head u) (tail u))))
valid valid
invalid invalid
counterexample: counterexample:
@ -267,7 +267,7 @@ valid
valid valid
valid valid
valid valid
Formula (implies (is_cons u) (= u (cons (car u) (cdr u)))) Formula (=> (is_cons u) (= u (cons (car u) (cdr u))))
valid valid
invalid invalid
counterexample: counterexample:

View file

@ -1,4 +1,4 @@
Z3 4.0.0.0 Z3 4.2.0.0
simple_example simple_example
CONTEXT: CONTEXT:
@ -47,13 +47,13 @@ valid
disprove: not(g(g(x) - g(y)) = g(z)), x + z <= y <= x implies z < -1 disprove: not(g(g(x) - g(y)) = g(z)), x + z <= y <= x implies z < -1
invalid invalid
counterexample: counterexample:
z -> -1 z -> (- 1)
y -> -7719 y -> (- 7719)
x -> -7719 x -> (- 7719)
g -> { g -> {
-7719 -> 0 (- 7719) -> 0
0 -> 2 0 -> 2
-1 -> 3 (- 1) -> 3
else -> 0 else -> 0
} }
@ -97,8 +97,8 @@ reason for last failure: 7 (7 = quantifiers)
array_example1 array_example1
prove: store(a1, i1, v1) = store(a2, i2, v2) implies (i1 = i3 or i2 = i3 or select(a1, i3) = select(a2, i3)) prove: store(a1, i1, v1) = store(a2, i2, v2) implies (i1 = i3 or i2 = i3 or select(a1, i3) = select(a2, i3))
(implies (= (store a1 i1 v1) (store a2 i2 v2)) (=> (= (store a1 i1 v1) (store a2 i2 v2))
(or (= i1 i3) (= i2 i3) (= (select a1 i3) (select a2 i3)))) (or (= i1 i3) (= i2 i3) (= (select a1 i3) (select a2 i3))))
valid valid
array_example2 array_example2
@ -211,14 +211,14 @@ x -> 1
parser_example2 parser_example2
formula: (> x y) formula: (> x y)
sat sat
y -> -1 y -> (- 1)
x -> 0 x -> 0
parser_example3 parser_example3
assert axiom: assert axiom:
(forall (x Int) (y Int) (= (g x y) (g y x)) :qid {k!1}) (forall (x Int) (y Int) (= (g x y) (g y x)) :qid {k!1})
formula: (forall (x Int) (y Int) (implies (= x y) (= (g x 0) (g 0 y))) :qid {k!1}) formula: (forall (x Int) (y Int) (=> (= x y) (= (g x 0) (g 0 y))) :qid {k!1})
valid valid
parser_example4 parser_example4