3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

updated ml api test expected output following recent formatting changes

This commit is contained in:
Josh Berdine 2012-10-07 00:33:22 +01:00
parent 4c8044176d
commit 27b8eefa67
2 changed files with 23 additions and 23 deletions

View file

@ -1,4 +1,4 @@
Z3 4.0.0.0
Z3 4.2.0.0
simple_example
CONTEXT:
@ -47,13 +47,13 @@ valid
disprove: not(g(g(x) - g(y)) = g(z)), x + z <= y <= x implies z < -1
invalid
counterexample:
z -> -1
y -> -7719
x -> -7719
z -> (- 1)
y -> (- 7719)
x -> (- 7719)
g -> {
-7719 -> 0
(- 7719) -> 0
0 -> 2
-1 -> 3
(- 1) -> 3
else -> 0
}
@ -100,8 +100,8 @@ reason for last failure: 7 (7 = quantifiers)
array_example1
prove: store(a1, i1, v1) = store(a2, i2, v2) implies (i1 = i3 or i2 = i3 or select(a1, i3) = select(a2, i3))
(implies (= (store a1 i1 v1) (store a2 i2 v2))
(or (= i1 i3) (= i2 i3) (= (select a1 i3) (select a2 i3))))
(=> (= (store a1 i1 v1) (store a2 i2 v2))
(or (= i1 i3) (= i2 i3) (= (select a1 i3) (select a2 i3))))
valid
array_example2
@ -214,14 +214,14 @@ x -> 1
parser_example2
formula: (> x y)
sat
y -> -1
y -> (- 1)
x -> 0
parser_example3
assert axiom:
(forall (x Int) (y Int) (= (g x y) (g y x)) :qid {k!1})
formula: (forall (x Int) (y Int) (implies (= x y) (= (g x 0) (g 0 y))) :qid {k!1})
formula: (forall (x Int) (y Int) (=> (= x y) (= (g x 0) (g 0 y))) :qid {k!1})
valid
parser_example4
@ -240,7 +240,7 @@ Error message: 'ERROR: line 1 column 41: could not find sort symbol 'y'.
numeral_example
Numerals n1:1/2 n2:1/2
valid
Numerals n1:-1/3 n2:-33333333333333333333333333333333333333333333333333/100000000000000000000000000000000000000000000000000
Numerals n1:(- 1/3) n2:(- 33333333333333333333333333333333333333333333333333/100000000000000000000000000000000000000000000000000)
valid
ite_example
@ -254,7 +254,7 @@ valid
valid
valid
valid
Formula (implies (is_cons u) (= u (cons (head u) (tail u))))
Formula (=> (is_cons u) (= u (cons (head u) (tail u))))
valid
invalid
counterexample:
@ -267,7 +267,7 @@ valid
valid
valid
valid
Formula (implies (is_cons u) (= u (cons (car u) (cdr u))))
Formula (=> (is_cons u) (= u (cons (car u) (cdr u))))
valid
invalid
counterexample:

View file

@ -1,4 +1,4 @@
Z3 4.0.0.0
Z3 4.2.0.0
simple_example
CONTEXT:
@ -47,13 +47,13 @@ valid
disprove: not(g(g(x) - g(y)) = g(z)), x + z <= y <= x implies z < -1
invalid
counterexample:
z -> -1
y -> -7719
x -> -7719
z -> (- 1)
y -> (- 7719)
x -> (- 7719)
g -> {
-7719 -> 0
(- 7719) -> 0
0 -> 2
-1 -> 3
(- 1) -> 3
else -> 0
}
@ -97,8 +97,8 @@ reason for last failure: 7 (7 = quantifiers)
array_example1
prove: store(a1, i1, v1) = store(a2, i2, v2) implies (i1 = i3 or i2 = i3 or select(a1, i3) = select(a2, i3))
(implies (= (store a1 i1 v1) (store a2 i2 v2))
(or (= i1 i3) (= i2 i3) (= (select a1 i3) (select a2 i3))))
(=> (= (store a1 i1 v1) (store a2 i2 v2))
(or (= i1 i3) (= i2 i3) (= (select a1 i3) (select a2 i3))))
valid
array_example2
@ -211,14 +211,14 @@ x -> 1
parser_example2
formula: (> x y)
sat
y -> -1
y -> (- 1)
x -> 0
parser_example3
assert axiom:
(forall (x Int) (y Int) (= (g x y) (g y x)) :qid {k!1})
formula: (forall (x Int) (y Int) (implies (= x y) (= (g x 0) (g 0 y))) :qid {k!1})
formula: (forall (x Int) (y Int) (=> (= x y) (= (g x 0) (g 0 y))) :qid {k!1})
valid
parser_example4