mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 12:28:44 +00:00
change the representatition of nex_mul to use nex_pow
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
dfb862db7c
commit
27a27f16ff
|
@ -26,6 +26,7 @@ z3_add_component(lp
|
|||
lp_utils.cpp
|
||||
matrix.cpp
|
||||
mon_eq.cpp
|
||||
nex.cpp
|
||||
nla_basics_lemmas.cpp
|
||||
nla_common.cpp
|
||||
nla_core.cpp
|
||||
|
|
|
@ -125,10 +125,10 @@ public:
|
|||
|
||||
nex* c_over_f = m_nex_creator.mk_div(*c, f);
|
||||
to_sum(c_over_f)->simplify(&c_over_f);
|
||||
*c = m_nex_creator.mk_mul(f, c_over_f);
|
||||
nex_mul* cm;
|
||||
*c = cm = m_nex_creator.mk_mul(f, c_over_f);
|
||||
TRACE("nla_cn", tout << "common factor=" << *f << ", c=" << **c << "\ne = " << *m_e << "\n";);
|
||||
|
||||
explore_expr_on_front_elem(&(*((*c)->children_ptr()))[1], front);
|
||||
explore_expr_on_front_elem(cm->children()[1].ee(), front);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -405,7 +405,7 @@ public:
|
|||
TRACE("nla_cn_details", tout << "b = " << *b << "\n";);
|
||||
e = m_nex_creator.mk_sum(m_nex_creator.mk_mul(m_nex_creator.mk_var(j), a), b); // e = j*a + b
|
||||
if (!a->is_linear()) {
|
||||
nex **ptr_to_a = &(to_mul(to_sum(e)->children()[0]))->children()[1];
|
||||
nex **ptr_to_a = (to_mul(to_sum(e)->children()[0]))->children()[1].ee();
|
||||
push_to_front(front, ptr_to_a);
|
||||
}
|
||||
|
||||
|
@ -419,7 +419,7 @@ public:
|
|||
if (b == nullptr) {
|
||||
e = m_nex_creator.mk_mul(m_nex_creator.mk_var(j), a);
|
||||
if (!to_sum(a)->is_linear())
|
||||
push_to_front(front, &(to_mul(e)->children()[1]));
|
||||
push_to_front(front, to_mul(e)->children()[1].ee());
|
||||
} else {
|
||||
update_front_with_split_with_non_empty_b(e, j, front, a, b);
|
||||
}
|
||||
|
@ -458,8 +458,8 @@ public:
|
|||
}
|
||||
case expr_type::MUL:
|
||||
{
|
||||
for (auto c: to_mul(e)->children())
|
||||
for ( lpvar j : get_vars_of_expr(c))
|
||||
for (auto &c: to_mul(e)->children())
|
||||
for ( lpvar j : get_vars_of_expr(c.e()))
|
||||
r.insert(j);
|
||||
}
|
||||
return r;
|
||||
|
@ -479,7 +479,7 @@ public:
|
|||
|
||||
bool done() const { return m_done; }
|
||||
#if Z3DEBUG
|
||||
nex *clone (nex * a) {
|
||||
nex *clone (const nex * a) {
|
||||
switch (a->type()) {
|
||||
case expr_type::VAR: {
|
||||
auto v = to_var(a);
|
||||
|
@ -493,8 +493,8 @@ public:
|
|||
case expr_type::MUL: {
|
||||
auto m = to_mul(a);
|
||||
auto r = m_nex_creator.mk_mul();
|
||||
for (nex * e : m->children()) {
|
||||
r->add_child(clone(e));
|
||||
for (const auto& p : m->children()) {
|
||||
r->add_child_in_power(clone(p.e()), p.pow());
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
@ -524,6 +524,9 @@ public:
|
|||
|
||||
nex * normalize_mul(nex_mul* a) {
|
||||
TRACE("nla_cn", tout << *a << "\n";);
|
||||
NOT_IMPLEMENTED_YET();
|
||||
return nullptr;
|
||||
/*
|
||||
int sum_j = -1;
|
||||
for (unsigned j = 0; j < a->size(); j ++) {
|
||||
a->children()[j] = normalize(a->children()[j]);
|
||||
|
@ -554,7 +557,7 @@ public:
|
|||
nex *rs = normalize_sum(r);
|
||||
SASSERT(rs->is_simplified());
|
||||
return rs;
|
||||
|
||||
*/
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -193,11 +193,11 @@ interv horner::interval_of_mul_with_deps(const nex_mul* e) {
|
|||
|
||||
SASSERT(e->is_mul());
|
||||
auto & es = to_mul(e)->children();
|
||||
interv a = interval_of_expr_with_deps(es[0]);
|
||||
TRACE("nla_horner_details", tout << "es[0]= "<< *es[0] << std::endl << "a = "; m_intervals.display(tout, a); );
|
||||
interv a = interval_of_expr_with_deps(es[0].e());
|
||||
TRACE("nla_horner_details", tout << "es[0]= "<< es[0] << std::endl << "a = "; m_intervals.display(tout, a); );
|
||||
for (unsigned k = 1; k < es.size(); k++) {
|
||||
interv b = interval_of_expr_with_deps(es[k]);
|
||||
TRACE("nla_horner_details", tout << "es[" << k << "] "<< *es[k] << ", "; m_intervals.display(tout, b); );
|
||||
interv b = interval_of_expr_with_deps(es[k].e());
|
||||
TRACE("nla_horner_details", tout << "es[" << k << "] "<< es[k] << ", "; m_intervals.display(tout, b); );
|
||||
interv c;
|
||||
interval_deps_combine_rule comb_rule;
|
||||
m_intervals.mul(a, b, c, comb_rule);
|
||||
|
@ -224,11 +224,11 @@ interv horner::interval_of_mul(const nex_mul* e) {
|
|||
|
||||
SASSERT(e->is_mul());
|
||||
auto & es = to_mul(e)->children();
|
||||
interv a = interval_of_expr(es[0]);
|
||||
TRACE("nla_horner_details", tout << "es[0]= "<< *es[0] << std::endl << "a = "; m_intervals.display(tout, a); );
|
||||
interv a = interval_of_expr(es[0].e());
|
||||
TRACE("nla_horner_details", tout << "es[0]= "<< es[0] << std::endl << "a = "; m_intervals.display(tout, a); );
|
||||
for (unsigned k = 1; k < es.size(); k++) {
|
||||
interv b = interval_of_expr(es[k]);
|
||||
TRACE("nla_horner_details", tout << "es[" << k << "] "<< *es[k] << ", "; m_intervals.display(tout, b); );
|
||||
interv b = interval_of_expr(es[k].e());
|
||||
TRACE("nla_horner_details", tout << "es[" << k << "] "<< es[k] << ", "; m_intervals.display(tout, b); );
|
||||
interv c;
|
||||
interval_deps_combine_rule comb_rule;
|
||||
m_intervals.mul(a, b, c, comb_rule);
|
||||
|
@ -249,12 +249,13 @@ void horner::add_mul_to_vector(const nex_mul* e, vector<std::pair<rational, lpva
|
|||
TRACE("nla_horner_details", tout << *e << "\n";);
|
||||
SASSERT(e->size() > 0);
|
||||
if (e->size() == 1) {
|
||||
add_linear_to_vector(*(e->children().begin()), v);
|
||||
add_linear_to_vector(e->children().begin()->e(), v);
|
||||
return;
|
||||
}
|
||||
rational r;
|
||||
lpvar j = -1;
|
||||
for (const nex * c : e->children()) {
|
||||
for (const auto & p: e->children()) {
|
||||
const nex * c = p.e();
|
||||
switch (c->type()) {
|
||||
case expr_type::SCALAR:
|
||||
r = to_scalar(c)->value();
|
||||
|
@ -331,7 +332,8 @@ lp::lar_term horner::expression_to_normalized_term(const nex_sum* e, rational& a
|
|||
|
||||
bool horner::mul_has_inf_interval(const nex_mul* e) const {
|
||||
bool has_inf = false;
|
||||
for (const nex *c : e->children()) {
|
||||
for (const auto & p : e->children()) {
|
||||
const nex *c = p.e();
|
||||
if (!c->is_elementary())
|
||||
return false;
|
||||
if (has_zero_interval(c))
|
||||
|
@ -364,7 +366,8 @@ bool horner::has_zero_interval(const nex* e) const {
|
|||
}
|
||||
|
||||
const nex* horner::get_zero_interval_child(const nex_mul* e) const {
|
||||
for (auto * c : e->children()) {
|
||||
for (const auto & p : e->children()) {
|
||||
const nex * c = p.e();
|
||||
if (has_zero_interval(c))
|
||||
return c;
|
||||
}
|
||||
|
|
|
@ -43,7 +43,7 @@ inline std::ostream & operator<<(std::ostream& out, expr_type t) {
|
|||
}
|
||||
|
||||
|
||||
// This class is needed in horner calculation with intervals
|
||||
// This is the class of non-linear expressions
|
||||
class nex {
|
||||
public:
|
||||
virtual expr_type type() const = 0;
|
||||
|
@ -72,14 +72,6 @@ public:
|
|||
virtual bool is_simplified() const {
|
||||
return true;
|
||||
}
|
||||
virtual const ptr_vector<nex> * children_ptr() const {
|
||||
UNREACHABLE();
|
||||
return nullptr;
|
||||
}
|
||||
virtual ptr_vector<nex> * children_ptr() {
|
||||
UNREACHABLE();
|
||||
return nullptr;
|
||||
}
|
||||
#ifdef Z3DEBUG
|
||||
virtual void sort() {};
|
||||
#endif
|
||||
|
@ -132,7 +124,8 @@ public:
|
|||
};
|
||||
|
||||
const nex_scalar * to_scalar(const nex* a);
|
||||
|
||||
class nex_sum;
|
||||
const nex_sum* to_sum(const nex*a);
|
||||
static bool ignored_child(nex* e, expr_type t) {
|
||||
switch(t) {
|
||||
case expr_type::MUL:
|
||||
|
@ -144,77 +137,60 @@ static bool ignored_child(nex* e, expr_type t) {
|
|||
return false;
|
||||
}
|
||||
|
||||
static void promote_children_by_type(ptr_vector<nex> * children, expr_type t) {
|
||||
ptr_vector<nex> to_promote;
|
||||
int skipped = 0;
|
||||
for(unsigned j = 0; j < children->size(); j++) {
|
||||
nex** e = &(*children)[j];
|
||||
(*e)->simplify(e);
|
||||
if ((*e)->type() == t) {
|
||||
to_promote.push_back(*e);
|
||||
} else if (ignored_child(*e, t)) {
|
||||
skipped ++;
|
||||
continue;
|
||||
} else {
|
||||
unsigned offset = to_promote.size() + skipped;
|
||||
if (offset) {
|
||||
(*children)[j - offset] = *e;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
children->shrink(children->size() - to_promote.size() - skipped);
|
||||
|
||||
for (nex *e : to_promote) {
|
||||
for (nex *ee : *(e->children_ptr())) {
|
||||
if (!ignored_child(ee, t))
|
||||
children->push_back(ee);
|
||||
}
|
||||
}
|
||||
}
|
||||
void promote_children_of_sum(ptr_vector<nex> & children);
|
||||
class nex_pow;
|
||||
void promote_children_of_mul(vector<nex_pow> & children);
|
||||
|
||||
class nex_pow {
|
||||
nex* m_e;
|
||||
int m_power;
|
||||
public:
|
||||
explicit nex_pow(nex* e): m_e(e), m_power(1) {}
|
||||
explicit nex_pow(nex* e, int p): m_e(e), m_power(p) {}
|
||||
const nex * e() const { return m_e; }
|
||||
nex * e() { return m_e; }
|
||||
nex ** ee() { return & m_e; }
|
||||
int pow() const { return m_power; }
|
||||
int& pow() { return m_power; }
|
||||
std::string to_string() const { std::stringstream s; s << "(" << *e() << ", " << pow() << ")";
|
||||
return s.str(); }
|
||||
friend std::ostream& operator<<(std::ostream& out, const nex_pow & p) { out << p.to_string(); return out; }
|
||||
};
|
||||
|
||||
class nex_mul : public nex {
|
||||
ptr_vector<nex> m_children;
|
||||
vector<nex_pow> m_children;
|
||||
public:
|
||||
nex_mul() {}
|
||||
unsigned size() const { return m_children.size(); }
|
||||
expr_type type() const { return expr_type::MUL; }
|
||||
ptr_vector<nex>& children() { return m_children;}
|
||||
const ptr_vector<nex>& children() const { return m_children;}
|
||||
const ptr_vector<nex>* children_ptr() const { return &m_children;}
|
||||
ptr_vector<nex>* children_ptr() { return &m_children;}
|
||||
vector<nex_pow>& children() { return m_children;}
|
||||
const vector<nex_pow>& children() const { return m_children;}
|
||||
// A monomial is 'pure' if does not have a numeric coefficient.
|
||||
bool is_pure_monomial() const { return size() == 0 || (!m_children[0]->is_scalar()); }
|
||||
bool is_pure_monomial() const { return size() == 0 || (!m_children[0].e()->is_scalar()); }
|
||||
std::ostream & print(std::ostream& out) const {
|
||||
|
||||
bool first = true;
|
||||
for (const nex* v : m_children) {
|
||||
std::string s = v->str();
|
||||
for (const nex_pow& v : m_children) {
|
||||
std::string s = v.to_string();
|
||||
if (first) {
|
||||
first = false;
|
||||
if (v->is_elementary())
|
||||
out << s;
|
||||
else
|
||||
out << "(" << s << ")";
|
||||
out << s;
|
||||
} else {
|
||||
if (v->is_elementary()) {
|
||||
if (s[0] == '-') {
|
||||
out << "*(" << s << ")";
|
||||
} else {
|
||||
out << "*" << s;
|
||||
}
|
||||
} else {
|
||||
out << "*(" << s << ")";
|
||||
}
|
||||
out << "*" << s;
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
void add_child(nex* e) { m_children.push_back(e); }
|
||||
void add_child(nex* e) {
|
||||
add_child_in_power(e, 1);
|
||||
}
|
||||
|
||||
void add_child_in_power(nex* e, int power) { m_children.push_back(nex_pow(e, power)); }
|
||||
|
||||
bool contains(lpvar j) const {
|
||||
for (const nex* c : children()) {
|
||||
if (c->contains(j))
|
||||
for (const nex_pow& c : children()) {
|
||||
if (c.e()->contains(j))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
@ -228,34 +204,32 @@ public:
|
|||
void get_powers_from_mul(std::unordered_map<lpvar, unsigned> & r) const {
|
||||
r.clear();
|
||||
for (const auto & c : children()) {
|
||||
if (!c->is_var()) {
|
||||
if (!c.e()->is_var()) {
|
||||
continue;
|
||||
}
|
||||
lpvar j = to_var(c)->var();
|
||||
auto it = r.find(j);
|
||||
if (it == r.end()) {
|
||||
r[j] = 1;
|
||||
} else {
|
||||
it->second++;
|
||||
}
|
||||
lpvar j = to_var(c.e())->var();
|
||||
SASSERT(r.find(j) == r.end());
|
||||
r[j] = c.pow();
|
||||
}
|
||||
TRACE("nla_cn_details", tout << "powers of " << *this << "\n"; print_vector(r, tout)<< "\n";);
|
||||
}
|
||||
|
||||
int get_degree() const {
|
||||
int degree = 0;
|
||||
for (auto e : children()) {
|
||||
degree += e->get_degree();
|
||||
for (const auto& p : children()) {
|
||||
degree += p.e()->get_degree() * p.pow();
|
||||
}
|
||||
return degree;
|
||||
}
|
||||
|
||||
void simplify(nex **e) {
|
||||
TRACE("nla_cn_details", tout << *this << "\n";);
|
||||
TRACE("nla_cn_details", tout << "**e = " << **e << "\n";);
|
||||
*e = this;
|
||||
TRACE("nla_cn_details", tout << *this << "\n";);
|
||||
promote_children_by_type(&m_children, expr_type::MUL);
|
||||
if (size() == 1)
|
||||
*e = m_children[0];
|
||||
promote_children_of_mul(m_children);
|
||||
if (size() == 1 && m_children[0].pow() == 1)
|
||||
*e = m_children[0].e();
|
||||
TRACE("nla_cn_details", tout << *this << "\n";);
|
||||
SASSERT((*e)->is_simplified());
|
||||
}
|
||||
|
@ -263,7 +237,8 @@ public:
|
|||
virtual bool is_simplified() const {
|
||||
if (size() < 2)
|
||||
return false;
|
||||
for (nex * e : children()) {
|
||||
for (const auto &p : children()) {
|
||||
const nex* e = p.e();
|
||||
if (e->is_mul())
|
||||
return false;
|
||||
if (e->is_scalar() && to_scalar(e)->value().is_one())
|
||||
|
@ -274,25 +249,17 @@ public:
|
|||
|
||||
bool is_linear() const {
|
||||
SASSERT(is_simplified());
|
||||
if (children().size() > 2)
|
||||
return false;
|
||||
|
||||
SASSERT(children().size() == 2);
|
||||
for (auto e : children()) {
|
||||
if (e->is_scalar())
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
return get_degree() < 2; // todo: make it more efficient
|
||||
}
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
virtual void sort() {
|
||||
for (nex * c : m_children) {
|
||||
c->sort();
|
||||
}
|
||||
std::sort(m_children.begin(), m_children.end(), [](const nex* a, const nex* b) { return *a < *b; });
|
||||
}
|
||||
#endif
|
||||
// #ifdef Z3DEBUG
|
||||
// virtual void sort() {
|
||||
// for (nex * c : m_children) {
|
||||
// c->sort();
|
||||
// }
|
||||
// std::sort(m_children.begin(), m_children.end(), [](const nex* a, const nex* b) { return *a < *b; });
|
||||
// }
|
||||
// #endif
|
||||
|
||||
};
|
||||
|
||||
|
@ -361,7 +328,7 @@ public:
|
|||
|
||||
void simplify(nex **e) {
|
||||
*e = this;
|
||||
promote_children_by_type(&m_children, expr_type::SUM);
|
||||
promote_children_of_sum(m_children);
|
||||
if (size() == 1)
|
||||
*e = m_children[0];
|
||||
}
|
||||
|
@ -387,12 +354,15 @@ public:
|
|||
void add_child(nex* e) { m_children.push_back(e); }
|
||||
#ifdef Z3DEBUG
|
||||
virtual void sort() {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
/*
|
||||
for (nex * c : m_children) {
|
||||
c->sort();
|
||||
}
|
||||
|
||||
|
||||
std::sort(m_children.begin(), m_children.end(), [](const nex* a, const nex* b) { return *a < *b; });
|
||||
*/
|
||||
}
|
||||
#endif
|
||||
};
|
||||
|
@ -449,30 +419,6 @@ inline bool operator<(const ptr_vector<nex>&a , const ptr_vector<nex>& b) {
|
|||
return false;
|
||||
}
|
||||
|
||||
inline bool operator<(const nex& a , const nex& b) {
|
||||
int r = (int)(a.type()) - (int)(b.type());
|
||||
ptr_vector<nex> ch;
|
||||
if (r) {
|
||||
return r < 0;
|
||||
}
|
||||
switch (a.type()) {
|
||||
case expr_type::VAR: {
|
||||
return to_var(&a)->var() < to_var(&b)->var();
|
||||
}
|
||||
case expr_type::SCALAR: {
|
||||
return to_scalar(&a)->value() < to_scalar(&b)->value();
|
||||
}
|
||||
case expr_type::MUL: {
|
||||
return to_mul(&a)->children() < to_mul(&b)->children();
|
||||
}
|
||||
case expr_type::SUM: {
|
||||
return to_sum(&a)->children() < to_sum(&b)->children();
|
||||
}
|
||||
default:
|
||||
SASSERT(false);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
|
|
@ -84,7 +84,7 @@ public:
|
|||
return r;
|
||||
}
|
||||
|
||||
nex_mul* mk_mul(const ptr_vector<nex>& v) {
|
||||
nex_mul* mk_mul(const vector<nex_pow>& v) {
|
||||
auto r = new nex_mul();
|
||||
add_to_allocated(r);
|
||||
r->children() = v;
|
||||
|
@ -129,10 +129,13 @@ public:
|
|||
|
||||
nex * mk_div(const nex* a, lpvar j) {
|
||||
TRACE("nla_cn_details", tout << "a=" << *a << ", v" << j << "\n";);
|
||||
NOT_IMPLEMENTED_YET();
|
||||
return nullptr;
|
||||
/*
|
||||
SASSERT((a->is_mul() && a->contains(j)) || (a->is_var() && to_var(a)->var() == j));
|
||||
if (a->is_var())
|
||||
return mk_scalar(rational(1));
|
||||
ptr_vector<nex> bv;
|
||||
ptr_vector<nex> bv;
|
||||
bool seenj = false;
|
||||
for (nex* c : to_mul(a)->children()) {
|
||||
if (!seenj) {
|
||||
|
@ -153,11 +156,11 @@ public:
|
|||
}
|
||||
|
||||
SASSERT(bv.size() == 0);
|
||||
return mk_scalar(rational(1));
|
||||
return mk_scalar(rational(1));*/
|
||||
}
|
||||
|
||||
nex * mk_div(const nex* a, const nex* b) {
|
||||
TRACE("nla_cn_details", tout << *a <<" / " << *b << "\n";);
|
||||
TRACE("nla_cn_details", tout <<"(" << *a << ") / (" << *b << ")\n";);
|
||||
if (b->is_var()) {
|
||||
return mk_div(a, to_var(b)->var());
|
||||
}
|
||||
|
@ -176,15 +179,18 @@ public:
|
|||
return mk_scalar(rational(1));
|
||||
}
|
||||
SASSERT(a->is_mul());
|
||||
|
||||
const nex_mul* am = to_mul(a);
|
||||
bm->get_powers_from_mul(m_powers);
|
||||
TRACE("nla_cn_details", print_vector(m_powers, tout););
|
||||
nex_mul* ret = new nex_mul();
|
||||
for (auto e : am->children()) {
|
||||
for (const nex_pow& p : am->children()) {
|
||||
const nex *e = p.e();
|
||||
TRACE("nla_cn_details", tout << "e=" << *e << "\n";);
|
||||
|
||||
if (!e->is_var()) {
|
||||
SASSERT(e->is_scalar());
|
||||
ret->add_child(e);
|
||||
ret->add_child(mk_scalar(to_scalar(e)->value()));
|
||||
TRACE("nla_cn_details", tout << "continue\n";);
|
||||
continue;
|
||||
}
|
||||
|
@ -192,7 +198,7 @@ public:
|
|||
lpvar j = to_var(e)->var();
|
||||
auto it = m_powers.find(j);
|
||||
if (it == m_powers.end()) {
|
||||
ret->add_child(e);
|
||||
ret->add_child(mk_var(j));
|
||||
} else {
|
||||
it->second --;
|
||||
if (it->second == 0)
|
||||
|
|
|
@ -151,7 +151,7 @@ private:
|
|||
|
||||
nex* mk_monomial_in_row(rational, lpvar, ci_dependency*&);
|
||||
rational get_monomial_coeff(const nex_mul* m) {
|
||||
const nex* a = m->children()[0];
|
||||
const nex* a = m->children()[0].e();
|
||||
if (a->is_scalar())
|
||||
return static_cast<const nex_scalar*>(a)->value();
|
||||
return rational(1);
|
||||
|
|
|
@ -73,6 +73,22 @@ void test_cn_on_expr(nex_sum *t, cross_nested& cn) {
|
|||
cn.run(t);
|
||||
}
|
||||
|
||||
void test_simplify(cross_nested& cn, nex_var* a, nex_var* b, nex_var* c) {
|
||||
auto & r = cn.get_nex_creator();
|
||||
auto m = r.mk_mul(); m->add_child_in_power(c, 2);
|
||||
TRACE("nla_cn", tout << "m = " << *m << "\n";);
|
||||
auto n = r.mk_mul(a);
|
||||
n->add_child_in_power(b, 7);
|
||||
TRACE("nla_cn", tout << "n = " << *n << "\n";);
|
||||
m->add_child_in_power(n, 3);
|
||||
TRACE("nla_cn", tout << "m = " << *m << "\n";);
|
||||
|
||||
nex * e = r.mk_sum(a, r.mk_sum(b, m));
|
||||
TRACE("nla_cn", tout << "e = " << *e << "\n";);
|
||||
e->simplify(&e);
|
||||
TRACE("nla_cn", tout << "simplified e = " << *e << "\n";);
|
||||
}
|
||||
|
||||
void test_cn() {
|
||||
cross_nested cn(
|
||||
[](const nex* n) {
|
||||
|
@ -91,6 +107,7 @@ void test_cn() {
|
|||
nex_var* e = cn.get_nex_creator().mk_var(4);
|
||||
nex_var* g = cn.get_nex_creator().mk_var(6);
|
||||
nex* min_1 = cn.get_nex_creator().mk_scalar(rational(-1));
|
||||
test_simplify(cn, a, b, c);
|
||||
// test_cn_on_expr(min_1*c*e + min_1*b*d + min_1*a*b + a*c);
|
||||
nex* bcd = cn.get_nex_creator().mk_mul(b, c, d);
|
||||
nex_mul* bcg = cn.get_nex_creator().mk_mul(b, c, g);
|
||||
|
|
Loading…
Reference in a new issue