3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 12:28:44 +00:00

change the representatition of nex_mul to use nex_pow

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2019-09-24 12:04:13 -07:00
parent dfb862db7c
commit 27a27f16ff
7 changed files with 125 additions and 149 deletions

View file

@ -26,6 +26,7 @@ z3_add_component(lp
lp_utils.cpp
matrix.cpp
mon_eq.cpp
nex.cpp
nla_basics_lemmas.cpp
nla_common.cpp
nla_core.cpp

View file

@ -125,10 +125,10 @@ public:
nex* c_over_f = m_nex_creator.mk_div(*c, f);
to_sum(c_over_f)->simplify(&c_over_f);
*c = m_nex_creator.mk_mul(f, c_over_f);
nex_mul* cm;
*c = cm = m_nex_creator.mk_mul(f, c_over_f);
TRACE("nla_cn", tout << "common factor=" << *f << ", c=" << **c << "\ne = " << *m_e << "\n";);
explore_expr_on_front_elem(&(*((*c)->children_ptr()))[1], front);
explore_expr_on_front_elem(cm->children()[1].ee(), front);
return true;
}
@ -405,7 +405,7 @@ public:
TRACE("nla_cn_details", tout << "b = " << *b << "\n";);
e = m_nex_creator.mk_sum(m_nex_creator.mk_mul(m_nex_creator.mk_var(j), a), b); // e = j*a + b
if (!a->is_linear()) {
nex **ptr_to_a = &(to_mul(to_sum(e)->children()[0]))->children()[1];
nex **ptr_to_a = (to_mul(to_sum(e)->children()[0]))->children()[1].ee();
push_to_front(front, ptr_to_a);
}
@ -419,7 +419,7 @@ public:
if (b == nullptr) {
e = m_nex_creator.mk_mul(m_nex_creator.mk_var(j), a);
if (!to_sum(a)->is_linear())
push_to_front(front, &(to_mul(e)->children()[1]));
push_to_front(front, to_mul(e)->children()[1].ee());
} else {
update_front_with_split_with_non_empty_b(e, j, front, a, b);
}
@ -458,8 +458,8 @@ public:
}
case expr_type::MUL:
{
for (auto c: to_mul(e)->children())
for ( lpvar j : get_vars_of_expr(c))
for (auto &c: to_mul(e)->children())
for ( lpvar j : get_vars_of_expr(c.e()))
r.insert(j);
}
return r;
@ -479,7 +479,7 @@ public:
bool done() const { return m_done; }
#if Z3DEBUG
nex *clone (nex * a) {
nex *clone (const nex * a) {
switch (a->type()) {
case expr_type::VAR: {
auto v = to_var(a);
@ -493,8 +493,8 @@ public:
case expr_type::MUL: {
auto m = to_mul(a);
auto r = m_nex_creator.mk_mul();
for (nex * e : m->children()) {
r->add_child(clone(e));
for (const auto& p : m->children()) {
r->add_child_in_power(clone(p.e()), p.pow());
}
return r;
}
@ -524,6 +524,9 @@ public:
nex * normalize_mul(nex_mul* a) {
TRACE("nla_cn", tout << *a << "\n";);
NOT_IMPLEMENTED_YET();
return nullptr;
/*
int sum_j = -1;
for (unsigned j = 0; j < a->size(); j ++) {
a->children()[j] = normalize(a->children()[j]);
@ -554,7 +557,7 @@ public:
nex *rs = normalize_sum(r);
SASSERT(rs->is_simplified());
return rs;
*/
}

View file

@ -193,11 +193,11 @@ interv horner::interval_of_mul_with_deps(const nex_mul* e) {
SASSERT(e->is_mul());
auto & es = to_mul(e)->children();
interv a = interval_of_expr_with_deps(es[0]);
TRACE("nla_horner_details", tout << "es[0]= "<< *es[0] << std::endl << "a = "; m_intervals.display(tout, a); );
interv a = interval_of_expr_with_deps(es[0].e());
TRACE("nla_horner_details", tout << "es[0]= "<< es[0] << std::endl << "a = "; m_intervals.display(tout, a); );
for (unsigned k = 1; k < es.size(); k++) {
interv b = interval_of_expr_with_deps(es[k]);
TRACE("nla_horner_details", tout << "es[" << k << "] "<< *es[k] << ", "; m_intervals.display(tout, b); );
interv b = interval_of_expr_with_deps(es[k].e());
TRACE("nla_horner_details", tout << "es[" << k << "] "<< es[k] << ", "; m_intervals.display(tout, b); );
interv c;
interval_deps_combine_rule comb_rule;
m_intervals.mul(a, b, c, comb_rule);
@ -224,11 +224,11 @@ interv horner::interval_of_mul(const nex_mul* e) {
SASSERT(e->is_mul());
auto & es = to_mul(e)->children();
interv a = interval_of_expr(es[0]);
TRACE("nla_horner_details", tout << "es[0]= "<< *es[0] << std::endl << "a = "; m_intervals.display(tout, a); );
interv a = interval_of_expr(es[0].e());
TRACE("nla_horner_details", tout << "es[0]= "<< es[0] << std::endl << "a = "; m_intervals.display(tout, a); );
for (unsigned k = 1; k < es.size(); k++) {
interv b = interval_of_expr(es[k]);
TRACE("nla_horner_details", tout << "es[" << k << "] "<< *es[k] << ", "; m_intervals.display(tout, b); );
interv b = interval_of_expr(es[k].e());
TRACE("nla_horner_details", tout << "es[" << k << "] "<< es[k] << ", "; m_intervals.display(tout, b); );
interv c;
interval_deps_combine_rule comb_rule;
m_intervals.mul(a, b, c, comb_rule);
@ -249,12 +249,13 @@ void horner::add_mul_to_vector(const nex_mul* e, vector<std::pair<rational, lpva
TRACE("nla_horner_details", tout << *e << "\n";);
SASSERT(e->size() > 0);
if (e->size() == 1) {
add_linear_to_vector(*(e->children().begin()), v);
add_linear_to_vector(e->children().begin()->e(), v);
return;
}
rational r;
lpvar j = -1;
for (const nex * c : e->children()) {
for (const auto & p: e->children()) {
const nex * c = p.e();
switch (c->type()) {
case expr_type::SCALAR:
r = to_scalar(c)->value();
@ -331,7 +332,8 @@ lp::lar_term horner::expression_to_normalized_term(const nex_sum* e, rational& a
bool horner::mul_has_inf_interval(const nex_mul* e) const {
bool has_inf = false;
for (const nex *c : e->children()) {
for (const auto & p : e->children()) {
const nex *c = p.e();
if (!c->is_elementary())
return false;
if (has_zero_interval(c))
@ -364,7 +366,8 @@ bool horner::has_zero_interval(const nex* e) const {
}
const nex* horner::get_zero_interval_child(const nex_mul* e) const {
for (auto * c : e->children()) {
for (const auto & p : e->children()) {
const nex * c = p.e();
if (has_zero_interval(c))
return c;
}

View file

@ -43,7 +43,7 @@ inline std::ostream & operator<<(std::ostream& out, expr_type t) {
}
// This class is needed in horner calculation with intervals
// This is the class of non-linear expressions
class nex {
public:
virtual expr_type type() const = 0;
@ -72,14 +72,6 @@ public:
virtual bool is_simplified() const {
return true;
}
virtual const ptr_vector<nex> * children_ptr() const {
UNREACHABLE();
return nullptr;
}
virtual ptr_vector<nex> * children_ptr() {
UNREACHABLE();
return nullptr;
}
#ifdef Z3DEBUG
virtual void sort() {};
#endif
@ -132,7 +124,8 @@ public:
};
const nex_scalar * to_scalar(const nex* a);
class nex_sum;
const nex_sum* to_sum(const nex*a);
static bool ignored_child(nex* e, expr_type t) {
switch(t) {
case expr_type::MUL:
@ -144,77 +137,60 @@ static bool ignored_child(nex* e, expr_type t) {
return false;
}
static void promote_children_by_type(ptr_vector<nex> * children, expr_type t) {
ptr_vector<nex> to_promote;
int skipped = 0;
for(unsigned j = 0; j < children->size(); j++) {
nex** e = &(*children)[j];
(*e)->simplify(e);
if ((*e)->type() == t) {
to_promote.push_back(*e);
} else if (ignored_child(*e, t)) {
skipped ++;
continue;
} else {
unsigned offset = to_promote.size() + skipped;
if (offset) {
(*children)[j - offset] = *e;
}
}
}
children->shrink(children->size() - to_promote.size() - skipped);
for (nex *e : to_promote) {
for (nex *ee : *(e->children_ptr())) {
if (!ignored_child(ee, t))
children->push_back(ee);
}
}
}
void promote_children_of_sum(ptr_vector<nex> & children);
class nex_pow;
void promote_children_of_mul(vector<nex_pow> & children);
class nex_pow {
nex* m_e;
int m_power;
public:
explicit nex_pow(nex* e): m_e(e), m_power(1) {}
explicit nex_pow(nex* e, int p): m_e(e), m_power(p) {}
const nex * e() const { return m_e; }
nex * e() { return m_e; }
nex ** ee() { return & m_e; }
int pow() const { return m_power; }
int& pow() { return m_power; }
std::string to_string() const { std::stringstream s; s << "(" << *e() << ", " << pow() << ")";
return s.str(); }
friend std::ostream& operator<<(std::ostream& out, const nex_pow & p) { out << p.to_string(); return out; }
};
class nex_mul : public nex {
ptr_vector<nex> m_children;
vector<nex_pow> m_children;
public:
nex_mul() {}
unsigned size() const { return m_children.size(); }
expr_type type() const { return expr_type::MUL; }
ptr_vector<nex>& children() { return m_children;}
const ptr_vector<nex>& children() const { return m_children;}
const ptr_vector<nex>* children_ptr() const { return &m_children;}
ptr_vector<nex>* children_ptr() { return &m_children;}
vector<nex_pow>& children() { return m_children;}
const vector<nex_pow>& children() const { return m_children;}
// A monomial is 'pure' if does not have a numeric coefficient.
bool is_pure_monomial() const { return size() == 0 || (!m_children[0]->is_scalar()); }
bool is_pure_monomial() const { return size() == 0 || (!m_children[0].e()->is_scalar()); }
std::ostream & print(std::ostream& out) const {
bool first = true;
for (const nex* v : m_children) {
std::string s = v->str();
for (const nex_pow& v : m_children) {
std::string s = v.to_string();
if (first) {
first = false;
if (v->is_elementary())
out << s;
else
out << "(" << s << ")";
out << s;
} else {
if (v->is_elementary()) {
if (s[0] == '-') {
out << "*(" << s << ")";
} else {
out << "*" << s;
}
} else {
out << "*(" << s << ")";
}
out << "*" << s;
}
}
return out;
}
void add_child(nex* e) { m_children.push_back(e); }
void add_child(nex* e) {
add_child_in_power(e, 1);
}
void add_child_in_power(nex* e, int power) { m_children.push_back(nex_pow(e, power)); }
bool contains(lpvar j) const {
for (const nex* c : children()) {
if (c->contains(j))
for (const nex_pow& c : children()) {
if (c.e()->contains(j))
return true;
}
return false;
@ -228,34 +204,32 @@ public:
void get_powers_from_mul(std::unordered_map<lpvar, unsigned> & r) const {
r.clear();
for (const auto & c : children()) {
if (!c->is_var()) {
if (!c.e()->is_var()) {
continue;
}
lpvar j = to_var(c)->var();
auto it = r.find(j);
if (it == r.end()) {
r[j] = 1;
} else {
it->second++;
}
lpvar j = to_var(c.e())->var();
SASSERT(r.find(j) == r.end());
r[j] = c.pow();
}
TRACE("nla_cn_details", tout << "powers of " << *this << "\n"; print_vector(r, tout)<< "\n";);
}
int get_degree() const {
int degree = 0;
for (auto e : children()) {
degree += e->get_degree();
for (const auto& p : children()) {
degree += p.e()->get_degree() * p.pow();
}
return degree;
}
void simplify(nex **e) {
TRACE("nla_cn_details", tout << *this << "\n";);
TRACE("nla_cn_details", tout << "**e = " << **e << "\n";);
*e = this;
TRACE("nla_cn_details", tout << *this << "\n";);
promote_children_by_type(&m_children, expr_type::MUL);
if (size() == 1)
*e = m_children[0];
promote_children_of_mul(m_children);
if (size() == 1 && m_children[0].pow() == 1)
*e = m_children[0].e();
TRACE("nla_cn_details", tout << *this << "\n";);
SASSERT((*e)->is_simplified());
}
@ -263,7 +237,8 @@ public:
virtual bool is_simplified() const {
if (size() < 2)
return false;
for (nex * e : children()) {
for (const auto &p : children()) {
const nex* e = p.e();
if (e->is_mul())
return false;
if (e->is_scalar() && to_scalar(e)->value().is_one())
@ -274,25 +249,17 @@ public:
bool is_linear() const {
SASSERT(is_simplified());
if (children().size() > 2)
return false;
SASSERT(children().size() == 2);
for (auto e : children()) {
if (e->is_scalar())
return true;
}
return false;
return get_degree() < 2; // todo: make it more efficient
}
#ifdef Z3DEBUG
virtual void sort() {
for (nex * c : m_children) {
c->sort();
}
std::sort(m_children.begin(), m_children.end(), [](const nex* a, const nex* b) { return *a < *b; });
}
#endif
// #ifdef Z3DEBUG
// virtual void sort() {
// for (nex * c : m_children) {
// c->sort();
// }
// std::sort(m_children.begin(), m_children.end(), [](const nex* a, const nex* b) { return *a < *b; });
// }
// #endif
};
@ -361,7 +328,7 @@ public:
void simplify(nex **e) {
*e = this;
promote_children_by_type(&m_children, expr_type::SUM);
promote_children_of_sum(m_children);
if (size() == 1)
*e = m_children[0];
}
@ -387,12 +354,15 @@ public:
void add_child(nex* e) { m_children.push_back(e); }
#ifdef Z3DEBUG
virtual void sort() {
NOT_IMPLEMENTED_YET();
/*
for (nex * c : m_children) {
c->sort();
}
std::sort(m_children.begin(), m_children.end(), [](const nex* a, const nex* b) { return *a < *b; });
*/
}
#endif
};
@ -449,30 +419,6 @@ inline bool operator<(const ptr_vector<nex>&a , const ptr_vector<nex>& b) {
return false;
}
inline bool operator<(const nex& a , const nex& b) {
int r = (int)(a.type()) - (int)(b.type());
ptr_vector<nex> ch;
if (r) {
return r < 0;
}
switch (a.type()) {
case expr_type::VAR: {
return to_var(&a)->var() < to_var(&b)->var();
}
case expr_type::SCALAR: {
return to_scalar(&a)->value() < to_scalar(&b)->value();
}
case expr_type::MUL: {
return to_mul(&a)->children() < to_mul(&b)->children();
}
case expr_type::SUM: {
return to_sum(&a)->children() < to_sum(&b)->children();
}
default:
SASSERT(false);
return false;
}
}
#endif
}

View file

@ -84,7 +84,7 @@ public:
return r;
}
nex_mul* mk_mul(const ptr_vector<nex>& v) {
nex_mul* mk_mul(const vector<nex_pow>& v) {
auto r = new nex_mul();
add_to_allocated(r);
r->children() = v;
@ -129,10 +129,13 @@ public:
nex * mk_div(const nex* a, lpvar j) {
TRACE("nla_cn_details", tout << "a=" << *a << ", v" << j << "\n";);
NOT_IMPLEMENTED_YET();
return nullptr;
/*
SASSERT((a->is_mul() && a->contains(j)) || (a->is_var() && to_var(a)->var() == j));
if (a->is_var())
return mk_scalar(rational(1));
ptr_vector<nex> bv;
ptr_vector<nex> bv;
bool seenj = false;
for (nex* c : to_mul(a)->children()) {
if (!seenj) {
@ -153,11 +156,11 @@ public:
}
SASSERT(bv.size() == 0);
return mk_scalar(rational(1));
return mk_scalar(rational(1));*/
}
nex * mk_div(const nex* a, const nex* b) {
TRACE("nla_cn_details", tout << *a <<" / " << *b << "\n";);
TRACE("nla_cn_details", tout <<"(" << *a << ") / (" << *b << ")\n";);
if (b->is_var()) {
return mk_div(a, to_var(b)->var());
}
@ -176,15 +179,18 @@ public:
return mk_scalar(rational(1));
}
SASSERT(a->is_mul());
const nex_mul* am = to_mul(a);
bm->get_powers_from_mul(m_powers);
TRACE("nla_cn_details", print_vector(m_powers, tout););
nex_mul* ret = new nex_mul();
for (auto e : am->children()) {
for (const nex_pow& p : am->children()) {
const nex *e = p.e();
TRACE("nla_cn_details", tout << "e=" << *e << "\n";);
if (!e->is_var()) {
SASSERT(e->is_scalar());
ret->add_child(e);
ret->add_child(mk_scalar(to_scalar(e)->value()));
TRACE("nla_cn_details", tout << "continue\n";);
continue;
}
@ -192,7 +198,7 @@ public:
lpvar j = to_var(e)->var();
auto it = m_powers.find(j);
if (it == m_powers.end()) {
ret->add_child(e);
ret->add_child(mk_var(j));
} else {
it->second --;
if (it->second == 0)

View file

@ -151,7 +151,7 @@ private:
nex* mk_monomial_in_row(rational, lpvar, ci_dependency*&);
rational get_monomial_coeff(const nex_mul* m) {
const nex* a = m->children()[0];
const nex* a = m->children()[0].e();
if (a->is_scalar())
return static_cast<const nex_scalar*>(a)->value();
return rational(1);

View file

@ -73,6 +73,22 @@ void test_cn_on_expr(nex_sum *t, cross_nested& cn) {
cn.run(t);
}
void test_simplify(cross_nested& cn, nex_var* a, nex_var* b, nex_var* c) {
auto & r = cn.get_nex_creator();
auto m = r.mk_mul(); m->add_child_in_power(c, 2);
TRACE("nla_cn", tout << "m = " << *m << "\n";);
auto n = r.mk_mul(a);
n->add_child_in_power(b, 7);
TRACE("nla_cn", tout << "n = " << *n << "\n";);
m->add_child_in_power(n, 3);
TRACE("nla_cn", tout << "m = " << *m << "\n";);
nex * e = r.mk_sum(a, r.mk_sum(b, m));
TRACE("nla_cn", tout << "e = " << *e << "\n";);
e->simplify(&e);
TRACE("nla_cn", tout << "simplified e = " << *e << "\n";);
}
void test_cn() {
cross_nested cn(
[](const nex* n) {
@ -91,6 +107,7 @@ void test_cn() {
nex_var* e = cn.get_nex_creator().mk_var(4);
nex_var* g = cn.get_nex_creator().mk_var(6);
nex* min_1 = cn.get_nex_creator().mk_scalar(rational(-1));
test_simplify(cn, a, b, c);
// test_cn_on_expr(min_1*c*e + min_1*b*d + min_1*a*b + a*c);
nex* bcd = cn.get_nex_creator().mk_mul(b, c, d);
nex_mul* bcg = cn.get_nex_creator().mk_mul(b, c, g);