3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

Added rewriter.ignore_patterns_on_ground_qbody option to disable simplification of quantifiers that have their universals appear only in patterns, but otherwise have a ground body.

This commit is contained in:
Christoph M. Wintersteiger 2017-04-07 21:19:20 +01:00
parent 9a757ffffe
commit 27a1758857
19 changed files with 795 additions and 776 deletions

View file

@ -28,7 +28,7 @@ struct defined_names::impl {
typedef obj_map<expr, proof *> expr2proof;
ast_manager & m_manager;
symbol m_z3name;
/**
\brief Mapping from expressions to their names. A name is an application.
If the expression does not have free variables, then the name is just a constant.
@ -38,25 +38,25 @@ struct defined_names::impl {
\brief Mapping from expressions to the apply-def proof.
That is, for each expression e, m_expr2proof[e] is the
proof e and m_expr2name[2] are observ. equivalent.
This mapping is not used if proof production is disabled.
*/
expr2proof m_expr2proof;
/**
\brief Domain of m_expr2name. It is used to keep the expressions
alive and for backtracking
*/
expr_ref_vector m_exprs;
expr_ref_vector m_exprs;
expr_ref_vector m_names; //!< Range of m_expr2name. It is used to keep the names alive.
proof_ref_vector m_apply_proofs; //!< Range of m_expr2proof. It is used to keep the def-intro proofs alive.
unsigned_vector m_lims; //!< Backtracking support.
impl(ast_manager & m, char const * prefix);
virtual ~impl();
app * gen_name(expr * e, sort_ref_buffer & var_sorts, buffer<symbol> & var_names);
void cache_new_name(expr * e, app * name);
void cache_new_name_intro_proof(expr * e, proof * pr);
@ -106,7 +106,7 @@ app * defined_names::impl::gen_name(expr * e, sort_ref_buffer & var_sorts, buffe
for (unsigned i = 0; i < num_vars; i++) {
sort * s = uv.get(i);
if (s) {
domain.push_back(s);
domain.push_back(s);
new_args.push_back(m_manager.mk_var(i, s));
var_sorts.push_back(s);
}
@ -162,7 +162,7 @@ void defined_names::impl::bound_vars(sort_ref_buffer const & sorts, buffer<symbo
1, symbol::null, symbol::null,
1, patterns);
TRACE("mk_definition_bug", tout << "before elim_unused_vars:\n" << mk_ismt2_pp(q, m_manager) << "\n";);
elim_unused_vars(m_manager, q, result);
elim_unused_vars(m_manager, q, params_ref(), result);
TRACE("mk_definition_bug", tout << "after elim_unused_vars:\n" << mk_ismt2_pp(result, m_manager) << "\n";);
}
}
@ -207,7 +207,7 @@ bool defined_names::impl::mk_name(expr * e, expr_ref & new_def, proof_ref & new_
app * n_ptr;
if (m_expr2name.find(e, n_ptr)) {
TRACE("mk_definition_bug", tout << "name for expression is already cached..., returning false...\n";);
TRACE("mk_definition_bug", tout << "name for expression is already cached..., returning false...\n";);
n = n_ptr;
if (m_manager.proofs_enabled()) {
proof * pr_ptr = 0;
@ -220,19 +220,19 @@ bool defined_names::impl::mk_name(expr * e, expr_ref & new_def, proof_ref & new_
else {
sort_ref_buffer var_sorts(m_manager);
buffer<symbol> var_names;
n = gen_name(e, var_sorts, var_names);
cache_new_name(e, n);
TRACE("mk_definition_bug", tout << "name: " << mk_ismt2_pp(n, m_manager) << "\n";);
// variables are in reverse order in quantifiers
std::reverse(var_sorts.c_ptr(), var_sorts.c_ptr() + var_sorts.size());
std::reverse(var_names.c_ptr(), var_names.c_ptr() + var_names.size());
mk_definition(e, n, var_sorts, var_names, new_def);
TRACE("mk_definition_bug", tout << "new_def:\n" << mk_ismt2_pp(new_def, m_manager) << "\n";);
if (m_manager.proofs_enabled()) {
new_def_pr = m_manager.mk_def_intro(new_def);
pr = m_manager.mk_apply_def(e, n, new_def_pr);
@ -311,11 +311,11 @@ void defined_names::reset() {
m_pos_impl->reset();
}
unsigned defined_names::get_num_names() const {
unsigned defined_names::get_num_names() const {
return m_impl->get_num_names() + m_pos_impl->get_num_names();
}
func_decl * defined_names::get_name_decl(unsigned i) const {
func_decl * defined_names::get_name_decl(unsigned i) const {
SASSERT(i < get_num_names());
unsigned n1 = m_impl->get_num_names();
return i < n1 ? m_impl->get_name_decl(i) : m_pos_impl->get_name_decl(i - n1);

View file

@ -36,7 +36,7 @@ static bool is_neg_var(ast_manager & m, expr * e, unsigned num_decls) {
/**
\brief Return true if \c e is of the form (not (= VAR t)) or (not (iff VAR t)) or (iff VAR t) or (iff (not VAR) t) or (VAR IDX) or (not (VAR IDX)).
The last case can be viewed
The last case can be viewed
*/
bool der::is_var_diseq(expr * e, unsigned num_decls, var * & v, expr_ref & t) {
// (not (= VAR t)) and (not (iff VAR t)) cases
@ -49,7 +49,7 @@ bool der::is_var_diseq(expr * e, unsigned num_decls, var * & v, expr_ref & t) {
return false;
if (!is_var(lhs, num_decls))
std::swap(lhs, rhs);
SASSERT(is_var(lhs, num_decls));
SASSERT(is_var(lhs, num_decls));
// Remark: Occurs check is not necessary here... the top-sort procedure will check for cycles...
// if (occurs(lhs, rhs)) {
// return false;
@ -67,7 +67,7 @@ bool der::is_var_diseq(expr * e, unsigned num_decls, var * & v, expr_ref & t) {
if (is_var(lhs, num_decls) || is_var(rhs, num_decls)) {
if (!is_var(lhs, num_decls))
std::swap(lhs, rhs);
SASSERT(is_var(lhs, num_decls));
SASSERT(is_var(lhs, num_decls));
// Remark: Occurs check is not necessary here... the top-sort procedure will check for cycles...
// if (occurs(lhs, rhs)) {
// return false;
@ -83,11 +83,11 @@ bool der::is_var_diseq(expr * e, unsigned num_decls, var * & v, expr_ref & t) {
if (!is_neg_var(m_manager, lhs, num_decls))
std::swap(lhs, rhs);
SASSERT(is_neg_var(m_manager, lhs, num_decls));
expr * lhs_var = to_app(lhs)->get_arg(0);
expr * lhs_var = to_app(lhs)->get_arg(0);
// Remark: Occurs check is not necessary here... the top-sort procedure will check for cycles...
// if (occurs(lhs_var, rhs)) {
// return false;
// }
// }
v = to_var(lhs_var);
t = rhs;
TRACE("der", tout << mk_pp(e, m_manager) << "\n";);
@ -134,11 +134,11 @@ void der::operator()(quantifier * q, expr_ref & r, proof_ref & pr) {
pr = m_manager.mk_transitivity(pr, curr_pr);
}
} while (q != r && is_quantifier(r));
// Eliminate variables that have become unused
if (reduced && is_forall(r)) {
quantifier * q = to_quantifier(r);
elim_unused_vars(m_manager, q, r);
elim_unused_vars(m_manager, q, params_ref(), r);
if (m_manager.proofs_enabled()) {
proof * p1 = m_manager.mk_elim_unused_vars(q, r);
pr = m_manager.mk_transitivity(pr, p1);
@ -153,24 +153,24 @@ void der::reduce1(quantifier * q, expr_ref & r, proof_ref & pr) {
r = q;
return;
}
expr * e = q->get_expr();
unsigned num_decls = q->get_num_decls();
var * v = 0;
expr_ref t(m_manager);
expr_ref t(m_manager);
if (m_manager.is_or(e)) {
unsigned num_args = to_app(e)->get_num_args();
unsigned i = 0;
unsigned diseq_count = 0;
unsigned largest_vinx = 0;
m_map.reset();
m_pos2var.reset();
m_inx2var.reset();
m_pos2var.reserve(num_args, -1);
// Find all disequalities
for (; i < num_args; i++) {
if (is_var_diseq(to_app(e)->get_arg(i), num_decls, v, t)) {
@ -192,7 +192,7 @@ void der::reduce1(quantifier * q, expr_ref & r, proof_ref & pr) {
get_elimination_order();
SASSERT(m_order.size() <= diseq_count); // some might be missing because of cycles
if (!m_order.empty()) {
if (!m_order.empty()) {
create_substitution(largest_vinx + 1);
apply_substitution(q, r);
}
@ -202,22 +202,22 @@ void der::reduce1(quantifier * q, expr_ref & r, proof_ref & pr) {
r = q;
}
}
// Remark: get_elimination_order/top-sort checks for cycles, but it is not invoked for unit clauses.
// Remark: get_elimination_order/top-sort checks for cycles, but it is not invoked for unit clauses.
// So, we must perform a occurs check here.
else if (is_var_diseq(e, num_decls, v, t) && !occurs(v, t)) {
r = m_manager.mk_false();
}
else
else
r = q;
if (m_manager.proofs_enabled()) {
pr = r == q ? 0 : m_manager.mk_der(q, r);
}
}
}
void der_sort_vars(ptr_vector<var> & vars, ptr_vector<expr> & definitions, unsigned_vector & order) {
order.reset();
// eliminate self loops, and definitions containing quantifiers.
bool found = false;
for (unsigned i = 0; i < definitions.size(); i++) {
@ -228,7 +228,7 @@ void der_sort_vars(ptr_vector<var> & vars, ptr_vector<expr> & definitions, unsig
else
found = true; // found at least one candidate
}
if (!found)
return;
@ -329,14 +329,14 @@ void der::get_elimination_order() {
// der::top_sort ts(m_manager);
der_sort_vars(m_inx2var, m_map, m_order);
TRACE("der",
TRACE("der",
tout << "Elimination m_order:" << std::endl;
for(unsigned i=0; i<m_order.size(); i++)
{
if (i != 0) tout << ",";
tout << m_order[i];
}
tout << std::endl;
tout << std::endl;
);
}
@ -359,24 +359,24 @@ void der::create_substitution(unsigned sz) {
void der::apply_substitution(quantifier * q, expr_ref & r) {
expr * e = q->get_expr();
unsigned num_args=to_app(e)->get_num_args();
unsigned num_args=to_app(e)->get_num_args();
// get a new expression
m_new_args.reset();
for(unsigned i = 0; i < num_args; i++) {
int x = m_pos2var[i];
if (x != -1 && m_map[x] != 0)
if (x != -1 && m_map[x] != 0)
continue; // this is a disequality with definition (vanishes)
m_new_args.push_back(to_app(e)->get_arg(i));
}
unsigned sz = m_new_args.size();
expr_ref t(m_manager);
t = (sz == 1) ? m_new_args[0] : m_manager.mk_or(sz, m_new_args.c_ptr());
expr_ref new_e(m_manager);
expr_ref new_e(m_manager);
m_subst(t, m_subst_map.size(), m_subst_map.c_ptr(), new_e);
// don't forget to update the quantifier patterns
expr_ref_buffer new_patterns(m_manager);
expr_ref_buffer new_no_patterns(m_manager);
@ -392,7 +392,7 @@ void der::apply_substitution(quantifier * q, expr_ref & r) {
new_no_patterns.push_back(new_nopat);
}
r = m_manager.update_quantifier(q, new_patterns.size(), new_patterns.c_ptr(),
r = m_manager.update_quantifier(q, new_patterns.size(), new_patterns.c_ptr(),
new_no_patterns.size(), new_no_patterns.c_ptr(), new_e);
}
@ -404,9 +404,9 @@ struct der_rewriter_cfg : public default_rewriter_cfg {
ast_manager & m() const { return m_der.m(); }
bool reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
bool reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
expr * const * new_no_patterns,
expr_ref & result,
proof_ref & result_pr) {

View file

@ -8,5 +8,6 @@ def_module_params('rewriter',
("push_ite_bv", BOOL, False, "push if-then-else over bit-vector terms."),
("pull_cheap_ite", BOOL, False, "pull if-then-else terms when cheap."),
("bv_ineq_consistency_test_max", UINT, 0, "max size of conjunctions on which to perform consistency test based on inequalities on bitvectors."),
("cache_all", BOOL, False, "cache all intermediate results.")))
("cache_all", BOOL, False, "cache all intermediate results."),
("ignore_patterns_on_ground_qbody", BOOL, True, "ignores patterns on quantifiers that don't mention their bound variables.")))

View file

@ -54,6 +54,7 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
bool m_cache_all;
bool m_push_ite_arith;
bool m_push_ite_bv;
bool m_ignore_patterns_on_ground_qbody;
// substitution support
expr_dependency_ref m_used_dependencies; // set of dependencies of used substitutions
@ -70,8 +71,9 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
m_cache_all = p.cache_all();
m_push_ite_arith = p.push_ite_arith();
m_push_ite_bv = p.push_ite_bv();
m_ignore_patterns_on_ground_qbody = p.ignore_patterns_on_ground_qbody();
}
void updt_params(params_ref const & p) {
m_b_rw.updt_params(p);
m_a_rw.updt_params(p);
@ -82,7 +84,7 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
updt_local_params(p);
}
bool flat_assoc(func_decl * f) const {
bool flat_assoc(func_decl * f) const {
if (!m_flat) return false;
family_id fid = f->get_family_id();
if (fid == null_family_id)
@ -98,10 +100,10 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
}
bool rewrite_patterns() const { return false; }
bool cache_all_results() const { return m_cache_all; }
bool max_steps_exceeded(unsigned num_steps) const {
bool max_steps_exceeded(unsigned num_steps) const {
cooperate("simplifier");
if (memory::get_allocation_size() > m_max_memory)
throw rewriter_exception(Z3_MAX_MEMORY_MSG);
@ -179,13 +181,13 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
st = m_ar_rw.mk_eq_core(args[0], args[1], result);
else if (s_fid == m_seq_rw.get_fid())
st = m_seq_rw.mk_eq_core(args[0], args[1], result);
if (st != BR_FAILED)
return st;
}
if (k == OP_EQ || k == OP_IFF) {
SASSERT(num == 2);
st = apply_tamagotchi(args[0], args[1], result);
st = apply_tamagotchi(args[0], args[1], result);
if (st != BR_FAILED)
return st;
}
@ -239,13 +241,13 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
}
else {
if (SWAP) {
result = m().mk_ite(ite->get_arg(0),
result = m().mk_ite(ite->get_arg(0),
m().mk_app(p, value, ite->get_arg(1)),
m().mk_app(p, value, ite->get_arg(2)));
return BR_REWRITE2;
}
else {
result = m().mk_ite(ite->get_arg(0),
result = m().mk_ite(ite->get_arg(0),
m().mk_app(p, ite->get_arg(1), value),
m().mk_app(p, ite->get_arg(2), value));
return BR_REWRITE2;
@ -257,7 +259,7 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
// ite-value-tree := (ite c <subtree> <subtree>)
// subtree := value
// | (ite c <subtree> <subtree>)
//
//
bool is_ite_value_tree(expr * t) {
if (!m().is_ite(t))
return false;
@ -281,7 +283,7 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
}
return true;
}
br_status pull_ite(func_decl * f, unsigned num, expr * const * args, expr_ref & result) {
if (num == 2 && m().is_bool(f->get_range()) && !m().is_bool(args[0])) {
if (m().is_ite(args[0])) {
@ -325,7 +327,7 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
if (!is_app(t))
return false;
family_id fid = to_app(t)->get_family_id();
return ((fid == m_a_rw.get_fid() && m_push_ite_arith) ||
return ((fid == m_a_rw.get_fid() && m_push_ite_arith) ||
(fid == m_bv_rw.get_fid() && m_push_ite_bv));
}
@ -349,7 +351,7 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
}
return false;
}
/**
\brief Try to "unify" t1 and t2
Examples
@ -463,7 +465,7 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
}
// terms matched...
bool is_int = m_a_util.is_int(t1);
if (!new_t1)
if (!new_t1)
new_t1 = m_a_util.mk_numeral(rational(0), is_int);
if (!new_t2)
new_t2 = m_a_util.mk_numeral(rational(0), is_int);
@ -476,7 +478,7 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
args.push_back(arg);
}
SASSERT(!args.empty());
if (args.size() == 1)
if (args.size() == 1)
c = args[0];
else
c = m_a_util.mk_add(args.size(), args.c_ptr());
@ -518,7 +520,7 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
// Apply transformations of the form
//
// (ite c (+ k1 a) (+ k2 a)) --> (+ (ite c k1 k2) a)
// (ite c (+ k1 a) (+ k2 a)) --> (+ (ite c k1 k2) a)
// (ite c (* k1 a) (* k2 a)) --> (* (ite c k1 k2) a)
//
// These transformations are useful for bit-vector problems, since
@ -536,7 +538,7 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
if (unify(t, e, f_prime, new_t, new_e, common, first)) {
if (first)
result = m().mk_app(f_prime, common, m().mk_ite(c, new_t, new_e));
else
else
result = m().mk_app(f_prime, m().mk_ite(c, new_t, new_e), common);
return BR_DONE;
}
@ -558,7 +560,7 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
result_pr = 0;
br_status st = reduce_app_core(f, num, args, result);
if (st != BR_DONE && st != BR_FAILED) {
CTRACE("th_rewriter_step", st != BR_FAILED,
CTRACE("th_rewriter_step", st != BR_FAILED,
tout << f->get_name() << "\n";
for (unsigned i = 0; i < num; i++) tout << mk_ismt2_pp(args[i], m()) << "\n";
tout << "---------->\n" << mk_ismt2_pp(result, m()) << "\n";);
@ -576,7 +578,7 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
else
st = pull_ite(result);
}
CTRACE("th_rewriter_step", st != BR_FAILED,
CTRACE("th_rewriter_step", st != BR_FAILED,
tout << f->get_name() << "\n";
for (unsigned i = 0; i < num; i++) tout << mk_ismt2_pp(args[i], m()) << "\n";
tout << "---------->\n" << mk_ismt2_pp(result, m()) << "\n";);
@ -593,28 +595,28 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
}
bool reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
bool reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
expr * const * new_no_patterns,
expr_ref & result,
proof_ref & result_pr) {
quantifier_ref q1(m());
proof * p1 = 0;
if (is_quantifier(new_body) &&
if (is_quantifier(new_body) &&
to_quantifier(new_body)->is_forall() == old_q->is_forall() &&
!old_q->has_patterns() &&
!to_quantifier(new_body)->has_patterns()) {
quantifier * nested_q = to_quantifier(new_body);
ptr_buffer<sort> sorts;
buffer<symbol> names;
buffer<symbol> names;
sorts.append(old_q->get_num_decls(), old_q->get_decl_sorts());
names.append(old_q->get_num_decls(), old_q->get_decl_names());
sorts.append(nested_q->get_num_decls(), nested_q->get_decl_sorts());
names.append(nested_q->get_num_decls(), nested_q->get_decl_names());
q1 = m().mk_quantifier(old_q->is_forall(),
sorts.size(),
sorts.c_ptr(),
@ -624,9 +626,9 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
old_q->get_qid(),
old_q->get_skid(),
0, 0, 0, 0);
SASSERT(is_well_sorted(m(), q1));
if (m().proofs_enabled()) {
SASSERT(old_q->get_expr() == new_body);
p1 = m().mk_pull_quant(old_q, q1);
@ -635,24 +637,24 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
else {
ptr_buffer<expr> new_patterns_buf;
ptr_buffer<expr> new_no_patterns_buf;
new_patterns_buf.append(old_q->get_num_patterns(), new_patterns);
new_no_patterns_buf.append(old_q->get_num_no_patterns(), new_no_patterns);
remove_duplicates(new_patterns_buf);
remove_duplicates(new_no_patterns_buf);
q1 = m().update_quantifier(old_q,
q1 = m().update_quantifier(old_q,
new_patterns_buf.size(), new_patterns_buf.c_ptr(), new_no_patterns_buf.size(), new_no_patterns_buf.c_ptr(),
new_body);
TRACE("reduce_quantifier", tout << mk_ismt2_pp(old_q, m()) << "\n----->\n" << mk_ismt2_pp(q1, m()) << "\n";);
SASSERT(is_well_sorted(m(), q1));
}
elim_unused_vars(m(), q1, result);
elim_unused_vars(m(), q1, params_ref(), result);
TRACE("reduce_quantifier", tout << "after elim_unused_vars:\n" << mk_ismt2_pp(result, m()) << "\n";);
result_pr = 0;
if (m().proofs_enabled()) {
proof * p2 = 0;
@ -758,7 +760,7 @@ unsigned th_rewriter::get_num_steps() const {
void th_rewriter::cleanup() {
ast_manager & m = m_imp->m();
dealloc(m_imp);
m_imp = alloc(imp, m, m_params);
m_imp = alloc(imp, m, m_params);
}
void th_rewriter::reset() {

View file

@ -39,10 +39,16 @@ void var_subst::operator()(expr * n, unsigned num_args, expr * const * args, exp
tout << mk_ismt2_pp(result, m_reducer.m()) << "\n";);
}
unused_vars_eliminator::unused_vars_eliminator(ast_manager & m, params_ref const & params) :
m(m), m_subst(m), m_params(params)
{
m_ignore_patterns_on_ground_qbody = m_params.get_bool("ignore_patterns_on_ground_qbody", true);
}
void unused_vars_eliminator::operator()(quantifier* q, expr_ref & result) {
SASSERT(is_well_sorted(m, q));
if (is_ground(q->get_expr())) {
// ignore patterns if the body is a ground formula.
if (m_ignore_patterns_on_ground_qbody && is_ground(q->get_expr())) {
// Ignore patterns if the body is a ground formula.
result = q->get_expr();
return;
}
@ -146,8 +152,8 @@ void unused_vars_eliminator::operator()(quantifier* q, expr_ref & result) {
SASSERT(is_well_sorted(m, result));
}
void elim_unused_vars(ast_manager & m, quantifier * q, expr_ref & result) {
unused_vars_eliminator el(m);
void elim_unused_vars(ast_manager & m, quantifier * q, params_ref const & params, expr_ref & result) {
unused_vars_eliminator el(m, params);
el(q, result);
}

View file

@ -21,6 +21,7 @@ Notes:
#include"rewriter.h"
#include"used_vars.h"
#include"params.h"
/**
\brief Alias for var_shifter class.
@ -31,7 +32,7 @@ typedef var_shifter shift_vars;
\brief Variable substitution functor. It substitutes variables by expressions.
The expressions may contain variables.
*/
class var_subst {
class var_subst {
beta_reducer m_reducer;
bool m_std_order;
public:
@ -39,7 +40,7 @@ public:
bool std_order() const { return m_std_order; }
/**
When std_order() == true,
When std_order() == true,
I'm using the same standard used in quantifier instantiation.
(VAR 0) is stored in the last position of the array.
...
@ -55,15 +56,17 @@ public:
\brief Eliminate the unused variables from \c q. Store the result in \c r.
*/
class unused_vars_eliminator {
ast_manager& m;
var_subst m_subst;
used_vars m_used;
ast_manager & m;
var_subst m_subst;
used_vars m_used;
params_ref m_params;
bool m_ignore_patterns_on_ground_qbody;
public:
unused_vars_eliminator(ast_manager& m): m(m), m_subst(m) {}
unused_vars_eliminator(ast_manager & m, params_ref const & params);
void operator()(quantifier* q, expr_ref& r);
};
void elim_unused_vars(ast_manager & m, quantifier * q, expr_ref & r);
void elim_unused_vars(ast_manager & m, quantifier * q, params_ref const & params, expr_ref & r);
/**
\brief Instantiate quantifier q using the given exprs.
@ -86,7 +89,7 @@ class expr_free_vars {
expr_sparse_mark m_mark;
ptr_vector<sort> m_sorts;
ptr_vector<expr> m_todo;
public:
public:
void reset();
void operator()(expr* e);
void accumulate(expr* e);
@ -96,7 +99,7 @@ public:
bool contains(unsigned idx) const { return idx < m_sorts.size() && m_sorts[idx] != 0; }
void set_default_sort(sort* s);
void reverse() { m_sorts.reverse(); }
sort*const* c_ptr() const { return m_sorts.c_ptr(); }
sort*const* c_ptr() const { return m_sorts.c_ptr(); }
};
#endif

View file

@ -14,7 +14,7 @@ Author:
Leonardo de Moura (leonardo) 2010-04-02.
Revision History:
Christoph Wintersteiger 2010-04-06: Added implementation.
--*/
@ -40,7 +40,7 @@ bool distribute_forall::visit_children(expr * n) {
bool visited = true;
unsigned j;
switch(n->get_kind()) {
case AST_VAR:
case AST_VAR:
break;
case AST_APP:
j = to_app(n)->get_num_args();
@ -86,15 +86,15 @@ void distribute_forall::reduce1_app(app * a) {
SASSERT(is_cached(a->get_arg(j)));
expr * c = get_cached(a->get_arg(j));
SASSERT(c!=0);
if (c != a->get_arg(j))
if (c != a->get_arg(j))
reduced = true;
m_new_args[j] = c;
}
}
if (reduced) {
na = m_manager.mk_app(a->get_decl(), num_args, m_new_args.c_ptr());
}
cache_result(a, na);
}
@ -126,11 +126,11 @@ void distribute_forall::reduce1_quantifier(quantifier * q) {
quantifier_ref tmp_q(m_manager);
tmp_q = m_manager.update_quantifier(q, not_arg);
expr_ref new_q(m_manager);
elim_unused_vars(m_manager, tmp_q, new_q);
elim_unused_vars(m_manager, tmp_q, params_ref(), new_q);
new_args.push_back(new_q);
}
expr_ref result(m_manager);
// m_bsimp.mk_and actually constructs a (not (or ...)) formula,
// m_bsimp.mk_and actually constructs a (not (or ...)) formula,
// it will also apply basic simplifications.
m_bsimp.mk_and(new_args.size(), new_args.c_ptr(), result);
cache_result(q, result);
@ -148,15 +148,15 @@ void distribute_forall::operator()(expr * f, expr_ref & result) {
while (!m_todo.empty()) {
expr * e = m_todo.back();
if (visit_children(e)) {
if (visit_children(e)) {
m_todo.pop_back();
reduce1(e);
}
}
}
result = get_cached(f);
SASSERT(result!=0);
TRACE("distribute_forall", tout << mk_ll_pp(f, m_manager) << "======>\n"
TRACE("distribute_forall", tout << mk_ll_pp(f, m_manager) << "======>\n"
<< mk_ll_pp(result, m_manager););
}
@ -166,5 +166,5 @@ expr * distribute_forall::get_cached(expr * n) const {
void distribute_forall::cache_result(expr * n, expr * r) {
SASSERT(r != 0);
m_cache.insert(n, r);
m_cache.insert(n, r);
}

View file

@ -32,7 +32,7 @@ elim_bounds::elim_bounds(ast_manager & m):
(<= x k)
(<= (+ x (* -1 y)) k)
(<= (+ x (* -1 t)) k)
(<= (+ x (* -1 t)) k)
(<= (+ t (* -1 x)) k)
x and y are a bound variables, t is a ground term and k is a numeral
@ -65,14 +65,14 @@ bool elim_bounds::is_bound(expr * n, var * & lower, var * & upper) {
if (neg)
le = !le;
if (is_var(n)) {
upper = to_var(n);
}
else if (m_util.is_add(n) && to_app(n)->get_num_args() == 2) {
expr * arg1 = to_app(n)->get_arg(0);
expr * arg2 = to_app(n)->get_arg(1);
if (is_var(arg1))
if (is_var(arg1))
upper = to_var(arg1);
else if (!is_ground(arg1))
return false;
@ -95,7 +95,7 @@ bool elim_bounds::is_bound(expr * n, var * & lower, var * & upper) {
if (!le)
std::swap(upper, lower);
return true;
}
@ -188,7 +188,7 @@ void elim_bounds::operator()(quantifier * q, expr_ref & r) {
}
quantifier_ref new_q(m_manager);
new_q = m_manager.update_quantifier(q, new_body);
elim_unused_vars(m_manager, new_q, r);
elim_unused_vars(m_manager, new_q, params_ref(), r);
TRACE("elim_bounds", tout << mk_pp(q, m_manager) << "\n" << mk_pp(r, m_manager) << "\n";);
}
@ -199,10 +199,10 @@ bool elim_bounds_star::visit_quantifier(quantifier * q) {
visit(q->get_expr(), visited);
return visited;
}
void elim_bounds_star::reduce1_quantifier(quantifier * q) {
if (!q->is_forall() || q->get_num_patterns() != 0) {
cache_result(q, q, 0);
cache_result(q, q, 0);
return;
}
quantifier_ref new_q(m);

View file

@ -33,8 +33,8 @@ simplifier::simplifier(ast_manager & m):
m_ac_support(true) {
}
void simplifier::register_plugin(plugin * p) {
m_plugins.register_plugin(p);
void simplifier::register_plugin(plugin * p) {
m_plugins.register_plugin(p);
}
simplifier::~simplifier() {
@ -46,13 +46,13 @@ void simplifier::enable_ac_support(bool flag) {
ptr_vector<plugin>::const_iterator it = m_plugins.begin();
ptr_vector<plugin>::const_iterator end = m_plugins.end();
for (; it != end; ++it) {
if (*it != 0)
if (*it != 0)
(*it)->enable_ac_support(flag);
}
}
/**
\brief External interface for the simplifier.
\brief External interface for the simplifier.
A client will invoke operator()(s, r, p) to simplify s.
The result is stored in r.
When proof generation is enabled, a proof for the equivalence (or equisatisfiability)
@ -69,14 +69,14 @@ void simplifier::operator()(expr * s, expr_ref & r, proof_ref & p) {
proof * result_proof;
switch (m.proof_mode()) {
case PGM_DISABLED: // proof generation is disabled.
reduce_core(s);
reduce_core(s);
// after executing reduce_core, the result of the simplification is in the cache
get_cached(s, result, result_proof);
r = result;
p = m.mk_undef_proof();
break;
case PGM_COARSE: // coarse proofs... in this case, we do not produce a step by step (fine grain) proof to show the equivalence (or equisatisfiability) of s an r.
m_subst_proofs.reset(); // m_subst_proofs is an auxiliary vector that is used to justify substitutions. See comment on method get_subst.
m_subst_proofs.reset(); // m_subst_proofs is an auxiliary vector that is used to justify substitutions. See comment on method get_subst.
reduce_core(s);
get_cached(s, result, result_proof);
r = result;
@ -163,7 +163,7 @@ bool simplifier::visit_children(expr * n) {
// The method ast_manager::mk_app is used to create the flat version of an AC operator.
// In Z3 1.x, we used multi-ary operators. This creates problems for the superposition engine.
// So, starting at Z3 2.x, only boolean operators can be multi-ary.
// Example:
// Example:
// (and (and a b) (and c d)) --> (and a b c d)
// (+ (+ a b) (+ c d)) --> (+ a (+ b (+ c d)))
// Remark: The flattening is only applied if m_ac_support is true.
@ -178,7 +178,7 @@ bool simplifier::visit_children(expr * n) {
}
return visited;
}
case AST_QUANTIFIER:
case AST_QUANTIFIER:
return visit_quantifier(to_quantifier(n));
default:
UNREACHABLE();
@ -188,7 +188,7 @@ bool simplifier::visit_children(expr * n) {
/**
\brief Visit the children of n assuming it is an AC (associative-commutative) operator.
For example, if n is of the form (+ (+ a b) (+ c d)), this method
will return true if the nodes a, b, c and d have been already simplified.
The nodes (+ a b) and (+ c d) are not really checked.
@ -216,7 +216,7 @@ bool simplifier::visit_ac(app * n) {
expr * arg = n->get_arg(i);
if (is_app_of(arg, decl))
todo.push_back(to_app(arg));
else
else
visit(arg, visited);
}
}
@ -319,7 +319,7 @@ void simplifier::reduce1_app_core(app * n) {
proof * p;
if (n == r)
p = 0;
else if (r != s)
else if (r != s)
// we use a "theory rewrite generic proof" to justify the step
// s = (decl arg_0' ... arg_{n-1}') --> r
p = m.mk_transitivity(p1, m.mk_rewrite(s, r));
@ -368,7 +368,7 @@ void simplifier::reduce1_ac_app_core(app * n) {
proof_ref p1(m);
mk_ac_congruent_term(n, n_c, p1);
TRACE("ac", tout << "expr:\n" << mk_pp(n, m) << "\ncongruent term:\n" << mk_pp(n_c, m) << "\n";);
expr_ref r(m);
expr_ref r(m);
func_decl * decl = n->get_decl();
family_id fid = decl->get_family_id();
plugin * p = get_plugin(fid);
@ -415,7 +415,7 @@ void simplifier::reduce1_ac_app_core(app * n) {
proof * p;
if (n == r.get())
p = 0;
else if (r.get() != n_c.get())
else if (r.get() != n_c.get())
p = m.mk_transitivity(p1, m.mk_rewrite(n_c, r));
else
p = p1;
@ -434,7 +434,7 @@ void simplifier::dump_rewrite_lemma(func_decl * decl, unsigned num_args, expr *
sprintf_s(buffer, ARRAYSIZE(buffer), "lemma_%d.smt", g_rewrite_lemma_id);
#else
sprintf(buffer, "rewrite_lemma_%d.smt", g_rewrite_lemma_id);
#endif
#endif
ast_smt_pp pp(m);
pp.set_benchmark_name("rewrite_lemma");
pp.set_status("unsat");
@ -450,7 +450,7 @@ void simplifier::dump_rewrite_lemma(func_decl * decl, unsigned num_args, expr *
/**
\brief Return in \c result an expression \c e equivalent to <tt>(f args[0] ... args[num_args - 1])</tt>, and
store in \c pr a proof for <tt>(= (f args[0] ... args[num_args - 1]) e)</tt>
If e is identical to (f args[0] ... args[num_args - 1]), then pr is set to 0.
*/
void simplifier::mk_app(func_decl * decl, unsigned num_args, expr * const * args, expr_ref & result) {
@ -474,7 +474,7 @@ void simplifier::mk_app(func_decl * decl, unsigned num_args, expr * const * args
//dump_rewrite_lemma(decl, num_args, args, result.get());
return;
}
result = m.mk_app(decl, num_args, args);
}
@ -494,17 +494,17 @@ void simplifier::mk_congruent_term(app * n, app_ref & r, proof_ref & p) {
proof * arg_proof;
get_cached(arg, new_arg, arg_proof);
CTRACE("simplifier_bug", (arg != new_arg) != (arg_proof != 0),
CTRACE("simplifier_bug", (arg != new_arg) != (arg_proof != 0),
tout << mk_ll_pp(arg, m) << "\n---->\n" << mk_ll_pp(new_arg, m) << "\n";
tout << "#" << arg->get_id() << " #" << new_arg->get_id() << "\n";
tout << arg << " " << new_arg << "\n";);
if (arg != new_arg) {
has_new_args = true;
proofs.push_back(arg_proof);
SASSERT(arg_proof);
}
}
else {
SASSERT(arg_proof == 0);
}
@ -526,10 +526,10 @@ void simplifier::mk_congruent_term(app * n, app_ref & r, proof_ref & p) {
/**
\brief Store the new arguments of \c n in result. Store in p a proof for
(= n (f result[0] ... result[num_args - 1])), where f is the function symbol of n.
If there are no new arguments or fine grain proofs are disabled, then p is set to 0.
Return true there are new arguments.
Return true there are new arguments.
*/
bool simplifier::get_args(app * n, ptr_vector<expr> & result, proof_ref & p) {
bool has_new_args = false;
@ -565,10 +565,10 @@ bool simplifier::get_args(app * n, ptr_vector<expr> & result, proof_ref & p) {
void simplifier::mk_ac_congruent_term(app * n, app_ref & r, proof_ref & p) {
SASSERT(m_ac_support);
func_decl * f = n->get_decl();
m_ac_cache.reset();
m_ac_pr_cache.reset();
ptr_buffer<app> todo;
ptr_buffer<expr> new_args;
ptr_buffer<proof> new_arg_prs;
@ -621,7 +621,7 @@ void simplifier::mk_ac_congruent_term(app * n, app_ref & r, proof_ref & p) {
todo.pop_back();
if (!has_new_arg) {
m_ac_cache.insert(curr, curr);
if (m.fine_grain_proofs())
if (m.fine_grain_proofs())
m_ac_pr_cache.insert(curr, 0);
}
else {
@ -634,7 +634,7 @@ void simplifier::mk_ac_congruent_term(app * n, app_ref & r, proof_ref & p) {
}
}
}
SASSERT(m_ac_cache.contains(n));
app * new_n = 0;
m_ac_cache.find(n, new_n);
@ -646,7 +646,7 @@ void simplifier::mk_ac_congruent_term(app * n, app_ref & r, proof_ref & p) {
}
}
#define White 0
#define White 0
#define Grey 1
#define Black 2
@ -688,7 +688,7 @@ void simplifier::ac_top_sort(app * n, ptr_buffer<expr> & result) {
while (!todo.empty()) {
expr * curr = todo.back();
int color;
obj_map<expr, int>::obj_map_entry * entry = colors.insert_if_not_there2(curr, White);
obj_map<expr, int>::obj_map_entry * entry = colors.insert_if_not_there2(curr, White);
SASSERT(entry);
color = entry->get_data().m_value;
switch (color) {
@ -731,7 +731,7 @@ void simplifier::get_ac_args(app * n, ptr_vector<expr> & args, vector<rational>
ac_top_sort(n, sorted_exprs);
SASSERT(!sorted_exprs.empty());
SASSERT(sorted_exprs[sorted_exprs.size()-1] == n);
TRACE("ac", tout << mk_ll_pp(n, m, true, false) << "#" << n->get_id() << "\nsorted expressions...\n";
for (unsigned i = 0; i < sorted_exprs.size(); i++) {
tout << "#" << sorted_exprs[i]->get_id() << " ";
@ -747,7 +747,7 @@ void simplifier::get_ac_args(app * n, ptr_vector<expr> & args, vector<rational>
expr * curr = sorted_exprs[j];
rational mult;
m_ac_mults.find(curr, mult);
SASSERT(!mult.is_zero());
SASSERT(!mult.is_zero());
if (is_app_of(curr, decl)) {
unsigned num_args = to_app(curr)->get_num_args();
for (unsigned i = 0; i < num_args; i++) {
@ -772,16 +772,16 @@ void simplifier::reduce1_quantifier(quantifier * q) {
quantifier_ref q1(m);
proof * p1 = 0;
if (is_quantifier(new_body) &&
if (is_quantifier(new_body) &&
to_quantifier(new_body)->is_forall() == q->is_forall() &&
!to_quantifier(q)->has_patterns() &&
!to_quantifier(new_body)->has_patterns()) {
quantifier * nested_q = to_quantifier(new_body);
ptr_buffer<sort> sorts;
buffer<symbol> names;
buffer<symbol> names;
sorts.append(q->get_num_decls(), q->get_decl_sorts());
names.append(q->get_num_decls(), q->get_decl_names());
sorts.append(nested_q->get_num_decls(), nested_q->get_decl_sorts());
@ -797,7 +797,7 @@ void simplifier::reduce1_quantifier(quantifier * q) {
q->get_skid(),
0, 0, 0, 0);
SASSERT(is_well_sorted(m, q1));
if (m.fine_grain_proofs()) {
quantifier * q0 = m.update_quantifier(q, new_body);
proof * p0 = q == q0 ? 0 : m.mk_quant_intro(q, q0, new_body_pr);
@ -817,13 +817,13 @@ void simplifier::reduce1_quantifier(quantifier * q) {
get_cached(q->get_pattern(i), new_pattern, new_pattern_pr);
if (m.is_pattern(new_pattern)) {
new_patterns.push_back(new_pattern);
}
}
}
num = q->get_num_no_patterns();
for (unsigned i = 0; i < num; i++) {
get_cached(q->get_no_pattern(i), new_pattern, new_pattern_pr);
new_no_patterns.push_back(new_pattern);
}
}
remove_duplicates(new_patterns);
remove_duplicates(new_no_patterns);
@ -833,7 +833,7 @@ void simplifier::reduce1_quantifier(quantifier * q) {
q->get_decl_sorts(),
q->get_decl_names(),
new_body,
q->get_weight(),
q->get_weight(),
q->get_qid(),
q->get_skid(),
new_patterns.size(),
@ -850,10 +850,10 @@ void simplifier::reduce1_quantifier(quantifier * q) {
p1 = q == q1 ? 0 : m.mk_quant_intro(q, q1, new_body_pr);
}
}
expr_ref r(m);
elim_unused_vars(m, q1, r);
elim_unused_vars(m, q1, params_ref(), r);
proof * pr = 0;
if (m.fine_grain_proofs()) {
proof * p2 = 0;
@ -871,7 +871,7 @@ void simplifier::reduce1_quantifier(quantifier * q) {
void simplifier::borrow_plugins(simplifier const & s) {
ptr_vector<plugin>::const_iterator it = s.begin_plugins();
ptr_vector<plugin>::const_iterator end = s.end_plugins();
for (; it != end; ++it)
for (; it != end; ++it)
register_plugin(*it);
}
@ -882,7 +882,7 @@ void simplifier::enable_presimp() {
enable_ac_support(false);
ptr_vector<plugin>::const_iterator it = begin_plugins();
ptr_vector<plugin>::const_iterator end = end_plugins();
for (; it != end; ++it)
for (; it != end; ++it)
(*it)->enable_presimp(true);
}
@ -905,7 +905,7 @@ bool subst_simplifier::get_subst(expr * n, expr_ref & r, proof_ref & p) {
m_subst_map->get(n, _r, _p);
r = _r;
p = _p;
if (m.coarse_grain_proofs())
if (m.coarse_grain_proofs())
m_subst_proofs.push_back(p);
return true;
}
@ -917,7 +917,7 @@ static void push_core(ast_manager & m, expr * e, proof * pr, expr_ref_vector & r
TRACE("preprocessor",
tout << mk_pp(e, m) << "\n";
if (pr) tout << mk_ll_pp(pr, m) << "\n\n";);
if (m.is_true(e))
if (m.is_true(e))
return;
result.push_back(e);
if (m.proofs_enabled())
@ -952,9 +952,9 @@ void push_assertion(ast_manager & m, expr * e, proof * pr, expr_ref_vector & res
CTRACE("push_assertion", !(pr == 0 || m.is_undef_proof(pr) || m.get_fact(pr) == e),
tout << mk_pp(e, m) << "\n" << mk_pp(m.get_fact(pr), m) << "\n";);
SASSERT(pr == 0 || m.is_undef_proof(pr) || m.get_fact(pr) == e);
if (m.is_and(e))
if (m.is_and(e))
push_and(m, to_app(e), pr, result, result_prs);
else if (m.is_not(e) && m.is_or(to_app(e)->get_arg(0)))
else if (m.is_not(e) && m.is_or(to_app(e)->get_arg(0)))
push_not_or(m, to_app(to_app(e)->get_arg(0)), pr, result, result_prs);
else
push_core(m, e, pr, result, result_prs);

View file

@ -29,11 +29,12 @@ Notes:
#include"bound_manager.h"
#include"used_vars.h"
#include"var_subst.h"
#include"gparams.h"
#ifndef _EXTERNAL_RELEASE
BINARY_SYM_CMD(get_quantifier_body_cmd,
"dbg-get-qbody",
BINARY_SYM_CMD(get_quantifier_body_cmd,
"dbg-get-qbody",
"<symbol> <quantifier>",
"store the body of the quantifier in the global variable <symbol>",
CPK_EXPR,
@ -43,8 +44,8 @@ BINARY_SYM_CMD(get_quantifier_body_cmd,
store_expr_ref(ctx, m_sym, to_quantifier(arg)->get_expr());
});
BINARY_SYM_CMD(set_cmd,
"dbg-set",
BINARY_SYM_CMD(set_cmd,
"dbg-set",
"<symbol> <term>",
"store <term> in the global variable <symbol>",
CPK_EXPR,
@ -57,7 +58,7 @@ UNARY_CMD(pp_var_cmd, "dbg-pp-var", "<symbol>", "pretty print a global variable
expr * t = get_expr_ref(ctx, arg);
SASSERT(t != 0);
ctx.display(ctx.regular_stream(), t);
ctx.regular_stream() << std::endl;
ctx.regular_stream() << std::endl;
});
BINARY_SYM_CMD(shift_vars_cmd,
@ -71,7 +72,7 @@ BINARY_SYM_CMD(shift_vars_cmd,
var_shifter s(ctx.m());
s(t, arg, r);
store_expr_ref(ctx, m_sym, r.get());
});
});
UNARY_CMD(pp_shared_cmd, "dbg-pp-shared", "<term>", "display shared subterms of the given term", CPK_EXPR, expr *, {
shared_occs s(ctx.m());
@ -81,7 +82,7 @@ UNARY_CMD(pp_shared_cmd, "dbg-pp-shared", "<term>", "display shared subterms of
shared_occs::iterator end = s.end_shared();
for (; it != end; ++it) {
expr * curr = *it;
ctx.regular_stream() << std::endl << " ";
ctx.regular_stream() << std::endl << " ";
ctx.display(ctx.regular_stream(), curr, 2);
}
ctx.regular_stream() << ")" << std::endl;
@ -112,7 +113,7 @@ public:
if (m_idx == 1) return CPK_SYMBOL_LIST;
return CPK_SYMBOL;
}
virtual void set_next_arg(cmd_context & ctx, symbol const & s) {
virtual void set_next_arg(cmd_context & ctx, symbol const & s) {
if (m_idx == 0) {
m_source = get_expr_ref(ctx, s);
}
@ -146,24 +147,24 @@ UNARY_CMD(bool_rewriter_cmd, "dbg-bool-rewriter", "<term>", "apply the Boolean r
bool_rewriter_star r(ctx.m(), p);
r(arg, t);
ctx.display(ctx.regular_stream(), t);
ctx.regular_stream() << std::endl;
ctx.regular_stream() << std::endl;
});
UNARY_CMD(bool_frewriter_cmd, "dbg-bool-flat-rewriter", "<term>", "apply the Boolean (flattening) rewriter to the given term", CPK_EXPR, expr *, {
expr_ref t(ctx.m());
{
{
params_ref p;
p.set_bool("flat", true);
bool_rewriter_star r(ctx.m(), p);
r(arg, t);
}
ctx.display(ctx.regular_stream(), t);
ctx.regular_stream() << std::endl;
ctx.regular_stream() << std::endl;
});
UNARY_CMD(elim_and_cmd, "dbg-elim-and", "<term>", "apply the Boolean rewriter (eliminating AND operator and flattening) to the given term", CPK_EXPR, expr *, {
expr_ref t(ctx.m());
{
{
params_ref p;
p.set_bool("flat", true);
p.set_bool("elim_and", true);
@ -171,7 +172,7 @@ UNARY_CMD(elim_and_cmd, "dbg-elim-and", "<term>", "apply the Boolean rewriter (e
r(arg, t);
}
ctx.display(ctx.regular_stream(), t);
ctx.regular_stream() << std::endl;
ctx.regular_stream() << std::endl;
});
class lt_cmd : public cmd {
@ -192,7 +193,7 @@ public:
}
virtual void execute(cmd_context & ctx) {
bool r = lt(m_t1, m_t2);
ctx.regular_stream() << (r ? "true" : "false") << std::endl;
ctx.regular_stream() << (r ? "true" : "false") << std::endl;
}
};
@ -249,7 +250,7 @@ UNARY_CMD(set_next_id, "dbg-set-next-id", "<unsigned>", "set the next expression
UNARY_CMD(used_vars_cmd, "dbg-used-vars", "<expr>", "test used_vars functor", CPK_EXPR, expr *, {
used_vars proc;
if (is_quantifier(arg))
if (is_quantifier(arg))
arg = to_quantifier(arg)->get_expr();
proc(arg);
ctx.regular_stream() << "(vars";
@ -258,7 +259,7 @@ UNARY_CMD(used_vars_cmd, "dbg-used-vars", "<expr>", "test used_vars functor", CP
ctx.regular_stream() << "\n (" << std::left << std::setw(6) << i << " ";
if (s != 0)
ctx.display(ctx.regular_stream(), s, 10);
else
else
ctx.regular_stream() << "<not-used>";
ctx.regular_stream() << ")";
}
@ -271,7 +272,7 @@ UNARY_CMD(elim_unused_vars_cmd, "dbg-elim-unused-vars", "<expr>", "eliminate unu
return;
}
expr_ref r(ctx.m());
elim_unused_vars(ctx.m(), to_quantifier(arg), r);
elim_unused_vars(ctx.m(), to_quantifier(arg), gparams::get(), r);
SASSERT(!is_quantifier(r) || !to_quantifier(r)->may_have_unused_vars());
ctx.display(ctx.regular_stream(), r);
ctx.regular_stream() << std::endl;
@ -287,18 +288,18 @@ public:
virtual char const * get_descr() const { return "instantiate the quantifier using the given expressions."; }
virtual unsigned get_arity() const { return 2; }
virtual void prepare(cmd_context & ctx) { m_q = 0; m_args.reset(); }
virtual cmd_arg_kind next_arg_kind(cmd_context & ctx) const {
if (m_q == 0) return CPK_EXPR;
else return CPK_EXPR_LIST;
}
virtual void set_next_arg(cmd_context & ctx, expr * s) {
if (!is_quantifier(s))
throw cmd_exception("invalid command, quantifier expected.");
m_q = to_quantifier(s);
}
virtual void set_next_arg(cmd_context & ctx, unsigned num, expr * const * ts) {
if (num != m_q->get_num_decls())
throw cmd_exception("invalid command, mismatch between the number of quantified variables and the number of arguments.");
@ -331,7 +332,7 @@ public:
class instantiate_nested_cmd : public instantiate_cmd_core {
public:
instantiate_nested_cmd():instantiate_cmd_core("dbg-instantiate-nested") {}
virtual char const * get_descr() const { return "instantiate the quantifier nested in the outermost quantifier, this command is used to test the instantiation procedure with quantifiers that contain free variables."; }
virtual void set_next_arg(cmd_context & ctx, expr * s) {

View file

@ -41,8 +41,8 @@ namespace Duality {
params_ref p;
p.set_bool("proof", true); // this is currently useless
if(models)
p.set_bool("model", true);
p.set_bool("unsat_core", true);
p.set_bool("model", true);
p.set_bool("unsat_core", true);
bool mbqi = c.get_config().get().get_bool("mbqi",true);
p.set_bool("mbqi",mbqi); // just to test
p.set_str("mbqi.id","itp"); // use mbqi for quantifiers in interpolants
@ -57,7 +57,7 @@ namespace Duality {
m_mode = m().proof_mode();
}
expr context::constant(const std::string &name, const sort &ty){
expr context::constant(const std::string &name, const sort &ty){
symbol s = str_symbol(name.c_str());
return cook(m().mk_const(m().mk_const_decl(s, ty)));
}
@ -111,7 +111,7 @@ namespace Duality {
}
expr context::mki(family_id fid, ::decl_kind dk, int n, ::expr **args){
return cook(m().mk_app(fid, dk, 0, 0, n, (::expr **)args));
return cook(m().mk_app(fid, dk, 0, 0, n, (::expr **)args));
}
expr context::make(decl_kind op, const std::vector<expr> &args){
@ -168,9 +168,9 @@ namespace Duality {
expr_abstract(m(), 0, num_bound, VEC2PTR(bound_asts), to_expr(body.raw()), abs_body);
expr_ref result(m());
result = m().mk_quantifier(
op == Forall,
names.size(), VEC2PTR(types), VEC2PTR(names), abs_body.get(),
0,
op == Forall,
names.size(), VEC2PTR(types), VEC2PTR(names), abs_body.get(),
0,
::symbol(),
::symbol(),
0, 0,
@ -194,9 +194,9 @@ namespace Duality {
}
expr_ref result(m());
result = m().mk_quantifier(
op == Forall,
names.size(), VEC2PTR(types), VEC2PTR(names), to_expr(body.raw()),
0,
op == Forall,
names.size(), VEC2PTR(types), VEC2PTR(names), to_expr(body.raw()),
0,
::symbol(),
::symbol(),
0, 0,
@ -273,7 +273,7 @@ namespace Duality {
return OtherArray;
}
}
return Other;
}
@ -340,7 +340,7 @@ namespace Duality {
params p;
return simplify(p);
}
expr context::make_var(int idx, const sort &s){
::sort * a = to_sort(s.raw());
return cook(m().mk_var(idx,a));
@ -348,7 +348,7 @@ namespace Duality {
expr expr::qe_lite() const {
::qe_lite qe(m());
::qe_lite qe(m(), params_ref());
expr_ref result(to_expr(raw()),m());
proof_ref pf(m());
qe(result,pf);
@ -356,7 +356,7 @@ namespace Duality {
}
expr expr::qe_lite(const std::set<int> &idxs, bool index_of_bound) const {
::qe_lite qe(m());
::qe_lite qe(m(), params_ref());
expr_ref result(to_expr(raw()),m());
proof_ref pf(m());
uint_set uis;
@ -412,16 +412,16 @@ namespace Duality {
std::vector < ::sort * > _domain(domain.size());
for(unsigned i = 0; i < domain.size(); i++)
_domain[i] = to_sort(domain[i].raw());
::func_decl* d = m().mk_fresh_func_decl(prefix,
_domain.size(),
::func_decl* d = m().mk_fresh_func_decl(prefix,
_domain.size(),
VEC2PTR(_domain),
to_sort(range.raw()));
return func_decl(*this,d);
}
func_decl context::fresh_func_decl(char const * prefix, sort const & range){
::func_decl* d = m().mk_fresh_func_decl(prefix,
0,
::func_decl* d = m().mk_fresh_func_decl(prefix,
0,
0,
to_sort(range.raw()));
return func_decl(*this,d);
@ -462,30 +462,30 @@ namespace Duality {
incremental,
_theory.size(),
VEC2PTR(_theory));
if(lb == Z3_L_FALSE){
interpolants.resize(_interpolants.size());
for (unsigned i = 0; i < _interpolants.size(); ++i) {
interpolants[i] = expr(ctx(),_interpolants[i]);
}
}
}
if (_model) {
model = iz3wrapper::model(ctx(), _model);
}
if(_labels){
labels = _labels;
}
return lb;
}
#endif
static int linearize_assumptions(int num,
TermTree *assumptions,
std::vector<std::vector <expr> > &linear_assumptions,
std::vector<std::vector <expr> > &linear_assumptions,
std::vector<int> &parents){
for(unsigned i = 0; i < assumptions->getChildren().size(); i++)
num = linearize_assumptions(num, assumptions->getChildren()[i], linear_assumptions, parents);
@ -501,7 +501,7 @@ namespace Duality {
}
static int unlinearize_interpolants(int num,
TermTree* assumptions,
TermTree* assumptions,
const std::vector<expr> &interpolant,
TermTree * &tree_interpolant)
{
@ -522,7 +522,7 @@ namespace Duality {
literals &labels,
bool incremental
)
{
int size = assumptions->number(0);
std::vector<std::vector<expr> > linear_assumptions(size);
@ -540,36 +540,36 @@ namespace Duality {
ptr_vector< ::ast> _theory(theory.size());
for(unsigned i = 0; i < theory.size(); i++)
_theory[i] = theory[i];
if(!incremental){
push();
for(unsigned i = 0; i < linear_assumptions.size(); i++)
for(unsigned j = 0; j < linear_assumptions[i].size(); j++)
add(linear_assumptions[i][j]);
}
check_result res = unsat;
if(!m_solver->get_proof())
res = check();
if(res == unsat){
interpolation_options_struct opts;
if(weak_mode)
opts.set("weak","1");
opts.set("weak","1");
::ast *proof = m_solver->get_proof();
try {
iz3interpolate(m(),proof,_assumptions,_parents,_interpolants,_theory,&opts);
}
// If there's an interpolation bug, throw a char *
// exception so duality can catch it and restart.
// exception so duality can catch it and restart.
catch (const interpolation_failure &f) {
throw f.msg();
}
std::vector<expr> linearized_interpolants(_interpolants.size());
for(unsigned i = 0; i < _interpolants.size(); i++)
linearized_interpolants[i] = expr(ctx(),_interpolants[i]);
@ -585,13 +585,13 @@ namespace Duality {
model_ref _m;
m_solver->get_model(_m);
model = Duality::model(ctx(),_m.get());
#if 0
if(_labels){
labels = _labels;
}
#endif
if(!incremental)
pop();
@ -603,7 +603,7 @@ namespace Duality {
void interpolating_solver::SetWeakInterpolants(bool weak){
weak_mode = weak;
}
void interpolating_solver::SetPrintToFile(const std::string &filename){
print_filename = filename;
@ -618,14 +618,14 @@ namespace Duality {
void interpolating_solver::RemoveInterpolationAxiom(const expr & t){
// theory.remove(t);
}
const char *interpolating_solver::profile(){
// return Z3_interpolation_profile(ctx());
return "";
}
static void get_assumptions_rec(stl_ext::hash_set<ast> &memo, const proof &pf, std::vector<expr> &assumps){
if(memo.find(pf) != memo.end())return;
memo.insert(pf);
@ -657,7 +657,7 @@ namespace Duality {
model_smt2_pp(std::cout, m(), *m_model, 0);
std::cout << std::endl;
}
void model::show_hash() const {
std::ostringstream ss;
model_smt2_pp(ss, m(), *m_model, 0);

View file

@ -47,14 +47,14 @@ Revision History:
namespace datalog {
rule_manager::rule_manager(context& ctx)
rule_manager::rule_manager(context& ctx)
: m(ctx.get_manager()),
m_ctx(ctx),
m_body(m),
m_head(m),
m_args(m),
m_hnf(m),
m_qe(m),
m_qe(m, params_ref()),
m_rwr(m),
m_ufproc(m) {}
@ -98,7 +98,7 @@ namespace datalog {
var_idx_set& rule_manager::finalize_collect_vars() {
unsigned sz = m_free_vars.size();
for (unsigned i = 0; i < sz; ++i) {
if (m_free_vars[i]) m_var_idx.insert(i);
if (m_free_vars[i]) m_var_idx.insert(i);
}
return m_var_idx;
}
@ -139,7 +139,7 @@ namespace datalog {
}
void rule_manager::mk_rule(expr* fml, proof* p, rule_set& rules, symbol const& name) {
void rule_manager::mk_rule(expr* fml, proof* p, rule_set& rules, symbol const& name) {
scoped_proof_mode _sc(m, m_ctx.generate_proof_trace()?PGM_FINE:PGM_DISABLED);
proof_ref pr(p, m);
expr_ref fml1(m);
@ -147,7 +147,7 @@ namespace datalog {
if (fml1 != fml && pr) {
pr = m.mk_asserted(fml1);
}
remove_labels(fml1, pr);
remove_labels(fml1, pr);
mk_rule_core(fml1, pr, rules, name);
}
@ -162,7 +162,7 @@ namespace datalog {
else {
is_negated.push_back(false);
}
}
}
}
void rule_manager::mk_rule_core(expr* fml, proof* p, rule_set& rules, symbol const& name) {
@ -170,7 +170,7 @@ namespace datalog {
proof_ref_vector prs(m);
m_hnf.reset();
m_hnf.set_name(name);
m_hnf(fml, p, fmls, prs);
for (unsigned i = 0; i < m_hnf.get_fresh_predicates().size(); ++i) {
m_ctx.register_predicate(m_hnf.get_fresh_predicates()[i], false);
@ -181,7 +181,7 @@ namespace datalog {
}
void rule_manager::mk_horn_rule(expr* fml, proof* p, rule_set& rules, symbol const& name) {
m_body.reset();
m_neg.reset();
unsigned index = extract_horn(fml, m_body, m_head);
@ -208,13 +208,13 @@ namespace datalog {
}
else if (is_quantifier(fml1)) {
p = m.mk_modus_ponens(p, m.mk_symmetry(m.mk_der(to_quantifier(fml1), fml)));
}
}
else {
p = m.mk_modus_ponens(p, m.mk_rewrite(fml, fml1));
}
}
if (m_ctx.fix_unbound_vars()) {
if (m_ctx.fix_unbound_vars()) {
fix_unbound_vars(r, true);
}
@ -242,10 +242,10 @@ namespace datalog {
for (unsigned i = 0; i < m_args.size(); ++i) {
body.push_back(ensure_app(m_args[i].get()));
}
}
}
else {
head = ensure_app(fml);
}
}
return index;
}
@ -262,12 +262,12 @@ namespace datalog {
func_decl* rule_manager::mk_query(expr* query, rule_set& rules) {
TRACE("dl", tout << mk_pp(query, m) << "\n";);
ptr_vector<sort> vars;
svector<symbol> names;
app_ref_vector body(m);
expr_ref q(m);
// Add implicit variables.
// Remove existential prefix.
bind_variables(query, false, q);
@ -278,7 +278,7 @@ namespace datalog {
m_free_vars(q);
vars.append(m_free_vars.size(), m_free_vars.c_ptr());
if (vars.contains(static_cast<sort*>(0))) {
var_subst sub(m, false);
var_subst sub(m, false);
expr_ref_vector args(m);
// [s0, 0, s2, ..]
// [0 -> 0, 1 -> x, 2 -> 1, ..]
@ -313,7 +313,7 @@ namespace datalog {
}
}
// we want outermost declared variable first to
// we want outermost declared variable first to
// follow order of quantified variables so we reverse vars.
while (vars.size() > names.size()) {
names.push_back(symbol(names.size()));
@ -321,9 +321,9 @@ namespace datalog {
vars.reverse();
names.reverse();
func_decl* qpred = m_ctx.mk_fresh_head_predicate(symbol("query"), symbol(), vars.size(), vars.c_ptr(), body_pred);
m_ctx.register_predicate(qpred, false);
m_ctx.register_predicate(qpred, false);
rules.set_output_predicate(qpred);
if (m_ctx.get_model_converter()) {
filter_model_converter* mc = alloc(filter_model_converter, m);
mc->insert(qpred);
@ -366,7 +366,7 @@ namespace datalog {
for (unsigned i = 0; i < r.size(); ++i) {
body.push_back(ensure_app(r[i].get()));
}
}
}
void rule_manager::hoist_compound(unsigned& num_bound, app_ref& fml, app_ref_vector& body) {
@ -440,7 +440,7 @@ namespace datalog {
if (is_quantifier(e)) {
q = to_quantifier(e);
return q->is_forall();
}
}
return false;
}
@ -454,7 +454,7 @@ namespace datalog {
return app_ref(m.mk_eq(e, m.mk_true()), m);
}
}
void rule_manager::check_app(expr* e) {
if (!is_app(e)) {
std::ostringstream out;
@ -481,7 +481,7 @@ namespace datalog {
bool has_neg = false;
for (unsigned i = 0; i < n; i++) {
bool is_neg = (is_negated != 0 && is_negated[i]);
bool is_neg = (is_negated != 0 && is_negated[i]);
app * curr = tail[i];
if (is_neg && !m_ctx.is_predicate(curr)) {
@ -571,7 +571,7 @@ namespace datalog {
case 1: fml = m.mk_implies(body[0].get(), fml); break;
default: fml = m.mk_implies(m.mk_and(body.size(), body.c_ptr()), fml); break;
}
m_free_vars(fml);
if (m_free_vars.empty()) {
return;
@ -579,7 +579,7 @@ namespace datalog {
svector<symbol> names;
used_symbols<> us;
m_free_vars.set_default_sort(m.mk_bool_sort());
us(fml);
m_free_vars.reverse();
for (unsigned j = 0, i = 0; i < m_free_vars.size(); ++j) {
@ -594,8 +594,8 @@ namespace datalog {
++i;
}
}
}
fml = m.mk_forall(m_free_vars.size(), m_free_vars.c_ptr(), names.c_ptr(), fml);
}
fml = m.mk_forall(m_free_vars.size(), m_free_vars.c_ptr(), names.c_ptr(), fml);
}
std::ostream& rule_manager::display_smt2(rule const& r, std::ostream & out) {
@ -749,7 +749,7 @@ namespace datalog {
quant_tail = m.mk_exists(q_var_cnt, qsorts.c_ptr(), qnames.c_ptr(), unbound_tail_pre_quant);
if (try_quantifier_elimination) {
TRACE("dl_rule_unbound_fix_pre_qe",
TRACE("dl_rule_unbound_fix_pre_qe",
tout<<"rule: ";
r->display(m_ctx, tout);
tout<<"tail with unbound vars: "<<mk_pp(unbound_tail, m)<<"\n";
@ -764,7 +764,7 @@ namespace datalog {
fixed_tail = quant_tail;
}
TRACE("dl_rule_unbound_fix",
TRACE("dl_rule_unbound_fix",
tout<<"rule: ";
r->display(m_ctx, tout);
tout<<"tail with unbound vars: "<<mk_pp(unbound_tail, m)<<"\n";
@ -796,7 +796,7 @@ namespace datalog {
to_formula(new_rule, fml);
scoped_proof _sc(m);
proof* p = m.mk_rewrite(m.get_fact(old_rule.get_proof()), fml);
new_rule.set_proof(m, m.mk_modus_ponens(old_rule.get_proof(), p));
new_rule.set_proof(m, m.mk_modus_ponens(old_rule.get_proof(), p));
}
}
@ -824,7 +824,7 @@ namespace datalog {
}
r = mk(new_head.get(), new_tail.size(), new_tail.c_ptr(), tail_neg.c_ptr(), r->name(), false);
// keep old variable indices around so we can compose with substitutions.
// keep old variable indices around so we can compose with substitutions.
// r->norm_vars(*this);
}
@ -835,7 +835,7 @@ namespace datalog {
void rule_manager::check_valid_head(expr * head) const {
SASSERT(head);
if (!m_ctx.is_predicate(head)) {
std::ostringstream out;
out << "Illegal head. The head predicate needs to be uninterpreted and registered (as recursive) " << mk_pp(head, m);
@ -874,14 +874,14 @@ namespace datalog {
m.get_allocator().deallocate(get_obj_size(n), this);
}
void rule::set_proof(ast_manager& m, proof* p) {
void rule::set_proof(ast_manager& m, proof* p) {
if (p) {
m.inc_ref(p);
m.inc_ref(p);
}
if (m_proof) {
m.dec_ref(m_proof);
m.dec_ref(m_proof);
}
m_proof = p;
m_proof = p;
}
bool rule::is_in_tail(const func_decl * p, bool only_positive) const {
@ -896,7 +896,7 @@ namespace datalog {
//
// non-predicates may appear only in the interpreted tail, it is therefore
// non-predicates may appear only in the interpreted tail, it is therefore
// sufficient only to check the tail.
//
bool rule_manager::has_uninterpreted_non_predicates(rule const& r, func_decl*& f) const {
@ -911,7 +911,7 @@ namespace datalog {
//
// Quantifiers may appear only in the interpreted tail, it is therefore
// Quantifiers may appear only in the interpreted tail, it is therefore
// sufficient only to check the interpreted tail.
//
void rule_manager::has_quantifiers(rule const& r, bool& existential, bool& universal) const {
@ -945,7 +945,7 @@ namespace datalog {
unsigned sz = get_tail_size();
for (unsigned i = 0; i < sz; ++i) {
used.process(get_tail(i));
}
}
}
void rule::get_vars(ast_manager& m, ptr_vector<sort>& sorts) const {
@ -994,13 +994,13 @@ namespace datalog {
app * old_tail = get_tail(i);
expr_ref new_tail_e(m);
vs(old_tail, subst_vals.size(), subst_vals.c_ptr(), new_tail_e);
bool sign = is_neg_tail(i);
bool sign = is_neg_tail(i);
m.inc_ref(new_tail_e);
m.dec_ref(old_tail);
m_tail[i] = TAG(app *, to_app(new_tail_e), sign);
}
}
void rule::display(context & ctx, std::ostream & out) const {
ast_manager & m = ctx.get_manager();
//out << mk_pp(m_head, m);
@ -1068,7 +1068,7 @@ namespace datalog {
}
};

View file

@ -1007,7 +1007,7 @@ namespace pdr {
return m_cache[l];
}
void model_search::erase_children(model_node& n, bool backtrack) {
void model_search::erase_children(model_node& n, bool backtrack) {
ptr_vector<model_node> todo, nodes;
todo.append(n.children());
remove_goal(n);
@ -2241,7 +2241,7 @@ namespace pdr {
vars.append(aux_vars.size(), aux_vars.c_ptr());
scoped_ptr<expr_replacer> rep;
qe_lite qe(m);
qe_lite qe(m, m_params.p);
expr_ref phi1 = m_pm.mk_and(Phi);
qe(vars, phi1);
TRACE("pdr", tout << "Eliminated\n" << mk_pp(phi1, m) << "\n";);

View file

@ -53,10 +53,10 @@ namespace tb {
app* t = to_app(_t);
if (m.is_value(s) && m.is_value(t)) {
IF_VERBOSE(2, verbose_stream() << "different:" << mk_pp(s, m) << " " << mk_pp(t, m) << "\n";);
IF_VERBOSE(2, verbose_stream() << "different:" << mk_pp(s, m) << " " << mk_pp(t, m) << "\n";);
return l_false;
}
if (m_dt.is_constructor(s) && m_dt.is_constructor(t)) {
if (s->get_decl() == t->get_decl()) {
lbool state = l_true;
@ -75,7 +75,7 @@ namespace tb {
return state;
}
else {
IF_VERBOSE(2, verbose_stream() << "different constructors:" << mk_pp(s, m) << " " << mk_pp(t, m) << "\n";);
IF_VERBOSE(2, verbose_stream() << "different constructors:" << mk_pp(s, m) << " " << mk_pp(t, m) << "\n";);
return l_false;
}
}
@ -109,7 +109,7 @@ namespace tb {
case l_false:
return false;
default:
conds.push_back(m.mk_eq(p, t));
conds.push_back(m.mk_eq(p, t));
return true;
}
}
@ -117,7 +117,7 @@ namespace tb {
public:
matcher(ast_manager& m): m(m), m_dt(m) {}
bool operator()(app* pat, app* term, substitution& s, expr_ref_vector& conds) {
// top-most term to match is a predicate. The predicates should be the same.
if (pat->get_decl() != term->get_decl() ||
@ -149,7 +149,7 @@ namespace tb {
}
}
return true;
}
}
};
class clause {
@ -165,22 +165,22 @@ namespace tb {
unsigned m_next_rule; // next rule to expand goal on
unsigned m_ref; // reference count
public:
public:
clause(ast_manager& m):
m_head(m),
m_predicates(m),
m_constraint(m),
m_seqno(0),
m_index(0),
m_index(0),
m_num_vars(0),
m_predicate_index(0),
m_predicate_index(0),
m_parent_rule(0),
m_parent_index(0),
m_next_rule(static_cast<unsigned>(-1)),
m_ref(0) {
}
void set_seqno(unsigned seqno) { m_seqno = seqno; }
unsigned get_seqno() const { return m_seqno; }
unsigned get_next_rule() const { return m_next_rule; }
@ -198,10 +198,10 @@ namespace tb {
void set_head(app* h) { m_head = h; }
unsigned get_parent_index() const { return m_parent_index; }
unsigned get_parent_rule() const { return m_parent_rule; }
void set_parent(ref<tb::clause>& parent) {
void set_parent(ref<tb::clause>& parent) {
m_parent_index = parent->get_index();
m_parent_rule = parent->get_next_rule();
}
}
expr_ref get_body() const {
ast_manager& m = get_manager();
@ -247,7 +247,7 @@ namespace tb {
}
if (!vars.empty()) {
body = m.mk_forall(vars.size(), vars.c_ptr(), names.c_ptr(), body);
}
}
return body;
}
@ -273,18 +273,18 @@ namespace tb {
reduce_equalities();
// IF_VERBOSE(1, display(verbose_stream()););
}
void inc_ref() {
m_ref++;
}
void dec_ref() {
--m_ref;
if (m_ref == 0) {
dealloc(this);
}
}
void display(std::ostream& out) const {
ast_manager& m = m_head.get_manager();
expr_ref_vector fmls(m);
@ -304,7 +304,7 @@ namespace tb {
}
out << mk_pp(fml, m) << "\n";
}
private:
ast_manager& get_manager() const { return m_head.get_manager(); }
@ -314,7 +314,7 @@ namespace tb {
// - m_head - head predicate
// - m_predicates - auxiliary predicates in body.
// - m_constraint - side constraint
//
//
void init_from_rule(datalog::rule_ref const& r) {
ast_manager& m = get_manager();
expr_ref_vector fmls(m);
@ -328,7 +328,7 @@ namespace tb {
m_predicates.reset();
for (unsigned i = 0; i < utsz; ++i) {
m_predicates.push_back(r->get_tail(i));
}
}
bool_rewriter(m).mk_and(fmls.size(), fmls.c_ptr(), m_constraint);
}
@ -348,13 +348,13 @@ namespace tb {
if (get_subst(rw, subst, i, fmls)) {
fmls[i] = m.mk_true();
}
}
}
subst.apply(1, delta, expr_offset(m_head, 0), tmp);
m_head = to_app(tmp);
for (unsigned i = 0; i < m_predicates.size(); ++i) {
subst.apply(1, delta, expr_offset(m_predicates[i].get(), 0), tmp);
m_predicates[i] = to_app(tmp);
}
}
bool_rewriter(m).mk_and(fmls.size(), fmls.c_ptr(), m_constraint);
subst.apply(1, delta, expr_offset(m_constraint, 0), m_constraint);
rw(m_constraint);
@ -404,7 +404,7 @@ namespace tb {
throw non_constructor();
}
}
void operator()(var* v) { }
void operator()(var* v) { }
void operator()(quantifier* ) {
throw non_constructor();
}
@ -421,7 +421,7 @@ namespace tb {
return true;
}
};
};
// rules
class rules {
@ -456,7 +456,7 @@ namespace tb {
func_decl* f = g->get_decl();
map::obj_map_entry* e = m_index.insert_if_not_there2(f, unsigned_vector());
SASSERT(e);
e->get_data().m_value.push_back(idx);
e->get_data().m_value.push_back(idx);
}
unsigned get_num_rules(func_decl* p) const {
@ -475,14 +475,14 @@ namespace tb {
for (; it != end; ++it) {
decls.push_back(it->m_key);
}
}
}
ref<clause> get_rule(func_decl* p, unsigned idx) const {
map::obj_map_entry* e = m_index.find_core(p);
SASSERT(p);
unsigned rule_id = e->get_data().get_value()[idx];
return m_rules[rule_id];
}
}
private:
void reset() {
m_rules.reset();
@ -509,7 +509,7 @@ namespace tb {
bool_rewriter m_rw;
smt_params m_fparams;
smt::kernel m_solver;
public:
index(ast_manager& m):
m(m),
@ -520,7 +520,7 @@ namespace tb {
m_matcher(m),
m_refs(m),
m_subst(m),
m_qe(m),
m_qe(m, params_ref()),
m_rw(m),
m_solver(m, m_fparams) {}
@ -544,7 +544,7 @@ namespace tb {
}
private:
void setup(clause const& g) {
m_preds.reset();
m_refs.reset();
@ -569,8 +569,8 @@ namespace tb {
}
vs(g.get_constraint(), vars.size(), vars.c_ptr(), fml);
fmls.push_back(fml);
m_precond = m.mk_and(fmls.size(), fmls.c_ptr());
IF_VERBOSE(2,
m_precond = m.mk_and(fmls.size(), fmls.c_ptr());
IF_VERBOSE(2,
verbose_stream() << "setup-match: ";
for (unsigned i = 0; i < m_preds.size(); ++i) {
verbose_stream() << mk_pp(m_preds[i].get(), m) << " ";
@ -587,18 +587,18 @@ namespace tb {
return true;
}
}
return false;
return false;
}
//
// check that each predicate in r is matched by some predicate in premise.
// for now: skip multiple matches within the same rule (incomplete).
//
bool match_rule(unsigned rule_index) {
clause const& g = *m_index[rule_index];
clause const& g = *m_index[rule_index];
m_sideconds.reset();
m_subst.reset();
m_subst.reserve(2, g.get_num_vars());
IF_VERBOSE(2, g.display(verbose_stream() << "try-match\n"););
return match_head(g);
@ -628,9 +628,9 @@ namespace tb {
}
verbose_stream() << mk_pp(q, m) << " = " << mk_pp(p, m) << "\n";
);
if (q->get_decl() == p->get_decl() &&
if (q->get_decl() == p->get_decl() &&
m_matcher(q, p, m_subst, m_sideconds) &&
match_predicates(predicate_index + 1, g)) {
return true;
@ -646,7 +646,7 @@ namespace tb {
expr_ref q(m), postcond(m);
expr_ref_vector fmls(m_sideconds);
m_subst.reset_cache();
for (unsigned i = 0; !m.canceled() && i < fmls.size(); ++i) {
m_subst.apply(2, deltas, expr_offset(fmls[i].get(), 0), q);
fmls[i] = q;
@ -680,7 +680,7 @@ namespace tb {
verbose_stream() << "check: " << mk_pp(postcond, m, 7 + g.get_num_predicates()) << "\n";);
if (!is_ground(postcond)) {
IF_VERBOSE(1, verbose_stream() << "TBD: non-ground\n"
IF_VERBOSE(1, verbose_stream() << "TBD: non-ground\n"
<< mk_pp(postcond, m) << "\n";
m_clause->display(verbose_stream());
verbose_stream() << "\n=>\n";
@ -743,7 +743,7 @@ namespace tb {
double m_weight_multiply;
unsigned m_update_frequency;
unsigned m_next_update;
public:
selection(datalog::context& ctx):
@ -766,7 +766,7 @@ namespace tb {
scores.reset();
basic_score_predicate(p, scores);
insert_score(p->get_decl(), scores);
}
}
normalize_scores(rs);
}
@ -783,7 +783,7 @@ namespace tb {
default:
return weight_select(g);
}
}
}
void reset() {
@ -867,8 +867,8 @@ namespace tb {
}
}
IF_VERBOSE(1, verbose_stream() << "select:" << result << "\n";);
return result;
return result;
}
unsigned basic_weight_select(clause const& g) {
@ -957,7 +957,7 @@ namespace tb {
}
}
double score_predicate(app* p) {
double score = 1;
if (find_score(p, score)) {
@ -1031,7 +1031,7 @@ namespace tb {
}
else {
m_score_map.insert(f, scores);
}
}
}
};
@ -1044,15 +1044,15 @@ namespace tb {
expr_ref_vector m_sub1;
expr_ref_vector m_sub2;
public:
unifier(ast_manager& m):
m(m),
unifier(ast_manager& m):
m(m),
m_unifier(m),
m_S1(m),
m_S2(m, false),
m_rename(m),
m_sub1(m),
m_sub1(m),
m_sub2(m) {}
bool operator()(ref<clause>& tgt, unsigned idx, ref<clause>& src, bool compute_subst, ref<clause>& result) {
return unify(*tgt, idx, *src, compute_subst, result);
}
@ -1066,12 +1066,12 @@ namespace tb {
}
}
bool unify(clause const& tgt, unsigned idx, clause const& src, bool compute_subst, ref<clause>& result) {
qe_lite qe(m);
bool unify(clause const& tgt, unsigned idx, clause const& src, bool compute_subst, ref<clause>& result) {
qe_lite qe(m, params_ref());
reset();
SASSERT(tgt.get_predicate(idx)->get_decl() == src.get_decl());
unsigned var_cnt = std::max(tgt.get_num_vars(), src.get_num_vars());
m_S1.reserve(2, var_cnt);
m_S1.reserve(2, var_cnt);
if (!m_unifier(tgt.get_predicate(idx), src.get_head(), m_S1)) {
return false;
}
@ -1080,7 +1080,7 @@ namespace tb {
app_ref head(m);
result = alloc(clause, m);
unsigned delta[2] = { 0, var_cnt };
m_S1.apply(2, delta, expr_offset(tgt.get_head(), 0), tmp);
m_S1.apply(2, delta, expr_offset(tgt.get_head(), 0), tmp);
head = to_app(tmp);
for (unsigned i = 0; i < tgt.get_num_predicates(); ++i) {
if (i != idx) {
@ -1096,7 +1096,7 @@ namespace tb {
}
m_S1.apply(2, delta, expr_offset(tgt.get_constraint(), 0), tmp);
m_S1.apply(2, delta, expr_offset(src.get_constraint(), 1), tmp2);
constraint = m.mk_and(tmp, tmp2);
constraint = m.mk_and(tmp, tmp2);
// perform trival quantifier-elimination:
uint_set index_set;
@ -1114,7 +1114,7 @@ namespace tb {
if (m.is_false(constraint)) {
return false;
}
// initialize rule.
result->init(head, predicates, constraint);
ptr_vector<sort> vars;
@ -1147,10 +1147,10 @@ namespace tb {
extract_subst(delta, src, 1);
}
// init result using head, predicates, constraint
return true;
return true;
}
private:
void reset() {
m_S1.reset();
@ -1175,9 +1175,9 @@ namespace tb {
else {
insert_subst(offset, m.mk_true());
}
}
}
}
void insert_subst(unsigned offset, expr* e) {
if (offset == 0) {
m_sub1.push_back(e);
@ -1201,7 +1201,7 @@ namespace tb {
//
// Given a clause
// Given a clause
// P(s) :- P(t), Phi(x).
// Compute the clauses:
// acc: P(s) :- Delta(z,t), P(z), Phi(x).
@ -1237,7 +1237,7 @@ namespace tb {
head = m.mk_app(delta, zszs.size(), zszs.c_ptr());
for (unsigned i = 0; i < zs.size(); ++i) {
zszs[i+zs.size()] = q->get_arg(i);
}
}
pred = m.mk_app(delta, zszs.size(), zszs.c_ptr());
preds.push_back(pred);
for (unsigned i = 1; i < g.get_num_predicates(); ++i) {
@ -1247,28 +1247,28 @@ namespace tb {
preds.push_back(m.mk_app(q->get_decl(), zs.size(), zs.c_ptr()));
acc->init(p, preds, g.get_constraint());
IF_VERBOSE(1,
IF_VERBOSE(1,
delta1->display(verbose_stream() << "delta1:\n");
delta2->display(verbose_stream() << "delta2:\n");
acc->display(verbose_stream() << "acc:\n"););
}
//
//
// Given a sequence of clauses and inference rules
// compute a super-predicate and auxiliary clauses.
//
//
// P1(x) :- P2(y), R(z)
// P2(y) :- P3(z), T(u)
// P3(z) :- P1(x), U(v)
// =>
// P1(x) :- P1(x), R(z), T(u), U(v)
//
//
ref<clause> resolve_rules(unsigned num_clauses, clause*const* clauses, unsigned const* positions) {
ref<clause> result = clauses[0];
ref<clause> tmp;
unsigned offset = 0;
for (unsigned i = 0; i + 1 < num_clauses; ++i) {
for (unsigned i = 0; i + 1 < num_clauses; ++i) {
clause const& cl = *clauses[i+1];
offset += positions[i];
VERIFY (m_unifier.unify(*result, offset, cl, false, tmp));
@ -1276,7 +1276,7 @@ namespace tb {
}
return result;
}
private:
@ -1286,7 +1286,7 @@ namespace tb {
unsigned num_vars = g.get_num_vars();
for (unsigned i = 0; i < p->get_num_args(); ++i) {
result.push_back(m.mk_var(num_vars+i, m.get_sort(p->get_arg(i))));
}
}
return result;
}
};
@ -1341,7 +1341,7 @@ namespace datalog {
uint_set m_displayed_rules;
public:
imp(context& ctx):
m_ctx(ctx),
m_ctx(ctx),
m(ctx.get_manager()),
rm(ctx.get_rule_manager()),
m_index(m),
@ -1358,7 +1358,7 @@ namespace datalog {
m_fparams.m_timeout = 1000;
}
~imp() {}
~imp() {}
lbool query(expr* query) {
m_ctx.ensure_opened();
@ -1378,7 +1378,7 @@ namespace datalog {
IF_VERBOSE(1, display_clause(*get_clause(), verbose_stream() << "g" << get_clause()->get_seqno() << " "););
return run();
}
void cleanup() {
m_clauses.reset();
}
@ -1400,7 +1400,7 @@ namespace datalog {
expr_ref get_answer() const {
switch(m_status) {
case l_undef:
case l_undef:
UNREACHABLE();
return expr_ref(m.mk_false(), m);
case l_true: {
@ -1415,7 +1415,7 @@ namespace datalog {
return expr_ref(m.mk_true(), m);
}
private:
void select_predicate() {
tb::clause & g = *get_clause();
unsigned num_predicates = g.get_num_predicates();
@ -1430,17 +1430,17 @@ namespace datalog {
IF_VERBOSE(2, verbose_stream() << mk_pp(g.get_predicate(pi), m) << "\n";);
}
}
void apply_rule(ref<tb::clause>& r) {
ref<tb::clause> clause = get_clause();
ref<tb::clause> next_clause;
ref<tb::clause> next_clause;
if (m_unifier(clause, clause->get_predicate_index(), r, false, next_clause) &&
!query_is_tautology(*next_clause)) {
init_clause(next_clause);
unsigned subsumer = 0;
IF_VERBOSE(1,
IF_VERBOSE(1,
display_rule(*clause, verbose_stream());
display_premise(*clause,
display_premise(*clause,
verbose_stream() << "g" << next_clause->get_seqno() << " ");
display_clause(*next_clause, verbose_stream());
);
@ -1462,8 +1462,8 @@ namespace datalog {
m_instruction = tb::SELECT_RULE;
}
}
void select_rule() {
void select_rule() {
tb::clause& g = *get_clause();
g.inc_next_rule();
unsigned pi = g.get_predicate_index();
@ -1481,7 +1481,7 @@ namespace datalog {
void backtrack() {
SASSERT(!m_clauses.empty());
m_clauses.pop_back();
m_clauses.pop_back();
if (m_clauses.empty()) {
m_instruction = tb::SATISFIABLE;
}
@ -1500,16 +1500,16 @@ namespace datalog {
return l_undef;
}
switch(m_instruction) {
case tb::SELECT_PREDICATE:
select_predicate();
case tb::SELECT_PREDICATE:
select_predicate();
break;
case tb::SELECT_RULE:
select_rule();
case tb::SELECT_RULE:
select_rule();
break;
case tb::BACKTRACK:
backtrack();
break;
case tb::SATISFIABLE:
case tb::SATISFIABLE:
m_status = l_false;
return l_false;
case tb::UNSATISFIABLE:
@ -1522,18 +1522,18 @@ namespace datalog {
return l_undef;
}
}
}
}
bool query_is_tautology(tb::clause const& g) {
expr_ref fml = g.to_formula();
fml = m.mk_not(fml);
m_solver.push();
m_solver.assert_expr(fml);
lbool is_sat = m_solver.check();
lbool is_sat = m_solver.check();
m_solver.pop(1);
TRACE("dl", tout << is_sat << ":\n" << mk_pp(fml, m) << "\n";);
return l_false == is_sat;
}
@ -1560,7 +1560,7 @@ namespace datalog {
void display_premise(tb::clause& p, std::ostream& out) {
func_decl* f = p.get_predicate(p.get_predicate_index())->get_decl();
out << "{g" << p.get_seqno() << " " << f->get_name() << " pos: "
out << "{g" << p.get_seqno() << " " << f->get_name() << " pos: "
<< p.get_predicate_index() << " rule: " << p.get_next_rule() << "}\n";
}
@ -1576,21 +1576,21 @@ namespace datalog {
ref<tb::clause> replayed_clause;
replace_proof_converter pc(m);
// clause is a empty clause.
// clause is a empty clause.
// Pretend it is asserted.
// It gets replaced by premises.
SASSERT(clause->get_num_predicates() == 0);
SASSERT(clause->get_num_predicates() == 0);
expr_ref root = clause->to_formula();
vector<expr_ref_vector> substs;
while (0 != clause->get_index()) {
SASSERT(clause->get_parent_index() < clause->get_index());
while (0 != clause->get_index()) {
SASSERT(clause->get_parent_index() < clause->get_index());
unsigned p_index = clause->get_parent_index();
unsigned p_rule = clause->get_parent_rule();
ref<tb::clause> parent = m_clauses[p_index];
unsigned pi = parent->get_predicate_index();
func_decl* pred = parent->get_predicate(pi)->get_decl();
ref<tb::clause> rl = m_rules.get_rule(pred, p_rule);
ref<tb::clause> rl = m_rules.get_rule(pred, p_rule);
VERIFY(m_unifier(parent, parent->get_predicate_index(), rl, true, replayed_clause));
expr_ref_vector s1(m_unifier.get_rule_subst(true));
expr_ref_vector s2(m_unifier.get_rule_subst(false));
@ -1614,36 +1614,36 @@ namespace datalog {
}
expr_ref body = clause.get_body();
var_subst vs(m, false);
vs(body, subst.size(), subst.c_ptr(), body);
vs(body, subst.size(), subst.c_ptr(), body);
out << mk_pp(body, m) << "\n";
}
void resolve_rule(replace_proof_converter& pc, tb::clause const& r1, tb::clause const& r2,
void resolve_rule(replace_proof_converter& pc, tb::clause const& r1, tb::clause const& r2,
expr_ref_vector const& s1, expr_ref_vector const& s2, tb::clause const& res) const {
unsigned idx = r1.get_predicate_index();
expr_ref fml = res.to_formula();
vector<expr_ref_vector> substs;
svector<std::pair<unsigned, unsigned> > positions;
substs.push_back(s1);
substs.push_back(s2);
substs.push_back(s2);
scoped_proof _sc(m);
proof_ref pr(m);
proof_ref_vector premises(m);
premises.push_back(m.mk_asserted(r1.to_formula()));
premises.push_back(m.mk_asserted(r2.to_formula()));
positions.push_back(std::make_pair(idx+1, 0));
positions.push_back(std::make_pair(idx+1, 0));
pr = m.mk_hyper_resolve(2, premises.c_ptr(), fml, positions, substs);
pc.insert(pr);
}
}
};
tab::tab(context& ctx):
datalog::engine_base(ctx.get_manager(),"tabulation"),
m_imp(alloc(imp, ctx)) {
m_imp(alloc(imp, ctx)) {
}
tab::~tab() {
dealloc(m_imp);
}
}
lbool tab::query(expr* query) {
return m_imp->query(query);
}

File diff suppressed because it is too large Load diff

View file

@ -7,7 +7,7 @@ Module Name:
Abstract:
Light weight partial quantifier-elimination procedures
Light weight partial quantifier-elimination procedures
Author:
@ -31,14 +31,14 @@ class qe_lite {
class impl;
impl * m_impl;
public:
qe_lite(ast_manager& m);
qe_lite(ast_manager & m, params_ref const & p);
~qe_lite();
/**
\brief
Apply light-weight quantifier elimination
on constants provided as vector of variables.
Apply light-weight quantifier elimination
on constants provided as vector of variables.
Return the updated formula and updated set of variables that were not eliminated.
*/
@ -66,4 +66,4 @@ tactic * mk_qe_lite_tactic(ast_manager & m, params_ref const & p = params_ref())
ADD_TACTIC("qe-light", "apply light-weight quantifier elimination.", "mk_qe_lite_tactic(m, p)")
*/
#endif
#endif

View file

@ -34,6 +34,7 @@ class elim_small_bv_tactic : public tactic {
struct rw_cfg : public default_rewriter_cfg {
ast_manager & m;
params_ref m_params;
bv_util m_util;
simplifier m_simp;
ref<filter_model_converter> m_mc;
@ -47,6 +48,7 @@ class elim_small_bv_tactic : public tactic {
rw_cfg(ast_manager & _m, params_ref const & p) :
m(_m),
m_params(p),
m_util(_m),
m_simp(_m),
m_bindings(_m),
@ -119,7 +121,7 @@ class elim_small_bv_tactic : public tactic {
return res;
}
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
TRACE("elim_small_bv_app", expr_ref tmp(m.mk_app(f, num, args), m); tout << "reduce " << tmp << std::endl; );
return BR_FAILED;
}
@ -178,7 +180,7 @@ class elim_small_bv_tactic : public tactic {
quantifier_ref new_q(m);
new_q = m.update_quantifier(q, body);
unused_vars_eliminator el(m);
unused_vars_eliminator el(m, m_params);
el(new_q, result);
TRACE("elim_small_bv", tout << "elimination result: " << mk_ismt2_pp(result, m) << std::endl; );
@ -203,6 +205,7 @@ class elim_small_bv_tactic : public tactic {
}
void updt_params(params_ref const & p) {
m_params = p;
m_max_memory = megabytes_to_bytes(p.get_uint("max_memory", UINT_MAX));
m_max_steps = p.get_uint("max_steps", UINT_MAX);
m_max_bits = p.get_uint("max_bits", 4);
@ -305,7 +308,7 @@ public:
virtual void cleanup() {
ast_manager & m = m_imp->m;
imp * d = alloc(imp, m, m_params);
std::swap(d, m_imp);
std::swap(d, m_imp);
dealloc(d);
}

View file

@ -24,9 +24,9 @@ class distribute_forall_tactic : public tactic {
ast_manager & m;
rw_cfg(ast_manager & _m):m(_m) {}
bool reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
bool reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
expr * const * new_no_patterns,
expr_ref & result,
proof_ref & result_pr) {
@ -34,7 +34,7 @@ class distribute_forall_tactic : public tactic {
if (!old_q->is_forall()) {
return false;
}
if (m.is_not(new_body) && m.is_or(to_app(new_body)->get_arg(0))) {
// (forall X (not (or F1 ... Fn)))
// -->
@ -50,13 +50,13 @@ class distribute_forall_tactic : public tactic {
quantifier_ref tmp_q(m);
tmp_q = m.update_quantifier(old_q, not_arg);
expr_ref new_q(m);
elim_unused_vars(m, tmp_q, new_q);
elim_unused_vars(m, tmp_q, params_ref(), new_q);
new_args.push_back(new_q);
}
result = m.mk_and(new_args.size(), new_args.c_ptr());
return true;
}
if (m.is_and(new_body)) {
// (forall X (and F1 ... Fn))
// -->
@ -70,20 +70,20 @@ class distribute_forall_tactic : public tactic {
quantifier_ref tmp_q(m);
tmp_q = m.update_quantifier(old_q, arg);
expr_ref new_q(m);
elim_unused_vars(m, tmp_q, new_q);
elim_unused_vars(m, tmp_q, params_ref(), new_q);
new_args.push_back(new_q);
}
result = m.mk_and(new_args.size(), new_args.c_ptr());
return true;
}
return false;
}
};
struct rw : public rewriter_tpl<rw_cfg> {
rw_cfg m_cfg;
rw(ast_manager & m, bool proofs_enabled):
rewriter_tpl<rw_cfg>(m, proofs_enabled, m_cfg),
m_cfg(m) {
@ -99,19 +99,19 @@ public:
return alloc(distribute_forall_tactic);
}
virtual void operator()(goal_ref const & g,
goal_ref_buffer & result,
model_converter_ref & mc,
virtual void operator()(goal_ref const & g,
goal_ref_buffer & result,
model_converter_ref & mc,
proof_converter_ref & pc,
expr_dependency_ref & core) {
SASSERT(g->is_well_sorted());
ast_manager & m = g->m();
bool produce_proofs = g->proofs_enabled();
rw r(m, produce_proofs);
m_rw = &r;
m_rw = &r;
mc = 0; pc = 0; core = 0; result.reset();
tactic_report report("distribute-forall", *g);
expr_ref new_curr(m);
proof_ref new_pr(m);
unsigned size = g->size();
@ -126,12 +126,12 @@ public:
}
g->update(idx, new_curr, new_pr, g->dep(idx));
}
g->inc_depth();
result.push_back(g.get());
TRACE("distribute-forall", g->display(tout););
SASSERT(g->is_well_sorted());
m_rw = 0;
m_rw = 0;
}
virtual void cleanup() {}

View file

@ -49,7 +49,7 @@ ufbv_rewriter::~ufbv_rewriter() {
bool ufbv_rewriter::is_demodulator(expr * e, expr_ref & large, expr_ref & small) const {
if (e->get_kind() == AST_QUANTIFIER) {
quantifier * q = to_quantifier(e);
if (q->is_forall()) {
if (q->is_forall()) {
expr * qe = q->get_expr();
if ((m_manager.is_eq(qe) || m_manager.is_iff(qe))) {
app * eq = to_app(q->get_expr());
@ -61,7 +61,7 @@ bool ufbv_rewriter::is_demodulator(expr * e, expr_ref & large, expr_ref & small)
<< mk_pp(lhs, m_manager) << "\n"
<< mk_pp(rhs, m_manager) << "\n"
<< "subset: " << subset << ", smaller: " << smaller << "\n";);
// We only track uninterpreted functions, everything else is likely too expensive.
// We only track uninterpreted functions, everything else is likely too expensive.
if ((subset == +1 || subset == +2) && smaller == +1) {
if (is_uninterp(rhs)) {
large = rhs;
@ -78,7 +78,7 @@ bool ufbv_rewriter::is_demodulator(expr * e, expr_ref & large, expr_ref & small)
}
#endif
}
if ((subset == -1 || subset == +2) && smaller == -1) {
if (is_uninterp(lhs)) {
large = lhs;
@ -113,13 +113,13 @@ bool ufbv_rewriter::is_demodulator(expr * e, expr_ref & large, expr_ref & small)
return false;
}
class var_set_proc {
class var_set_proc {
uint_set & m_set;
public:
var_set_proc(uint_set &s):m_set(s) {}
void operator()(var * n) { m_set.insert(n->get_idx()); }
void operator()(quantifier * n) {}
void operator()(app * n) {}
void operator()(app * n) {}
};
int ufbv_rewriter::is_subset(expr * e1, expr * e2) const {
@ -132,10 +132,10 @@ int ufbv_rewriter::is_subset(expr * e1, expr * e2) const {
for_each_expr(proc1, e1);
var_set_proc proc2(ev2);
for_each_expr(proc2, e2);
return (ev1==ev2 ) ? +2 : // We return +2 if the sets are equal.
(ev1.subset_of(ev2)) ? +1 :
(ev2.subset_of(ev1)) ? -1 :
return (ev1==ev2 ) ? +2 : // We return +2 if the sets are equal.
(ev1.subset_of(ev2)) ? +1 :
(ev2.subset_of(ev1)) ? -1 :
0 ;
}
@ -154,8 +154,8 @@ int ufbv_rewriter::is_smaller(expr * e1, expr * e2) const {
else if (is_uninterp(e1) && !is_uninterp(e2))
return -1;
// two uninterpreted functions are ordered first by the number of
// arguments, then by their id.
// two uninterpreted functions are ordered first by the number of
// arguments, then by their id.
if (is_uninterp(e1) && is_uninterp(e2)) {
if (to_app(e1)->get_num_args() < to_app(e2)->get_num_args())
return +1;
@ -163,10 +163,10 @@ int ufbv_rewriter::is_smaller(expr * e1, expr * e2) const {
return -1;
else {
unsigned a = to_app(e1)->get_decl()->get_id();
unsigned b = to_app(e2)->get_decl()->get_id();
if (a < b)
unsigned b = to_app(e2)->get_decl()->get_id();
if (a < b)
return +1;
else if (a > b)
else if (a > b)
return -1;
}
}
@ -185,8 +185,8 @@ int ufbv_rewriter::is_smaller(expr * e1, expr * e2) const {
default: UNREACHABLE();
}
return (sz1 == sz2) ? 0 :
(sz1 < sz2) ? +1 :
return (sz1 == sz2) ? 0 :
(sz1 < sz2) ? +1 :
-1 ;
}
@ -194,9 +194,9 @@ class max_var_id_proc {
unsigned m_max_var_id;
public:
max_var_id_proc(void):m_max_var_id(0) {}
void operator()(var * n) {
if(n->get_idx() > m_max_var_id)
m_max_var_id = n->get_idx();
void operator()(var * n) {
if(n->get_idx() > m_max_var_id)
m_max_var_id = n->get_idx();
}
void operator()(quantifier * n) {}
void operator()(app * n) {}
@ -206,7 +206,7 @@ public:
unsigned ufbv_rewriter::max_var_id(expr * e)
{
max_var_id_proc proc;
for_each_expr(proc, e);
for_each_expr(proc, e);
return proc.get_max();
}
@ -219,14 +219,14 @@ void ufbv_rewriter::insert_fwd_idx(expr * large, expr * small, quantifier * demo
func_decl * fd = to_app(large)->get_decl();
fwd_idx_map::iterator it = m_fwd_idx.find_iterator(fd);
if (it == m_fwd_idx.end()) {
quantifier_set * qs = alloc(quantifier_set, 1);
if (it == m_fwd_idx.end()) {
quantifier_set * qs = alloc(quantifier_set, 1);
m_fwd_idx.insert(fd, qs);
it = m_fwd_idx.find_iterator(fd);
}
SASSERT(it->m_value);
it->m_value->insert(demodulator);
it->m_value->insert(demodulator);
m_manager.inc_ref(demodulator);
m_manager.inc_ref(large);
@ -238,13 +238,13 @@ void ufbv_rewriter::remove_fwd_idx(func_decl * f, quantifier * demodulator) {
TRACE("demodulator_fwd", tout << "REMOVE: " << std::hex << (size_t)demodulator << std::endl; );
fwd_idx_map::iterator it = m_fwd_idx.find_iterator(f);
if (it != m_fwd_idx.end()) {
if (it != m_fwd_idx.end()) {
demodulator2lhs_rhs::iterator fit = m_demodulator2lhs_rhs.find_iterator(demodulator);
m_manager.dec_ref(fit->m_value.first);
m_manager.dec_ref(fit->m_value.second);
m_manager.dec_ref(demodulator);
m_demodulator2lhs_rhs.erase(demodulator);
it->m_value->erase(demodulator);
it->m_value->erase(demodulator);
} else {
SASSERT(m_demodulator2lhs_rhs.contains(demodulator));
}
@ -281,13 +281,13 @@ void ufbv_rewriter::show_fwd_idx(std::ostream & out) {
}
}
bool ufbv_rewriter::rewrite1(func_decl * f, ptr_vector<expr> & m_new_args, expr_ref & np) {
bool ufbv_rewriter::rewrite1(func_decl * f, ptr_vector<expr> & m_new_args, expr_ref & np) {
fwd_idx_map::iterator it = m_fwd_idx.find_iterator(f);
if (it != m_fwd_idx.end()) {
TRACE("demodulator_bug", tout << "trying to rewrite: " << f->get_name() << " args:\n";
for (unsigned i = 0; i < m_new_args.size(); i++) { tout << mk_pp(m_new_args[i], m_manager) << "\n"; });
quantifier_set::iterator dit = it->m_value->begin();
quantifier_set::iterator dend = it->m_value->end();
quantifier_set::iterator dend = it->m_value->end();
for ( ; dit != dend ; dit++ ) {
quantifier * d = *dit;
@ -302,7 +302,7 @@ bool ufbv_rewriter::rewrite1(func_decl * f, ptr_vector<expr> & m_new_args, expr_
TRACE("demodulator_bug", tout << "Matching with demodulator: " << mk_pp(d, m_manager) << std::endl; );
SASSERT(large->get_decl() == f);
if (m_match_subst(large, l_s.second, m_new_args.c_ptr(), np)) {
TRACE("demodulator_bug", tout << "succeeded...\n" << mk_pp(l_s.second, m_manager) << "\n===>\n" << mk_pp(np, m_manager) << "\n";);
return true;
@ -331,22 +331,22 @@ void ufbv_rewriter::rewrite_cache(expr * e, expr * new_e, bool done) {
}
expr * ufbv_rewriter::rewrite(expr * n) {
if (m_fwd_idx.empty())
if (m_fwd_idx.empty())
return n;
TRACE("demodulator", tout << "rewrite: " << mk_pp(n, m_manager) << std::endl; );
app * a;
SASSERT(m_rewrite_todo.empty());
m_rewrite_cache.reset();
m_rewrite_todo.push_back(n);
while (!m_rewrite_todo.empty()) {
TRACE("demodulator_stack", tout << "STACK: " << std::endl;
for ( unsigned i = 0; i<m_rewrite_todo.size(); i++)
for ( unsigned i = 0; i<m_rewrite_todo.size(); i++)
tout << std::dec << i << ": " << std::hex << (size_t)m_rewrite_todo[i] << std::endl;
);
);
expr * e = m_rewrite_todo.back();
expr * actual = e;
@ -355,7 +355,7 @@ expr * ufbv_rewriter::rewrite(expr * n) {
if (ebp.second) {
m_rewrite_todo.pop_back();
continue;
}
}
else {
actual = ebp.first;
}
@ -366,8 +366,8 @@ expr * ufbv_rewriter::rewrite(expr * n) {
rewrite_cache(e, actual, true);
m_rewrite_todo.pop_back();
break;
case AST_APP:
a = to_app(actual);
case AST_APP:
a = to_app(actual);
if (rewrite_visit_children(a)) {
func_decl * f = a->get_decl();
m_new_args.reset();
@ -389,12 +389,12 @@ expr * ufbv_rewriter::rewrite(expr * n) {
// No pop.
} else {
if(all_untouched) {
rewrite_cache(e, actual, true);
}
rewrite_cache(e, actual, true);
}
else {
expr_ref na(m_manager);
if (f->get_family_id() != m_manager.get_basic_family_id())
na = m_manager.mk_app(f, m_new_args.size(), m_new_args.c_ptr());
na = m_manager.mk_app(f, m_new_args.size(), m_new_args.c_ptr());
else
m_bsimp.reduce(f, m_new_args.size(), m_new_args.c_ptr(), na);
TRACE("demodulator_bug", tout << "e:\n" << mk_pp(e, m_manager) << "\nnew_args: \n";
@ -405,9 +405,9 @@ expr * ufbv_rewriter::rewrite(expr * n) {
}
m_rewrite_todo.pop_back();
}
}
}
break;
case AST_QUANTIFIER: {
case AST_QUANTIFIER: {
expr * body = to_quantifier(actual)->get_expr();
if (m_rewrite_cache.contains(body)) {
const expr_bool_pair ebp = m_rewrite_cache.get(body);
@ -417,13 +417,13 @@ expr * ufbv_rewriter::rewrite(expr * n) {
q = m_manager.update_quantifier(to_quantifier(actual), new_body);
m_new_exprs.push_back(q);
expr_ref new_q(m_manager);
elim_unused_vars(m_manager, q, new_q);
elim_unused_vars(m_manager, q, params_ref(), new_q);
m_new_exprs.push_back(new_q);
rewrite_cache(e, new_q, true);
rewrite_cache(e, new_q, true);
m_rewrite_todo.pop_back();
} else {
m_rewrite_todo.push_back(body);
}
}
break;
}
default:
@ -437,7 +437,7 @@ expr * ufbv_rewriter::rewrite(expr * n) {
expr * r = ebp.first;
TRACE("demodulator", tout << "rewrite result: " << mk_pp(r, m_manager) << std::endl; );
return r;
}
@ -448,7 +448,7 @@ public:
add_back_idx_proc(back_idx_map & bi, expr * e):m_back_idx(bi),m_expr(e) {}
void operator()(var * n) {}
void operator()(quantifier * n) {}
void operator()(app * n) {
void operator()(app * n) {
// We track only uninterpreted and constant functions.
if (n->get_num_args()==0) return;
SASSERT(m_expr && m_expr != (expr*) 0x00000003);
@ -464,7 +464,7 @@ public:
m_back_idx.insert(d, e);
}
}
}
}
};
class ufbv_rewriter::remove_back_idx_proc {
@ -473,15 +473,15 @@ class ufbv_rewriter::remove_back_idx_proc {
public:
remove_back_idx_proc(back_idx_map & bi, expr * e):m_back_idx(bi),m_expr(e) {}
void operator()(var * n) {}
void operator()(quantifier * n) {}
void operator()(app * n) {
void operator()(quantifier * n) {}
void operator()(app * n) {
// We track only uninterpreted and constant functions.
if (n->get_num_args()==0) return;
func_decl * d=n->get_decl();
if (d->get_family_id() == null_family_id) {
if (d->get_family_id() == null_family_id) {
back_idx_map::iterator it = m_back_idx.find_iterator(d);
if (it != m_back_idx.end()) {
SASSERT(it->m_value);
SASSERT(it->m_value);
it->m_value->remove(m_expr);
}
}
@ -489,12 +489,12 @@ public:
};
void ufbv_rewriter::reschedule_processed(func_decl * f) {
//use m_back_idx to find all formulas p in m_processed that contains f {
//use m_back_idx to find all formulas p in m_processed that contains f {
back_idx_map::iterator it = m_back_idx.find_iterator(f);
if (it != m_back_idx.end()) {
SASSERT(it->m_value);
expr_set temp;
expr_set::iterator sit = it->m_value->begin();
expr_set::iterator send = it->m_value->end();
for ( ; sit != send ; sit++ ) {
@ -502,7 +502,7 @@ void ufbv_rewriter::reschedule_processed(func_decl * f) {
if (m_processed.contains(p))
temp.insert(p);
}
sit = temp.begin();
send = temp.end();
for ( ; sit != send; sit++) {
@ -511,7 +511,7 @@ void ufbv_rewriter::reschedule_processed(func_decl * f) {
m_processed.remove(p);
remove_back_idx_proc proc(m_back_idx, p); // this could change it->m_value, thus we need the `temp' set.
for_each_expr(proc, p);
// insert p into m_todo
// insert p into m_todo
m_todo.push_back(p);
}
}
@ -529,40 +529,40 @@ bool ufbv_rewriter::can_rewrite(expr * n, expr * lhs) {
while (!stack.empty()) {
curr = stack.back();
if (visited.is_marked(curr)) {
stack.pop_back();
continue;
}
switch(curr->get_kind()) {
case AST_VAR:
case AST_VAR:
visited.mark(curr, true);
stack.pop_back();
break;
case AST_APP:
if (for_each_expr_args(stack, visited, to_app(curr)->get_num_args(), to_app(curr)->get_args())) {
if (for_each_expr_args(stack, visited, to_app(curr)->get_num_args(), to_app(curr)->get_args())) {
if (m_match_subst(lhs, curr))
return true;
visited.mark(curr, true);
stack.pop_back();
}
break;
case AST_QUANTIFIER:
if (!for_each_expr_args(stack, visited, to_quantifier(curr)->get_num_patterns(),
if (!for_each_expr_args(stack, visited, to_quantifier(curr)->get_num_patterns(),
to_quantifier(curr)->get_patterns())) {
break;
}
if (!for_each_expr_args(stack, visited, to_quantifier(curr)->get_num_no_patterns(),
if (!for_each_expr_args(stack, visited, to_quantifier(curr)->get_num_no_patterns(),
to_quantifier(curr)->get_no_patterns())) {
break;
}
if (!visited.is_marked(to_quantifier(curr)->get_expr())) {
stack.push_back(to_quantifier(curr)->get_expr());
break;
}
}
stack.pop_back();
break;
@ -597,7 +597,7 @@ void ufbv_rewriter::reschedule_demodulators(func_decl * f, expr * lhs) {
expr * occ = *esit;
if (!is_quantifier(occ))
continue;
continue;
// Use the fwd idx to find out whether this is a demodulator.
demodulator2lhs_rhs::iterator d2lr_it = m_demodulator2lhs_rhs.find_iterator(to_quantifier(occ));
@ -605,22 +605,22 @@ void ufbv_rewriter::reschedule_demodulators(func_decl * f, expr * lhs) {
l = d2lr_it->m_value.first;
quantifier_ref d(m_manager);
func_decl_ref df(m_manager);
d = to_quantifier(occ);
d = to_quantifier(occ);
df = to_app(l)->get_decl();
// Now we know there is an occurrence of f in d
// if n' can rewrite d {
// if n' can rewrite d {
if (can_rewrite(d, lhs)) {
TRACE("demodulator", tout << "Rescheduling: " << std::endl << mk_pp(d, m_manager) << std::endl; );
// remove d from m_fwd_idx
remove_fwd_idx(df, d);
// remove d from m_back_idx
// remove d from m_back_idx
// just remember it here, because otherwise it and/or esit might become invalid?
// to_remove.insert(d);
// to_remove.insert(d);
remove_back_idx_proc proc(m_back_idx, d);
for_each_expr(proc, d);
// insert d into m_todo
m_todo.push_back(d);
m_todo.push_back(d);
}
}
}
@ -629,10 +629,10 @@ void ufbv_rewriter::reschedule_demodulators(func_decl * f, expr * lhs) {
//for (ptr_vector<expr>::iterator it = to_remove.begin(); it != to_remove.end(); it++) {
// expr * d = *it;
// remove_back_idx_proc proc(m_manager, m_back_idx, d);
// for_each_expr(proc, d);
// for_each_expr(proc, d);
//}
}
void ufbv_rewriter::operator()(unsigned n, expr * const * exprs, proof * const * prs, expr_ref_vector & new_exprs, proof_ref_vector & new_prs) {
if (m_manager.proofs_enabled()) {
// Let us not waste time with proof production
@ -655,7 +655,7 @@ void ufbv_rewriter::operator()(unsigned n, expr * const * exprs, proof * const *
m_match_subst.reserve(max_vid);
while (!m_todo.empty()) {
while (!m_todo.empty()) {
// let n be the next formula in m_todo.
expr_ref cur(m_manager);
cur = m_todo.back();
@ -670,21 +670,21 @@ void ufbv_rewriter::operator()(unsigned n, expr * const * exprs, proof * const *
expr_ref large(m_manager), small(m_manager);
if (!is_demodulator(np, large, small)) {
// insert n' into m_processed
m_processed.insert(np);
// update m_back_idx (traverse n' and for each uninterpreted function declaration f in n' add the entry f->n' to m_back_idx)
m_processed.insert(np);
// update m_back_idx (traverse n' and for each uninterpreted function declaration f in n' add the entry f->n' to m_back_idx)
add_back_idx_proc proc(m_back_idx, np);
for_each_expr(proc, np);
} else {
} else {
// np is a demodulator that allows us to replace 'large' with 'small'.
TRACE("demodulator", tout << "Found demodulator: " << std::endl;
tout << mk_pp(large.get(), m_manager) << std::endl << " ---> " <<
tout << mk_pp(large.get(), m_manager) << std::endl << " ---> " <<
std::endl << mk_pp(small.get(), m_manager) << std::endl; );
TRACE("demodulator_s", tout << "Found demodulator: " << std::endl;
tout << to_app(large)->get_decl()->get_name() <<
tout << to_app(large)->get_decl()->get_name() <<
"[" << to_app(large)->get_depth() << "]" << " ---> ";
if (is_app(small))
tout << to_app(small)->get_decl()->get_name() <<
tout << to_app(small)->get_decl()->get_name() <<
"[" << to_app(small)->get_depth() << "]" << std::endl;
else
tout << mk_pp(small.get(), m_manager) << std::endl; );
@ -695,14 +695,14 @@ void ufbv_rewriter::operator()(unsigned n, expr * const * exprs, proof * const *
reschedule_processed(f);
reschedule_demodulators(f, large);
// insert n' into m_fwd_idx
insert_fwd_idx(large, small, to_quantifier(np));
// update m_back_idx
add_back_idx_proc proc(m_back_idx, np);
for_each_expr(proc, np);
}
}
}
// the result is the contents of m_processed + all demodulators in m_fwd_idx.
@ -743,10 +743,10 @@ ufbv_rewriter::match_subst::match_subst(ast_manager & m):
*/
struct match_args_aux_proc {
substitution & m_subst;
struct no_match {};
struct no_match {};
match_args_aux_proc(substitution & s):m_subst(s) {}
void operator()(var * n) {
expr_offset r;
if (m_subst.find(n, 0, r)) {
@ -766,7 +766,7 @@ struct match_args_aux_proc {
bool ufbv_rewriter::match_subst::match_args(app * lhs, expr * const * args) {
m_cache.reset();
m_todo.reset();
// fill todo-list, and perform quick success/failure tests
m_all_args_eq = true;
unsigned num_args = lhs->get_num_args();
@ -777,21 +777,21 @@ bool ufbv_rewriter::match_subst::match_args(app * lhs, expr * const * args) {
m_all_args_eq = false;
if (is_app(t_arg) && is_app(i_arg) && to_app(t_arg)->get_decl() != to_app(i_arg)->get_decl()) {
// quick failure...
return false;
return false;
}
m_todo.push_back(expr_pair(t_arg, i_arg));
}
if (m_all_args_eq) {
if (m_all_args_eq) {
// quick success worked...
return true;
}
m_subst.reset();
while (!m_todo.empty()) {
expr_pair const & p = m_todo.back();
if (is_var(p.first)) {
expr_offset r;
if (m_subst.find(to_var(p.first), 0, r)) {
@ -814,7 +814,7 @@ bool ufbv_rewriter::match_subst::match_args(app * lhs, expr * const * args) {
SASSERT(is_app(p.first) && is_app(p.second));
if (to_app(p.first)->is_ground() && !to_app(p.second)->is_ground())
if (to_app(p.first)->is_ground() && !to_app(p.second)->is_ground())
return false;
if (p.first == p.second && to_app(p.first)->is_ground()) {
@ -827,7 +827,7 @@ bool ufbv_rewriter::match_subst::match_args(app * lhs, expr * const * args) {
m_todo.pop_back();
continue;
}
if (p.first == p.second) {
// p.first and p.second is not ground...
@ -855,10 +855,10 @@ bool ufbv_rewriter::match_subst::match_args(app * lhs, expr * const * args) {
app * n1 = to_app(p.first);
app * n2 = to_app(p.second);
if (n1->get_decl() != n2->get_decl())
return false;
unsigned num_args1 = n1->get_num_args();
if (num_args1 != n2->get_num_args())
return false;
@ -867,7 +867,7 @@ bool ufbv_rewriter::match_subst::match_args(app * lhs, expr * const * args) {
if (num_args1 == 0)
continue;
m_cache.insert(p);
unsigned j = num_args1;
while (j > 0) {
@ -886,7 +886,7 @@ bool ufbv_rewriter::match_subst::operator()(app * lhs, expr * rhs, expr * const
new_rhs = rhs;
return true;
}
unsigned deltas[2] = { 0, 0 };
unsigned deltas[2] = { 0, 0 };
m_subst.apply(2, deltas, expr_offset(rhs, 0), new_rhs);
return true;
}