mirror of
https://github.com/Z3Prover/z3
synced 2025-04-27 02:45:51 +00:00
merged
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
commit
265bdbe757
76 changed files with 3991 additions and 1422 deletions
|
@ -1126,6 +1126,27 @@ def Var(idx, s):
|
|||
_z3_assert(is_sort(s), "Z3 sort expected")
|
||||
return _to_expr_ref(Z3_mk_bound(s.ctx_ref(), idx, s.ast), s.ctx)
|
||||
|
||||
def RealVar(idx, ctx=None):
|
||||
"""
|
||||
Create a real free variable. Free variables are used to create quantified formulas.
|
||||
They are also used to create polynomials.
|
||||
|
||||
>>> RealVar(0)
|
||||
Var(0)
|
||||
"""
|
||||
return Var(idx, RealSort(ctx))
|
||||
|
||||
def RealVarVector(n, ctx=None):
|
||||
"""
|
||||
Create a list of Real free variables.
|
||||
The variables have ids: 0, 1, ..., n-1
|
||||
|
||||
>>> x0, x1, x2, x3 = RealVarVector(4)
|
||||
>>> x2
|
||||
Var(2)
|
||||
"""
|
||||
return [ RealVar(i, ctx) for i in range(n) ]
|
||||
|
||||
#########################################
|
||||
#
|
||||
# Booleans
|
||||
|
|
564
src/api/python/z3num.py
Normal file
564
src/api/python/z3num.py
Normal file
|
@ -0,0 +1,564 @@
|
|||
############################################
|
||||
# Copyright (c) 2012 Microsoft Corporation
|
||||
#
|
||||
# Z3 Python interface for Z3 numerals
|
||||
#
|
||||
# Author: Leonardo de Moura (leonardo)
|
||||
############################################
|
||||
from z3 import *
|
||||
from z3core import *
|
||||
from z3printer import *
|
||||
|
||||
def _to_numeral(num, ctx=None):
|
||||
if isinstance(num, Numeral):
|
||||
return num
|
||||
else:
|
||||
return Numeral(num, ctx)
|
||||
|
||||
class Numeral:
|
||||
"""
|
||||
A Z3 numeral can be used to perform computations over arbitrary
|
||||
precision integers, rationals and real algebraic numbers.
|
||||
It also automatically converts python numeric values.
|
||||
|
||||
>>> Numeral(2)
|
||||
2
|
||||
>>> Numeral("3/2") + 1
|
||||
5/2
|
||||
>>> Numeral(Sqrt(2))
|
||||
1.4142135623?
|
||||
>>> Numeral(Sqrt(2)) + 2
|
||||
3.4142135623?
|
||||
>>> Numeral(Sqrt(2)) + Numeral(Sqrt(3))
|
||||
3.1462643699?
|
||||
|
||||
Z3 numerals can be used to perform computations with
|
||||
values in a Z3 model.
|
||||
|
||||
>>> s = Solver()
|
||||
>>> x = Real('x')
|
||||
>>> s.add(x*x == 2)
|
||||
>>> s.add(x > 0)
|
||||
>>> s.check()
|
||||
sat
|
||||
>>> m = s.model()
|
||||
>>> m[x]
|
||||
1.4142135623?
|
||||
>>> m[x] + 1
|
||||
1.4142135623? + 1
|
||||
|
||||
The previous result is a Z3 expression.
|
||||
|
||||
>>> (m[x] + 1).sexpr()
|
||||
'(+ (root-obj (+ (^ x 2) (- 2)) 2) 1.0)'
|
||||
|
||||
>>> Numeral(m[x]) + 1
|
||||
2.4142135623?
|
||||
>>> Numeral(m[x]).is_pos()
|
||||
True
|
||||
>>> Numeral(m[x])**2
|
||||
2
|
||||
|
||||
We can also isolate the roots of polynomials.
|
||||
|
||||
>>> x0, x1, x2 = RealVarVector(3)
|
||||
>>> r0 = isolate_roots(x0**5 - x0 - 1)
|
||||
>>> r0
|
||||
[1.1673039782?]
|
||||
|
||||
In the following example, we are isolating the roots
|
||||
of a univariate polynomial (on x1) obtained after substituting
|
||||
x0 -> r0[0]
|
||||
|
||||
>>> r1 = isolate_roots(x1**2 - x0 + 1, [ r0[0] ])
|
||||
>>> r1
|
||||
[-0.4090280898?, 0.4090280898?]
|
||||
|
||||
Similarly, in the next example we isolate the roots of
|
||||
a univariate polynomial (on x2) obtained after substituting
|
||||
x0 -> r0[0] and x1 -> r1[0]
|
||||
|
||||
>>> isolate_roots(x1*x2 + x0, [ r0[0], r1[0] ])
|
||||
[2.8538479564?]
|
||||
|
||||
"""
|
||||
def __init__(self, num, ctx=None):
|
||||
if isinstance(num, Ast):
|
||||
self.ast = num
|
||||
self.ctx = z3._get_ctx(ctx)
|
||||
elif isinstance(num, RatNumRef) or isinstance(num, AlgebraicNumRef):
|
||||
self.ast = num.ast
|
||||
self.ctx = num.ctx
|
||||
elif isinstance(num, ArithRef):
|
||||
r = simplify(num)
|
||||
self.ast = r.ast
|
||||
self.ctx = r.ctx
|
||||
else:
|
||||
v = RealVal(num, ctx)
|
||||
self.ast = v.ast
|
||||
self.ctx = v.ctx
|
||||
Z3_inc_ref(self.ctx_ref(), self.as_ast())
|
||||
assert Z3_algebraic_is_value(self.ctx_ref(), self.ast)
|
||||
|
||||
def __del__(self):
|
||||
Z3_dec_ref(self.ctx_ref(), self.as_ast())
|
||||
|
||||
def is_integer(self):
|
||||
""" Return True if the numeral is integer.
|
||||
|
||||
>>> Numeral(2).is_integer()
|
||||
True
|
||||
>>> (Numeral(Sqrt(2)) * Numeral(Sqrt(2))).is_integer()
|
||||
True
|
||||
>>> Numeral(Sqrt(2)).is_integer()
|
||||
False
|
||||
>>> Numeral("2/3").is_integer()
|
||||
False
|
||||
"""
|
||||
return self.is_rational() and self.denominator() == 1
|
||||
|
||||
def is_rational(self):
|
||||
""" Return True if the numeral is rational.
|
||||
|
||||
>>> Numeral(2).is_rational()
|
||||
True
|
||||
>>> Numeral("2/3").is_rational()
|
||||
True
|
||||
>>> Numeral(Sqrt(2)).is_rational()
|
||||
False
|
||||
|
||||
"""
|
||||
return Z3_get_ast_kind(self.ctx_ref(), self.as_ast()) == Z3_NUMERAL_AST
|
||||
|
||||
def denominator(self):
|
||||
""" Return the denominator if `self` is rational.
|
||||
|
||||
>>> Numeral("2/3").denominator()
|
||||
3
|
||||
"""
|
||||
assert(self.is_rational())
|
||||
return Numeral(Z3_get_denominator(self.ctx_ref(), self.as_ast()), self.ctx)
|
||||
|
||||
def numerator(self):
|
||||
""" Return the numerator if `self` is rational.
|
||||
|
||||
>>> Numeral("2/3").numerator()
|
||||
2
|
||||
"""
|
||||
assert(self.is_rational())
|
||||
return Numeral(Z3_get_numerator(self.ctx_ref(), self.as_ast()), self.ctx)
|
||||
|
||||
|
||||
def is_irrational(self):
|
||||
""" Return True if the numeral is irrational.
|
||||
|
||||
>>> Numeral(2).is_irrational()
|
||||
False
|
||||
>>> Numeral("2/3").is_irrational()
|
||||
False
|
||||
>>> Numeral(Sqrt(2)).is_irrational()
|
||||
True
|
||||
"""
|
||||
return not self.is_rational()
|
||||
|
||||
def as_long(self):
|
||||
""" Return a numeral (that is an integer) as a Python long.
|
||||
|
||||
>>> (Numeral(10)**20).as_long()
|
||||
100000000000000000000L
|
||||
"""
|
||||
assert(self.is_integer())
|
||||
return long(Z3_get_numeral_string(self.ctx_ref(), self.as_ast()))
|
||||
|
||||
def approx(self, precision=10):
|
||||
"""Return a numeral that approximates the numeral `self`.
|
||||
The result `r` is such that |r - self| <= 1/10^precision
|
||||
|
||||
If `self` is rational, then the result is `self`.
|
||||
|
||||
>>> x = Numeral(2).root(2)
|
||||
>>> x.approx(20)
|
||||
6838717160008073720548335/4835703278458516698824704
|
||||
>>> x.approx(5)
|
||||
2965821/2097152
|
||||
>>> Numeral(2).approx(10)
|
||||
2
|
||||
"""
|
||||
return self.upper(precision)
|
||||
|
||||
def upper(self, precision=10):
|
||||
"""Return a upper bound that approximates the numeral `self`.
|
||||
The result `r` is such that r - self <= 1/10^precision
|
||||
|
||||
If `self` is rational, then the result is `self`.
|
||||
|
||||
>>> x = Numeral(2).root(2)
|
||||
>>> x.upper(20)
|
||||
6838717160008073720548335/4835703278458516698824704
|
||||
>>> x.upper(5)
|
||||
2965821/2097152
|
||||
>>> Numeral(2).upper(10)
|
||||
2
|
||||
"""
|
||||
if self.is_rational():
|
||||
return self
|
||||
else:
|
||||
return Numeral(Z3_get_algebraic_number_upper(self.ctx_ref(), self.as_ast(), precision), self.ctx)
|
||||
|
||||
def lower(self, precision=10):
|
||||
"""Return a lower bound that approximates the numeral `self`.
|
||||
The result `r` is such that self - r <= 1/10^precision
|
||||
|
||||
If `self` is rational, then the result is `self`.
|
||||
|
||||
>>> x = Numeral(2).root(2)
|
||||
>>> x.lower(20)
|
||||
1709679290002018430137083/1208925819614629174706176
|
||||
>>> Numeral("2/3").lower(10)
|
||||
2/3
|
||||
"""
|
||||
if self.is_rational():
|
||||
return self
|
||||
else:
|
||||
return Numeral(Z3_get_algebraic_number_lower(self.ctx_ref(), self.as_ast(), precision), self.ctx)
|
||||
|
||||
def sign(self):
|
||||
""" Return the sign of the numeral.
|
||||
|
||||
>>> Numeral(2).sign()
|
||||
1
|
||||
>>> Numeral(-3).sign()
|
||||
-1
|
||||
>>> Numeral(0).sign()
|
||||
0
|
||||
"""
|
||||
return Z3_algebraic_sign(self.ctx_ref(), self.ast)
|
||||
|
||||
def is_pos(self):
|
||||
""" Return True if the numeral is positive.
|
||||
|
||||
>>> Numeral(2).is_pos()
|
||||
True
|
||||
>>> Numeral(-3).is_pos()
|
||||
False
|
||||
>>> Numeral(0).is_pos()
|
||||
False
|
||||
"""
|
||||
return Z3_algebraic_is_pos(self.ctx_ref(), self.ast)
|
||||
|
||||
def is_neg(self):
|
||||
""" Return True if the numeral is negative.
|
||||
|
||||
>>> Numeral(2).is_neg()
|
||||
False
|
||||
>>> Numeral(-3).is_neg()
|
||||
True
|
||||
>>> Numeral(0).is_neg()
|
||||
False
|
||||
"""
|
||||
return Z3_algebraic_is_neg(self.ctx_ref(), self.ast)
|
||||
|
||||
def is_zero(self):
|
||||
""" Return True if the numeral is zero.
|
||||
|
||||
>>> Numeral(2).is_zero()
|
||||
False
|
||||
>>> Numeral(-3).is_zero()
|
||||
False
|
||||
>>> Numeral(0).is_zero()
|
||||
True
|
||||
>>> sqrt2 = Numeral(2).root(2)
|
||||
>>> sqrt2.is_zero()
|
||||
False
|
||||
>>> (sqrt2 - sqrt2).is_zero()
|
||||
True
|
||||
"""
|
||||
return Z3_algebraic_is_zero(self.ctx_ref(), self.ast)
|
||||
|
||||
def __add__(self, other):
|
||||
""" Return the numeral `self + other`.
|
||||
|
||||
>>> Numeral(2) + 3
|
||||
5
|
||||
>>> Numeral(2) + Numeral(4)
|
||||
6
|
||||
>>> Numeral("2/3") + 1
|
||||
5/3
|
||||
"""
|
||||
return Numeral(Z3_algebraic_add(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
|
||||
|
||||
def __radd__(self, other):
|
||||
""" Return the numeral `other + self`.
|
||||
|
||||
>>> 3 + Numeral(2)
|
||||
5
|
||||
"""
|
||||
return Numeral(Z3_algebraic_add(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
|
||||
|
||||
def __sub__(self, other):
|
||||
""" Return the numeral `self - other`.
|
||||
|
||||
>>> Numeral(2) - 3
|
||||
-1
|
||||
"""
|
||||
return Numeral(Z3_algebraic_sub(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
|
||||
|
||||
def __rsub__(self, other):
|
||||
""" Return the numeral `other - self`.
|
||||
|
||||
>>> 3 - Numeral(2)
|
||||
1
|
||||
"""
|
||||
return Numeral(Z3_algebraic_sub(self.ctx_ref(), _to_numeral(other, self.ctx).ast, self.ast), self.ctx)
|
||||
|
||||
def __mul__(self, other):
|
||||
""" Return the numeral `self * other`.
|
||||
>>> Numeral(2) * 3
|
||||
6
|
||||
"""
|
||||
return Numeral(Z3_algebraic_mul(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
|
||||
|
||||
def __rmul__(self, other):
|
||||
""" Return the numeral `other * mul`.
|
||||
>>> 3 * Numeral(2)
|
||||
6
|
||||
"""
|
||||
return Numeral(Z3_algebraic_mul(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
|
||||
|
||||
def __div__(self, other):
|
||||
""" Return the numeral `self / other`.
|
||||
>>> Numeral(2) / 3
|
||||
2/3
|
||||
>>> Numeral(2).root(2) / 3
|
||||
0.4714045207?
|
||||
>>> Numeral(Sqrt(2)) / Numeral(Sqrt(3))
|
||||
0.8164965809?
|
||||
"""
|
||||
return Numeral(Z3_algebraic_div(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast), self.ctx)
|
||||
|
||||
def __rdiv__(self, other):
|
||||
""" Return the numeral `other / self`.
|
||||
>>> 3 / Numeral(2)
|
||||
3/2
|
||||
>>> 3 / Numeral(2).root(2)
|
||||
2.1213203435?
|
||||
"""
|
||||
return Numeral(Z3_algebraic_div(self.ctx_ref(), _to_numeral(other, self.ctx).ast, self.ast), self.ctx)
|
||||
|
||||
def root(self, k):
|
||||
""" Return the numeral `self^(1/k)`.
|
||||
|
||||
>>> sqrt2 = Numeral(2).root(2)
|
||||
>>> sqrt2
|
||||
1.4142135623?
|
||||
>>> sqrt2 * sqrt2
|
||||
2
|
||||
>>> sqrt2 * 2 + 1
|
||||
3.8284271247?
|
||||
>>> (sqrt2 * 2 + 1).sexpr()
|
||||
'(root-obj (+ (^ x 2) (* (- 2) x) (- 7)) 2)'
|
||||
"""
|
||||
return Numeral(Z3_algebraic_root(self.ctx_ref(), self.ast, k), self.ctx)
|
||||
|
||||
def power(self, k):
|
||||
""" Return the numeral `self^k`.
|
||||
|
||||
>>> sqrt3 = Numeral(3).root(2)
|
||||
>>> sqrt3
|
||||
1.7320508075?
|
||||
>>> sqrt3.power(2)
|
||||
3
|
||||
"""
|
||||
return Numeral(Z3_algebraic_power(self.ctx_ref(), self.ast, k), self.ctx)
|
||||
|
||||
def __pow__(self, k):
|
||||
""" Return the numeral `self^k`.
|
||||
|
||||
>>> sqrt3 = Numeral(3).root(2)
|
||||
>>> sqrt3
|
||||
1.7320508075?
|
||||
>>> sqrt3**2
|
||||
3
|
||||
"""
|
||||
return self.power(k)
|
||||
|
||||
def __lt__(self, other):
|
||||
""" Return True if `self < other`.
|
||||
|
||||
>>> Numeral(Sqrt(2)) < 2
|
||||
True
|
||||
>>> Numeral(Sqrt(3)) < Numeral(Sqrt(2))
|
||||
False
|
||||
>>> Numeral(Sqrt(2)) < Numeral(Sqrt(2))
|
||||
False
|
||||
"""
|
||||
return Z3_algebraic_lt(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
|
||||
|
||||
def __rlt__(self, other):
|
||||
""" Return True if `other < self`.
|
||||
|
||||
>>> 2 < Numeral(Sqrt(2))
|
||||
False
|
||||
"""
|
||||
return self > other
|
||||
|
||||
def __gt__(self, other):
|
||||
""" Return True if `self > other`.
|
||||
|
||||
>>> Numeral(Sqrt(2)) > 2
|
||||
False
|
||||
>>> Numeral(Sqrt(3)) > Numeral(Sqrt(2))
|
||||
True
|
||||
>>> Numeral(Sqrt(2)) > Numeral(Sqrt(2))
|
||||
False
|
||||
"""
|
||||
return Z3_algebraic_gt(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
|
||||
|
||||
def __rgt__(self, other):
|
||||
""" Return True if `other > self`.
|
||||
|
||||
>>> 2 > Numeral(Sqrt(2))
|
||||
True
|
||||
"""
|
||||
return self < other
|
||||
|
||||
|
||||
def __le__(self, other):
|
||||
""" Return True if `self <= other`.
|
||||
|
||||
>>> Numeral(Sqrt(2)) <= 2
|
||||
True
|
||||
>>> Numeral(Sqrt(3)) <= Numeral(Sqrt(2))
|
||||
False
|
||||
>>> Numeral(Sqrt(2)) <= Numeral(Sqrt(2))
|
||||
True
|
||||
"""
|
||||
return Z3_algebraic_le(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
|
||||
|
||||
def __rle__(self, other):
|
||||
""" Return True if `other <= self`.
|
||||
|
||||
>>> 2 <= Numeral(Sqrt(2))
|
||||
False
|
||||
"""
|
||||
return self >= other
|
||||
|
||||
def __ge__(self, other):
|
||||
""" Return True if `self >= other`.
|
||||
|
||||
>>> Numeral(Sqrt(2)) >= 2
|
||||
False
|
||||
>>> Numeral(Sqrt(3)) >= Numeral(Sqrt(2))
|
||||
True
|
||||
>>> Numeral(Sqrt(2)) >= Numeral(Sqrt(2))
|
||||
True
|
||||
"""
|
||||
return Z3_algebraic_ge(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
|
||||
|
||||
def __rge__(self, other):
|
||||
""" Return True if `other >= self`.
|
||||
|
||||
>>> 2 >= Numeral(Sqrt(2))
|
||||
True
|
||||
"""
|
||||
return self <= other
|
||||
|
||||
def __eq__(self, other):
|
||||
""" Return True if `self == other`.
|
||||
|
||||
>>> Numeral(Sqrt(2)) == 2
|
||||
False
|
||||
>>> Numeral(Sqrt(3)) == Numeral(Sqrt(2))
|
||||
False
|
||||
>>> Numeral(Sqrt(2)) == Numeral(Sqrt(2))
|
||||
True
|
||||
"""
|
||||
return Z3_algebraic_eq(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
|
||||
|
||||
def __ne__(self, other):
|
||||
""" Return True if `self != other`.
|
||||
|
||||
>>> Numeral(Sqrt(2)) != 2
|
||||
True
|
||||
>>> Numeral(Sqrt(3)) != Numeral(Sqrt(2))
|
||||
True
|
||||
>>> Numeral(Sqrt(2)) != Numeral(Sqrt(2))
|
||||
False
|
||||
"""
|
||||
return Z3_algebraic_neq(self.ctx_ref(), self.ast, _to_numeral(other, self.ctx).ast)
|
||||
|
||||
def __str__(self):
|
||||
if Z3_is_numeral_ast(self.ctx_ref(), self.ast):
|
||||
return str(RatNumRef(self.ast, self.ctx))
|
||||
else:
|
||||
return str(AlgebraicNumRef(self.ast, self.ctx))
|
||||
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
|
||||
def sexpr(self):
|
||||
return Z3_ast_to_string(self.ctx_ref(), self.as_ast())
|
||||
|
||||
def as_ast(self):
|
||||
return self.ast
|
||||
|
||||
def ctx_ref(self):
|
||||
return self.ctx.ref()
|
||||
|
||||
def eval_sign_at(p, vs):
|
||||
"""
|
||||
Evaluate the sign of the polynomial `p` at `vs`. `p` is a Z3
|
||||
Expression containing arithmetic operators: +, -, *, ^k where k is
|
||||
an integer; and free variables x that is_var(x) is True. Moreover,
|
||||
all variables must be real.
|
||||
|
||||
The result is 1 if the polynomial is positive at the given point,
|
||||
-1 if negative, and 0 if zero.
|
||||
|
||||
>>> x0, x1, x2 = RealVarVector(3)
|
||||
>>> eval_sign_at(x0**2 + x1*x2 + 1, (Numeral(0), Numeral(1), Numeral(2)))
|
||||
1
|
||||
>>> eval_sign_at(x0**2 - 2, [ Numeral(Sqrt(2)) ])
|
||||
0
|
||||
>>> eval_sign_at((x0 + x1)*(x0 + x2), (Numeral(0), Numeral(Sqrt(2)), Numeral(Sqrt(3))))
|
||||
1
|
||||
"""
|
||||
num = len(vs)
|
||||
_vs = (Ast * num)()
|
||||
for i in range(num):
|
||||
_vs[i] = vs[i].ast
|
||||
return Z3_algebraic_eval(p.ctx_ref(), p.as_ast(), num, _vs)
|
||||
|
||||
def isolate_roots(p, vs=[]):
|
||||
"""
|
||||
Given a multivariate polynomial p(x_0, ..., x_{n-1}, x_n), returns the
|
||||
roots of the univariate polynomial p(vs[0], ..., vs[len(vs)-1], x_n).
|
||||
|
||||
Remarks:
|
||||
* p is a Z3 expression that contains only arithmetic terms and free variables.
|
||||
* forall i in [0, n) vs is a numeral.
|
||||
|
||||
The result is a list of numerals
|
||||
|
||||
>>> x0 = RealVar(0)
|
||||
>>> isolate_roots(x0**5 - x0 - 1)
|
||||
[1.1673039782?]
|
||||
>>> x1 = RealVar(1)
|
||||
>>> isolate_roots(x0**2 - x1**4 - 1, [ Numeral(Sqrt(3)) ])
|
||||
[-1.1892071150?, 1.1892071150?]
|
||||
>>> x2 = RealVar(2)
|
||||
>>> isolate_roots(x2**2 + x0 - x1, [ Numeral(Sqrt(3)), Numeral(Sqrt(2)) ])
|
||||
[]
|
||||
"""
|
||||
num = len(vs)
|
||||
_vs = (Ast * num)()
|
||||
for i in range(num):
|
||||
_vs[i] = vs[i].ast
|
||||
_roots = AstVector(Z3_algebraic_roots(p.ctx_ref(), p.as_ast(), num, _vs), p.ctx)
|
||||
return [ Numeral(r) for r in _roots ]
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
if doctest.testmod().failed:
|
||||
exit(1)
|
||||
|
37
src/api/python/z3poly.py
Normal file
37
src/api/python/z3poly.py
Normal file
|
@ -0,0 +1,37 @@
|
|||
############################################
|
||||
# Copyright (c) 2012 Microsoft Corporation
|
||||
#
|
||||
# Z3 Python interface for Z3 polynomials
|
||||
#
|
||||
# Author: Leonardo de Moura (leonardo)
|
||||
############################################
|
||||
from z3 import *
|
||||
|
||||
def subresultants(p, q, x):
|
||||
"""
|
||||
Return the non-constant subresultants of 'p' and 'q' with respect to the "variable" 'x'.
|
||||
|
||||
'p', 'q' and 'x' are Z3 expressions where 'p' and 'q' are arithmetic terms.
|
||||
Note that, any subterm that cannot be viewed as a polynomial is assumed to be a variable.
|
||||
Example: f(a) is a considered to be a variable b in the polynomial
|
||||
|
||||
f(a)*f(a) + 2*f(a) + 1
|
||||
|
||||
>>> x, y = Reals('x y')
|
||||
>>> subresultants(2*x + y, 3*x - 2*y + 2, x)
|
||||
[-7*y + 4]
|
||||
>>> r = subresultants(3*y*x**2 + y**3 + 1, 2*x**3 + y + 3, x)
|
||||
>>> r[0]
|
||||
4*y**9 + 12*y**6 + 27*y**5 + 162*y**4 + 255*y**3 + 4
|
||||
>>> r[1]
|
||||
-6*y**4 + -6*y
|
||||
"""
|
||||
return AstVector(Z3_polynomial_subresultants(p.ctx_ref(), p.as_ast(), q.as_ast(), x.as_ast()), p.ctx)
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
if doctest.testmod().failed:
|
||||
exit(1)
|
||||
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue