3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

New ML API bugfixes and first example.

Signed-off-by: Christoph M. Wintersteiger <cwinter@microsoft.com>
This commit is contained in:
Christoph M. Wintersteiger 2012-12-24 15:16:16 +00:00
parent c2ff90720e
commit 25498345e5
3 changed files with 186 additions and 58 deletions

View file

@ -4,10 +4,131 @@
*)
open Z3
open Z3.Symbol
open Z3.Sort
open Z3.Expr
open Z3.FuncDecl
open Z3.Goal
open Z3.Tactic
open Z3.Probe
open Z3.Solver
open Z3.Arithmetic
exception ExampleException of string
(**
Some basic tests.
*)
let basic_tests ( ctx : context ) =
Printf.printf "BasicTests\n" ;
let qi = (mk_int ctx 1) in
let fname = ((mk_string ctx "f") :> symbol) in
let x = ((mk_string ctx "x") :> symbol) in
let y = ((mk_string ctx "y") :> symbol) in
let bs = (Sort.mk_bool ctx) in
let domain = [| bs; bs |] in
let f = (FuncDecl.mk_func_decl ctx fname domain bs) in
let fapp = (mk_app ctx f
[| (mk_const ctx x bs); (mk_const ctx y bs) |]) in
let fargs2 = [| (mk_fresh_const ctx "cp" bs) |] in
let domain2 = [| bs |] in
let fapp2 = (mk_app ctx (mk_fresh_func_decl ctx "fp" domain2 bs) fargs2) in
let trivial_eq = (mk_eq ctx fapp fapp) in
let nontrivial_eq = (mk_eq ctx fapp fapp2) in
let g = (mk_goal ctx true false false) in
(Goal.assert_ g [| trivial_eq |]) ;
(Goal.assert_ g [| nontrivial_eq |]) ;
Printf.printf "%s\n" ("Goal: " ^ (Goal.to_string g)) ;
let solver = (mk_solver ctx None) in
(Array.iter (fun a -> (Solver.assert_ solver [| a |])) (get_formulas g)) ;
if (check solver None) != SATISFIABLE then
raise (ExampleException "")
else
Printf.printf "Test passed.\n" ;
()
(*
ApplyResult ar = ApplyTactic(ctx, ctx.MkTactic("simplify"), g);
if (ar.NumSubgoals == 1 && (ar.Subgoals[0].IsDecidedSat || ar.Subgoals[0].IsDecidedUnsat))
throw new TestFailedException();
ar = ApplyTactic(ctx, ctx.MkTactic("smt"), g);
if (ar.NumSubgoals != 1 || !ar.Subgoals[0].IsDecidedSat)
throw new TestFailedException();
g.Assert(ctx.MkEq(ctx.MkNumeral(1, ctx.MkBitVecSort(32)),
ctx.MkNumeral(2, ctx.MkBitVecSort(32))));
ar = ApplyTactic(ctx, ctx.MkTactic("smt"), g);
if (ar.NumSubgoals != 1 || !ar.Subgoals[0].IsDecidedUnsat)
throw new TestFailedException();
Goal g2 = ctx.MkGoal(true, true);
ar = ApplyTactic(ctx, ctx.MkTactic("smt"), g2);
if (ar.NumSubgoals != 1 || !ar.Subgoals[0].IsDecidedSat)
throw new TestFailedException();
g2 = ctx.MkGoal(true, true);
g2.Assert(ctx.MkFalse());
ar = ApplyTactic(ctx, ctx.MkTactic("smt"), g2);
if (ar.NumSubgoals != 1 || !ar.Subgoals[0].IsDecidedUnsat)
throw new TestFailedException();
Goal g3 = ctx.MkGoal(true, true);
Expr xc = ctx.MkConst(ctx.MkSymbol("x"), ctx.IntSort);
Expr yc = ctx.MkConst(ctx.MkSymbol("y"), ctx.IntSort);
g3.Assert(ctx.MkEq(xc, ctx.MkNumeral(1, ctx.IntSort)));
g3.Assert(ctx.MkEq(yc, ctx.MkNumeral(2, ctx.IntSort)));
BoolExpr constr = ctx.MkEq(xc, yc);
g3.Assert(constr);
ar = ApplyTactic(ctx, ctx.MkTactic("smt"), g3);
if (ar.NumSubgoals != 1 || !ar.Subgoals[0].IsDecidedUnsat)
throw new TestFailedException();
ModelConverterTest(ctx);
// Real num/den test.
RatNum rn = ctx.MkReal(42, 43);
Expr inum = rn.Numerator;
Expr iden = rn.Denominator;
Console.WriteLine("Numerator: " + inum + " Denominator: " + iden);
if (inum.ToString() != "42" || iden.ToString() != "43")
throw new TestFailedException();
if (rn.ToDecimalString(3) != "0.976?")
throw new TestFailedException();
BigIntCheck(ctx, ctx.MkReal("-1231231232/234234333"));
BigIntCheck(ctx, ctx.MkReal("-123123234234234234231232/234234333"));
BigIntCheck(ctx, ctx.MkReal("-234234333"));
BigIntCheck(ctx, ctx.MkReal("234234333/2"));
string bn = "1234567890987654321";
if (ctx.MkInt(bn).BigInteger.ToString() != bn)
throw new TestFailedException();
if (ctx.MkBV(bn, 128).BigInteger.ToString() != bn)
throw new TestFailedException();
if (ctx.MkBV(bn, 32).BigInteger.ToString() == bn)
throw new TestFailedException();
// Error handling test.
try
{
IntExpr i = ctx.MkInt("1/2");
throw new TestFailedException(); // unreachable
}
catch (Z3Exception)
{
}
}
*)
let _ =
if not (Log.open_ "z3.log") then
raise (ExampleException "Log couldn't be opened.")
@ -27,6 +148,7 @@ let _ =
Printf.printf "int sort: %s\n" (Sort.to_string ints);
Printf.printf "real sort: %s\n" (Sort.to_string rs);
Printf.printf "Disposing...\n";
basic_tests ctx ;
Gc.full_major ()
);
Printf.printf "Exiting.\n";

View file

@ -159,7 +159,7 @@ Type2JavaW = { VOID : 'void', VOID_PTR : 'jlong', INT : 'jint', UINT : 'jint', I
# Mapping to ML types
Type2ML = { VOID : 'unit', VOID_PTR : 'VOIDP', INT : 'int', UINT : 'int', INT64 : 'int', UINT64 : 'int', DOUBLE : 'float',
STRING : 'string', STRING_PTR : 'char**',
BOOL : 'int', SYMBOL : 'z3_symbol', PRINT_MODE : 'int', ERROR_CODE : 'int' }
BOOL : 'bool', SYMBOL : 'z3_symbol', PRINT_MODE : 'int', ERROR_CODE : 'int' }
next_type_id = FIRST_OBJ_ID
@ -1109,7 +1109,9 @@ def arrayparams(params):
def ml_unwrap(t, ts, s):
if t == STRING:
return '(' + ts + ') String_val(' + s + ')'
elif t == BOOL or t == INT or t == PRINT_MODE or t == ERROR_CODE:
elif t == BOOL:
return '(' + ts + ') Bool_val(' + s + ')'
elif t == INT or t == PRINT_MODE or t == ERROR_CODE:
return '(' + ts + ') Int_val(' + s + ')'
elif t == UINT:
return '(' + ts + ') Unsigned_int_val(' + s + ')'
@ -1125,7 +1127,9 @@ def ml_unwrap(t, ts, s):
def ml_set_wrap(t, d, n):
if t == VOID:
return d + ' = Val_unit;'
elif t == BOOL or t == INT or t == UINT or t == PRINT_MODE or t == ERROR_CODE:
elif t == BOOL:
return d + ' = Val_bool(' + n + ');'
elif t == INT or t == UINT or t == PRINT_MODE or t == ERROR_CODE:
return d + ' = Val_int(' + n + ');'
elif t == INT64 or t == UINT64:
return d + ' = Val_long(' + n + ');'

View file

@ -874,7 +874,7 @@ struct
if a#gnc != b#gnc then
false
else
((lbool_of_int (Z3native.is_eq_sort a#gnc a#gno b#gno)) == L_TRUE)
(Z3native.is_eq_sort a#gnc a#gno b#gno)
(**
Returns a unique identifier for the sort.
@ -922,10 +922,10 @@ let create_expr ctx obj =
else
let s = Z3native.get_sort ctx#gno obj in
let sk = (sort_kind_of_int (Z3native.get_sort_kind ctx#gno s)) in
if (lbool_of_int (Z3native.is_algebraic_number ctx#gno obj) == L_TRUE) then
if (Z3native.is_algebraic_number ctx#gno obj) then
(((new algebraic_num ctx)#cnstr_obj obj) :> expr)
else
if ((lbool_of_int (Z3native.is_numeral_ast ctx#gno obj)) == L_TRUE) &&
if (Z3native.is_numeral_ast ctx#gno obj) &&
(sk == INT_SORT or sk == REAL_SORT or sk == BV_SORT) then
match sk with
| INT_SORT -> (((new int_num ctx)#cnstr_obj obj) :> expr)
@ -1016,6 +1016,7 @@ struct
raise (Z3native.Exception "parameter is not a ratinoal string")
else
x#rational
end
(**
Creates a new function declaration.
@ -1058,7 +1059,6 @@ struct
let mk_fresh_const_decl ( ctx : context ) ( prefix : string ) ( range : sort) =
(new func_decl ctx)#cnstr_pdr prefix [||] range
end
(**
Comparison operator.
@ -1071,7 +1071,7 @@ struct
if a#gnc == a#gnc then
false
else
((lbool_of_int (Z3native.is_eq_func_decl a#gnc a#gno b#gno)) == L_TRUE)
(Z3native.is_eq_func_decl a#gnc a#gno b#gno)
(**
A string representations of the function declaration.
*)
@ -1202,7 +1202,7 @@ struct
@param k An AST
@return True if <paramref name="k"/> is a key in the map, false otherwise. *)
let contains ( m : ast_map ) ( key : ast ) =
(lbool_of_int (Z3native.ast_map_contains m#gnc m#gno key#gno)) == L_TRUE
(Z3native.ast_map_contains m#gnc m#gno key#gno)
(** Finds the value associated with the key <paramref name="k"/>.
<remarks>
@ -1313,7 +1313,7 @@ struct
if a#gnc == b#gnc then
false
else
((lbool_of_int (Z3native.is_eq_ast a#gnc a#gno b#gno)) == L_TRUE)
(Z3native.is_eq_ast a#gnc a#gno b#gno)
(**
Object Comparison.
@ -1472,13 +1472,13 @@ struct
(**
Indicates whether the term is a numeral
*)
let is_numeral ( x : expr ) = lbool_of_int (Z3native.is_numeral_ast x#gnc x#gno) == L_TRUE
let is_numeral ( x : expr ) = (Z3native.is_numeral_ast x#gnc x#gno)
(**
Indicates whether the term is well-sorted.
@return True if the term is well-sorted, false otherwise.
*)
let is_well_sorted ( x : expr ) = lbool_of_int (Z3native.is_well_sorted x#gnc x#gno) == L_TRUE
let is_well_sorted ( x : expr ) = Z3native.is_well_sorted x#gnc x#gno
(**
The Sort of the term.
@ -1489,9 +1489,9 @@ struct
Indicates whether the term has Boolean sort.
*)
let is_bool ( x : expr ) = (AST.is_expr x) &&
(lbool_of_int (Z3native.is_eq_sort x#gnc
(Z3native.is_eq_sort x#gnc
(Z3native.mk_bool_sort x#gnc)
(Z3native.get_sort x#gnc x#gno))) == L_TRUE
(Z3native.get_sort x#gnc x#gno))
(**
Indicates whether the term represents a constant.
@ -1774,7 +1774,7 @@ struct
Indicates whether the quantifier is universal.
*)
let is_universal ( x : quantifier ) =
lbool_of_int (Z3native.is_quantifier_forall x#gnc x#gno) == L_TRUE
Z3native.is_quantifier_forall x#gnc x#gno
(**
Indicates whether the quantifier is existential.
@ -1879,7 +1879,7 @@ struct
if (Array.length sorts) != (Array.length names) then
raise (Z3native.Exception "Number of sorts does not match number of names")
else if (nopatterns == None && quantifier_id == None && skolem_id == None) then
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier ctx#gno (int_of_lbool L_TRUE)
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier ctx#gno true
(match weight with | None -> 1 | Some(x) -> x)
(match patterns with | None -> 0 | Some(x) -> (Array.length x))
(match patterns with | None -> [||] | Some(x) -> (patternaton x))
@ -1888,7 +1888,7 @@ struct
body#gno)
else
let null = Z3native.mk_null() in
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier_ex ctx#gno (int_of_lbool L_TRUE)
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier_ex ctx#gno true
(match weight with | None -> 1 | Some(x) -> x)
(match quantifier_id with | None -> null | Some(x) -> x#gno)
(match skolem_id with | None -> null | Some(x) -> x#gno)
@ -1905,7 +1905,7 @@ struct
*)
let mk_forall_const ( ctx : context ) ( bound_constants : expr array ) ( body : expr) ( weight : int option ) ( patterns : pattern array option ) ( nopatterns : pattern array option ) ( quantifier_id : symbol option ) ( skolem_id : symbol option ) =
if (nopatterns == None && quantifier_id == None && skolem_id == None) then
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier_const ctx#gno (int_of_lbool L_TRUE)
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier_const ctx#gno true
(match weight with | None -> 1 | Some(x) -> x)
(Array.length bound_constants) (expraton bound_constants)
(match patterns with | None -> 0 | Some(x) -> (Array.length x))
@ -1913,7 +1913,7 @@ struct
body#gno)
else
let null = Z3native.mk_null() in
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier_const_ex ctx#gno (int_of_lbool L_TRUE)
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier_const_ex ctx#gno true
(match weight with | None -> 1 | Some(x) -> x)
(match quantifier_id with | None -> null | Some(x) -> x#gno)
(match skolem_id with | None -> null | Some(x) -> x#gno)
@ -1931,7 +1931,7 @@ struct
if (Array.length sorts) != (Array.length names) then
raise (Z3native.Exception "Number of sorts does not match number of names")
else if (nopatterns == None && quantifier_id == None && skolem_id == None) then
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier ctx#gno (int_of_lbool L_FALSE)
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier ctx#gno false
(match weight with | None -> 1 | Some(x) -> x)
(match patterns with | None -> 0 | Some(x) -> (Array.length x))
(match patterns with | None -> [||] | Some(x) -> (patternaton x))
@ -1940,7 +1940,7 @@ struct
body#gno)
else
let null = Z3native.mk_null() in
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier_ex ctx#gno (int_of_lbool L_FALSE)
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier_ex ctx#gno false
(match weight with | None -> 1 | Some(x) -> x)
(match quantifier_id with | None -> null | Some(x) -> x#gno)
(match skolem_id with | None -> null | Some(x) -> x#gno)
@ -1957,7 +1957,7 @@ struct
*)
let mk_exists_const ( ctx : context ) ( bound_constants : expr array ) ( body : expr) ( weight : int option ) ( patterns : pattern array option ) ( nopatterns : pattern array option ) ( quantifier_id : symbol option ) ( skolem_id : symbol option ) =
if (nopatterns == None && quantifier_id == None && skolem_id == None) then
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier_const ctx#gno (int_of_lbool L_FALSE)
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier_const ctx#gno false
(match weight with | None -> 1 | Some(x) -> x)
(Array.length bound_constants) (expraton bound_constants)
(match patterns with | None -> 0 | Some(x) -> (Array.length x))
@ -1965,7 +1965,7 @@ struct
body#gno)
else
let null = Z3native.mk_null() in
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier_const_ex ctx#gno (int_of_lbool L_FALSE)
(new quantifier ctx)#cnstr_obj (Z3native.mk_quantifier_const_ex ctx#gno false
(match weight with | None -> 1 | Some(x) -> x)
(match quantifier_id with | None -> null | Some(x) -> x#gno)
(match skolem_id with | None -> null | Some(x) -> x#gno)
@ -2046,7 +2046,7 @@ struct
Indicates whether the term is of an array sort.
*)
let is_array ( x : expr ) =
((lbool_of_int (Z3native.is_app x#gnc x#gno)) == L_TRUE) &&
(Z3native.is_app x#gnc x#gno) &&
((sort_kind_of_int (Z3native.get_sort_kind x#gnc (Z3native.get_sort x#gnc x#gno))) == ARRAY_SORT)
(** The domain of the array sort. *)
@ -2252,7 +2252,7 @@ struct
Indicates whether the term is of an array sort.
*)
let is_finite_domain ( x : expr ) =
((lbool_of_int (Z3native.is_app x#gnc x#gno)) == L_TRUE) &&
(Z3native.is_app x#gnc x#gno) &&
(sort_kind_of_int (Z3native.get_sort_kind x#gnc (Z3native.get_sort x#gnc x#gno)) == FINITE_DOMAIN_SORT)
(**
@ -2263,7 +2263,7 @@ struct
(** The size of the finite domain sort. *)
let get_size (x : finite_domain_sort) =
let (r, v) = Z3native.get_finite_domain_sort_size x#gnc x#gno in
if lbool_of_int(r) == L_TRUE then v
if r then v
else raise (Z3native.Exception "Conversion failed.")
end
@ -2274,8 +2274,8 @@ struct
Indicates whether the term is of a relation sort.
*)
let is_relation ( x : expr ) =
((lbool_of_int (Z3native.is_app x#gnc x#gno)) == L_TRUE) &&
(sort_kind_of_int (Z3native.get_sort_kind x#gnc (Z3native.get_sort x#gnc x#gno)) == RELATION_SORT)
((Z3native.is_app x#gnc x#gno) &&
(sort_kind_of_int (Z3native.get_sort_kind x#gnc (Z3native.get_sort x#gnc x#gno)) == RELATION_SORT))
(**
Indicates whether the term is an relation store
@ -2604,7 +2604,7 @@ struct
Indicates whether the term is of integer sort.
*)
let is_int ( x : expr ) =
((lbool_of_int (Z3native.is_numeral_ast x#gnc x#gno)) == L_TRUE) &&
(Z3native.is_numeral_ast x#gnc x#gno) &&
((sort_kind_of_int (Z3native.get_sort_kind x#gnc (Z3native.get_sort x#gnc x#gno))) == INT_SORT)
(**
@ -2706,11 +2706,12 @@ struct
(**
Indicates whether the term is an algebraic number
*)
let is_algebraic_number ( x : expr ) = lbool_of_int(Z3native.is_algebraic_number x#gnc x#gno) == L_TRUE
let is_algebraic_number ( x : expr ) = Z3native.is_algebraic_number x#gnc x#gno
(** Retrieve the int value. *)
let get_int ( x : int_num ) = let (r, v) = Z3native.get_numeral_int x#gnc x#gno in
if lbool_of_int(r) == L_TRUE then v
let get_int ( x : int_num ) =
let (r, v) = Z3native.get_numeral_int x#gnc x#gno in
if r then v
else raise (Z3native.Exception "Conversion failed.")
(** Returns a string representation of the numeral. *)
@ -3219,8 +3220,9 @@ struct
let get_size (x : bitvec_sort) = Z3native.get_bv_sort_size x#gnc x#gno
(** Retrieve the int value. *)
let get_int ( x : bitvec_num ) = let (r, v) = Z3native.get_numeral_int x#gnc x#gno in
if lbool_of_int(r) == L_TRUE then v
let get_int ( x : bitvec_num ) =
let (r, v) = Z3native.get_numeral_int x#gnc x#gno in
if r then v
else raise (Z3native.Exception "Conversion failed.")
(** Returns a string representation of the numeral. *)
@ -3613,7 +3615,7 @@ struct
The argument must be of bit-vector sort.
*)
let mk_bv2int ( ctx : context ) ( t : bitvec_expr ) ( signed : bool) =
(new int_expr ctx)#cnstr_obj (Z3native.mk_bv2int ctx#gno t#gno (int_of_lbool (if (signed) then L_TRUE else L_FALSE)))
(new int_expr ctx)#cnstr_obj (Z3native.mk_bv2int ctx#gno t#gno signed)
(**
Create a predicate that checks that the bit-wise addition does not overflow.
@ -3621,7 +3623,7 @@ struct
The arguments must be of bit-vector sort.
*)
let mk_add_no_overflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) ( signed : bool) =
(new bool_expr ctx)#cnstr_obj (Z3native.mk_bvadd_no_overflow ctx#gno t1#gno t2#gno (int_of_lbool (if (signed) then L_TRUE else L_FALSE)))
(new bool_expr ctx)#cnstr_obj (Z3native.mk_bvadd_no_overflow ctx#gno t1#gno t2#gno signed)
(**
Create a predicate that checks that the bit-wise addition does not underflow.
@ -3645,7 +3647,7 @@ struct
The arguments must be of bit-vector sort.
*)
let mk_sub_no_underflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) ( signed : bool) =
(new bool_expr ctx)#cnstr_obj (Z3native.mk_bvsub_no_underflow ctx#gno t1#gno t2#gno (int_of_lbool (if (signed) then L_TRUE else L_FALSE)))
(new bool_expr ctx)#cnstr_obj (Z3native.mk_bvsub_no_underflow ctx#gno t1#gno t2#gno signed)
(**
Create a predicate that checks that the bit-wise signed division does not overflow.
@ -3669,7 +3671,7 @@ struct
The arguments must be of bit-vector sort.
*)
let mk_mul_no_overflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) ( signed : bool) =
(new bool_expr ctx)#cnstr_obj (Z3native.mk_bvmul_no_overflow ctx#gno t1#gno t2#gno (int_of_lbool (if (signed) then L_TRUE else L_FALSE)))
(new bool_expr ctx)#cnstr_obj (Z3native.mk_bvmul_no_overflow ctx#gno t1#gno t2#gno signed)
(**
Create a predicate that checks that the bit-wise multiplication does not underflow.
@ -4198,7 +4200,7 @@ end
Adds a parameter setting.
*)
let add_bool (p : params) (name : symbol) (value : bool) =
Z3native.params_set_bool p#gnc p#gno name#gno (int_of_lbool (if value then L_TRUE else L_FALSE))
Z3native.params_set_bool p#gnc p#gno name#gno value
(**
Adds a parameter setting.
@ -4291,11 +4293,12 @@ struct
(* CMW: assert seems to be a keyword. *)
let assert_ ( x : goal ) ( constraints : bool_expr array ) =
let f e = Z3native.goal_assert x#gnc x#gno e#gno in
Array.map f constraints
ignore (Array.map f constraints) ;
()
(** Indicates whether the goal contains `false'. *)
let is_inconsistent ( x : goal ) =
(lbool_of_int (Z3native.goal_inconsistent x#gnc x#gno)) == L_TRUE
Z3native.goal_inconsistent x#gnc x#gno
(** The depth of the goal.
This tracks how many transformations were applied to it. *)
@ -4318,11 +4321,11 @@ struct
(** Indicates whether the goal is empty, and it is precise or the product of an under approximation. *)
let is_decided_sat ( x : goal ) =
(lbool_of_int (Z3native.goal_is_decided_sat x#gnc x#gno)) == L_TRUE
Z3native.goal_is_decided_sat x#gnc x#gno
(** Indicates whether the goal contains `false', and it is precise or the product of an over approximation. *)
let is_decided_unsat ( x : goal ) =
(lbool_of_int (Z3native.goal_is_decided_unsat x#gnc x#gno)) == L_TRUE
Z3native.goal_is_decided_unsat x#gnc x#gno
(** Translates (copies) the Goal to the target Context <paramref name="to_ctx"/>. *)
let translate ( x : goal ) ( to_ctx : context ) =
@ -4357,10 +4360,7 @@ struct
@param proofs Indicates whether proof generation should be enabled.
*)
let mk_goal ( ctx : context ) ( models : bool ) ( unsat_cores : bool ) ( proofs : bool ) =
(new goal ctx)#cnstr_obj (Z3native.mk_goal ctx#gno
(int_of_lbool (if models then L_TRUE else L_FALSE))
(int_of_lbool (if unsat_cores then L_TRUE else L_FALSE))
(int_of_lbool (if proofs then L_TRUE else L_FALSE)))
(new goal ctx)#cnstr_obj (Z3native.mk_goal ctx#gno models unsat_cores proofs)
(** A string representation of the Goal. *)
let to_string ( x : goal ) = Z3native.goal_to_string x#gnc x#gno
@ -4729,7 +4729,7 @@ struct
let n = (get_size x ) in
let f i = (
let k = Z3native.stats_get_key x#gnc x#gno i in
if (lbool_of_int (Z3native.stats_is_uint x#gnc x#gno i)) == L_TRUE then
if (Z3native.stats_is_uint x#gnc x#gno i) then
((new statistics_entry)#cnstr_si k (Z3native.stats_get_uint_value x#gnc x#gno i))
else
((new statistics_entry)#cnstr_sd k (Z3native.stats_get_double_value x#gnc x#gno i))
@ -4800,7 +4800,8 @@ struct
*)
let assert_ ( x : solver ) ( constraints : bool_expr array ) =
let f e = (Z3native.solver_assert x#gnc x#gno e#gno) in
Array.map f constraints
ignore (Array.map f constraints) ;
()
(**
The number of assertions in the solver.
@ -5049,7 +5050,7 @@ struct
else
match sk with
| ARRAY_SORT ->
if (lbool_of_int (Z3native.is_as_array x#gnc n)) == L_FALSE then
if not (Z3native.is_as_array x#gnc n) then
raise (Z3native.Exception "Argument was not an array constant")
else
let fd = Z3native.get_as_array_func_decl x#gnc n in
@ -5105,8 +5106,8 @@ struct
<returns>The evaluation of <paramref name="t"/> in the model.</returns>
*)
let eval ( x : model ) ( t : expr ) ( completion : bool ) =
let (r, v) = (Z3native.model_eval x#gnc x#gno t#gno (int_of_lbool (if completion then L_TRUE else L_FALSE))) in
if (lbool_of_int r) == L_FALSE then
let (r, v) = (Z3native.model_eval x#gnc x#gno t#gno completion) in
if not r then
raise (ModelEvaluationFailedException "evaluation failed")
else
create_expr x#gc v
@ -5175,7 +5176,8 @@ struct
*)
let assert_ ( x : fixedpoint ) ( constraints : bool_expr array ) =
let f e = (Z3native.fixedpoint_assert x#gnc x#gno e#gno) in
Array.map f constraints
ignore (Array.map f constraints) ;
()
(**
Register predicate as recursive relation.
@ -5353,7 +5355,7 @@ struct
*)
let get_param_value ( ctx : context ) ( id : string ) =
let (r, v) = (Z3native.get_param_value ctx#gno id) in
if ((lbool_of_int r) == L_FALSE) then
if not r then
None
else
Some v
@ -5383,7 +5385,7 @@ struct
all contexts globally.
*)
let toggle_warning_messages ( enabled: bool ) =
Z3native.toggle_warning_messages (int_of_lbool (if enabled then L_TRUE else L_FALSE))
Z3native.toggle_warning_messages enabled
end
(** Functions for handling SMT and SMT2 expressions and files *)