mirror of
https://github.com/Z3Prover/z3
synced 2025-04-23 09:05:31 +00:00
adding pre-processing of BP constraints
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
670f56e5e4
commit
24f2fd380c
9 changed files with 679 additions and 281 deletions
|
@ -473,7 +473,8 @@ namespace smt {
|
|||
*/
|
||||
template<typename Ext>
|
||||
bool theory_arith<Ext>::mk_gomory_cut(row const & r) {
|
||||
SASSERT(!all_coeff_int(r));
|
||||
// The following assertion is wrong. It may be violated in mixed-integer problems.
|
||||
// SASSERT(!all_coeff_int(r));
|
||||
theory_var x_i = r.get_base_var();
|
||||
|
||||
SASSERT(is_int(x_i));
|
||||
|
|
|
@ -24,9 +24,43 @@ Notes:
|
|||
#include "sorting_network.h"
|
||||
#include "uint_set.h"
|
||||
#include "smt_model_generator.h"
|
||||
#include "pb_rewriter_def.h"
|
||||
|
||||
namespace smt {
|
||||
|
||||
class pb_lit_rewriter_util {
|
||||
public:
|
||||
typedef std::pair<literal, rational> arg_t;
|
||||
typedef vector<arg_t> args_t;
|
||||
typedef rational numeral;
|
||||
|
||||
literal negate(literal l) {
|
||||
return ~l;
|
||||
}
|
||||
|
||||
void display(std::ostream& out, literal l) {
|
||||
out << l;
|
||||
}
|
||||
|
||||
bool is_negated(literal l) const {
|
||||
return l.sign();
|
||||
}
|
||||
|
||||
bool is_true(literal l) const {
|
||||
return l == true_literal;
|
||||
}
|
||||
|
||||
bool is_false(literal l) const {
|
||||
return l == false_literal;
|
||||
}
|
||||
|
||||
struct compare {
|
||||
bool operator()(arg_t const& a, arg_t const& b) {
|
||||
return a.first < b.first;
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
void theory_pb::ineq::negate() {
|
||||
m_lit.neg();
|
||||
numeral sum(0);
|
||||
|
@ -52,245 +86,21 @@ namespace smt {
|
|||
|
||||
|
||||
void theory_pb::ineq::unique() {
|
||||
numeral& k = m_k;
|
||||
arg_t& args = m_args;
|
||||
// normalize first all literals to be positive:
|
||||
// then we can compare them more easily.
|
||||
for (unsigned i = 0; i < size(); ++i) {
|
||||
if (lit(i).sign()) {
|
||||
args[i].first.neg();
|
||||
k -= coeff(i);
|
||||
args[i].second = -coeff(i);
|
||||
}
|
||||
}
|
||||
// remove constants
|
||||
for (unsigned i = 0; i < size(); ++i) {
|
||||
if (lit(i) == true_literal) {
|
||||
k += coeff(i);
|
||||
std::swap(args[i], args[size()-1]);
|
||||
args.pop_back();
|
||||
}
|
||||
else if (lit(i) == false_literal) {
|
||||
std::swap(args[i], args[size()-1]);
|
||||
args.pop_back();
|
||||
}
|
||||
}
|
||||
// sort and coalesce arguments:
|
||||
std::sort(args.begin(), args.end());
|
||||
|
||||
unsigned i = 0, j = 1;
|
||||
for (; j < size(); ++i) {
|
||||
SASSERT(j > i);
|
||||
literal l = lit(i);
|
||||
for (; j < size() && lit(j) == lit(i); ++j) {
|
||||
args[i].second += coeff(j);
|
||||
}
|
||||
if (j < size()) {
|
||||
args[i+1].first = lit(j);
|
||||
args[i+1].second = coeff(j);
|
||||
++j;
|
||||
}
|
||||
}
|
||||
if (i + 1 < size()) {
|
||||
args.resize(i+1);
|
||||
}
|
||||
pb_lit_rewriter_util pbu;
|
||||
pb_rewriter_util<pb_lit_rewriter_util> util(pbu);
|
||||
util.unique(m_args, m_k);
|
||||
}
|
||||
|
||||
void theory_pb::ineq::prune() {
|
||||
numeral& k = m_k;
|
||||
arg_t& args = m_args;
|
||||
numeral nlt(0);
|
||||
unsigned occ = 0;
|
||||
for (unsigned i = 0; nlt < k && i < size(); ++i) {
|
||||
if (coeff(i) < k) {
|
||||
nlt += coeff(i);
|
||||
++occ;
|
||||
}
|
||||
}
|
||||
if (0 < occ && nlt < k) {
|
||||
IF_VERBOSE(2, verbose_stream() << "prune\n";
|
||||
for (unsigned i = 0; i < size(); ++i) {
|
||||
verbose_stream() << coeff(i) << "*" << lit(i) << " ";
|
||||
}
|
||||
verbose_stream() << " >= " << k << "\n";
|
||||
);
|
||||
|
||||
for (unsigned i = 0; i < size(); ++i) {
|
||||
if (coeff(i) < k) {
|
||||
args[i] = args.back();
|
||||
args.pop_back();
|
||||
--i;
|
||||
}
|
||||
}
|
||||
normalize();
|
||||
|
||||
}
|
||||
pb_lit_rewriter_util pbu;
|
||||
pb_rewriter_util<pb_lit_rewriter_util> util(pbu);
|
||||
util.prune(m_args, m_k);
|
||||
}
|
||||
|
||||
lbool theory_pb::ineq::normalize() {
|
||||
|
||||
numeral& k = m_k;
|
||||
arg_t& args = m_args;
|
||||
|
||||
//
|
||||
// Ensure all coefficients are positive:
|
||||
// c*l + y >= k
|
||||
// <=>
|
||||
// c*(1-~l) + y >= k
|
||||
// <=>
|
||||
// c - c*~l + y >= k
|
||||
// <=>
|
||||
// -c*~l + y >= k - c
|
||||
//
|
||||
numeral sum(0);
|
||||
for (unsigned i = 0; i < size(); ++i) {
|
||||
numeral c = coeff(i);
|
||||
if (c.is_neg()) {
|
||||
args[i].second = -c;
|
||||
args[i].first = ~lit(i);
|
||||
k -= c;
|
||||
}
|
||||
sum += coeff(i);
|
||||
}
|
||||
// detect tautologies:
|
||||
if (k <= numeral::zero()) {
|
||||
args.reset();
|
||||
k = numeral::zero();
|
||||
return l_true;
|
||||
}
|
||||
// detect infeasible constraints:
|
||||
if (sum < k) {
|
||||
args.reset();
|
||||
k = numeral::one();
|
||||
return l_false;
|
||||
}
|
||||
|
||||
bool all_int = true;
|
||||
for (unsigned i = 0; all_int && i < size(); ++i) {
|
||||
all_int = coeff(i).is_int();
|
||||
}
|
||||
|
||||
if (!all_int) {
|
||||
// normalize to integers.
|
||||
numeral d(denominator(k));
|
||||
for (unsigned i = 0; i < size(); ++i) {
|
||||
d = lcm(d, denominator(coeff(i)));
|
||||
}
|
||||
SASSERT(!d.is_one());
|
||||
k *= d;
|
||||
for (unsigned i = 0; i < size(); ++i) {
|
||||
args[i].second *= d;
|
||||
}
|
||||
}
|
||||
|
||||
// Ensure the largest coefficient is not larger than k:
|
||||
sum = numeral::zero();
|
||||
for (unsigned i = 0; i < size(); ++i) {
|
||||
numeral c = coeff(i);
|
||||
if (c > k) {
|
||||
args[i].second = k;
|
||||
}
|
||||
sum += coeff(i);
|
||||
}
|
||||
SASSERT(!args.empty());
|
||||
|
||||
// normalize tight inequalities to unit coefficients.
|
||||
if (sum == k) {
|
||||
for (unsigned i = 0; i < size(); ++i) {
|
||||
args[i].second = numeral::one();
|
||||
}
|
||||
k = numeral(size());
|
||||
}
|
||||
|
||||
// apply cutting plane reduction:
|
||||
numeral g(0);
|
||||
for (unsigned i = 0; !g.is_one() && i < size(); ++i) {
|
||||
numeral c = coeff(i);
|
||||
if (c != k) {
|
||||
if (g.is_zero()) {
|
||||
g = c;
|
||||
}
|
||||
else {
|
||||
g = gcd(g, c);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (g.is_zero()) {
|
||||
// all coefficients are equal to k.
|
||||
for (unsigned i = 0; i < size(); ++i) {
|
||||
SASSERT(coeff(i) == k);
|
||||
args[i].second = numeral::one();
|
||||
}
|
||||
k = numeral::one();
|
||||
}
|
||||
else if (g > numeral::one()) {
|
||||
IF_VERBOSE(2, verbose_stream() << "cut " << g << "\n";
|
||||
for (unsigned i = 0; i < size(); ++i) {
|
||||
verbose_stream() << coeff(i) << "*" << lit(i) << " ";
|
||||
}
|
||||
verbose_stream() << " >= " << k << "\n";
|
||||
);
|
||||
|
||||
//
|
||||
// Example 5x + 5y + 2z + 2u >= 5
|
||||
// becomes 3x + 3y + z + u >= 3
|
||||
//
|
||||
numeral k_new = div(k, g);
|
||||
if (!(k % g).is_zero()) { // k_new is the ceiling of k / g.
|
||||
k_new++;
|
||||
}
|
||||
for (unsigned i = 0; i < size(); ++i) {
|
||||
SASSERT(coeff(i).is_pos());
|
||||
numeral c = coeff(i);
|
||||
if (c == k) {
|
||||
c = k_new;
|
||||
}
|
||||
else {
|
||||
c = div(c, g);
|
||||
}
|
||||
args[i].second = c;
|
||||
SASSERT(coeff(i).is_pos());
|
||||
}
|
||||
k = k_new;
|
||||
}
|
||||
//
|
||||
// normalize coefficients that fall within a range
|
||||
// k/n <= ... < k/(n-1) for some n = 1,2,...
|
||||
//
|
||||
// e.g, k/n <= min <= max < k/(n-1)
|
||||
// k/min <= n, n-1 < k/max
|
||||
// . floor(k/max) = ceil(k/min) - 1
|
||||
// . floor(k/max) < k/max
|
||||
//
|
||||
// example: k = 5, min = 3, max = 4: 5/3 -> 2 5/4 -> 1, n = 2
|
||||
// replace all coefficients by 1, and k by 2.
|
||||
//
|
||||
if (!k.is_one()) {
|
||||
numeral min = coeff(0), max = coeff(0);
|
||||
for (unsigned i = 1; i < size(); ++i) {
|
||||
if (coeff(i) < min) min = coeff(i);
|
||||
if (coeff(i) > max) max = coeff(i);
|
||||
}
|
||||
numeral n0 = k/max;
|
||||
numeral n1 = floor(n0);
|
||||
numeral n2 = ceil(k/min) - numeral::one();
|
||||
if (n1 == n2 && !n0.is_int()) {
|
||||
IF_VERBOSE(2, verbose_stream() << "set cardinality\n";
|
||||
for (unsigned i = 0; i < size(); ++i) {
|
||||
verbose_stream() << coeff(i) << "*" << lit(i) << " ";
|
||||
}
|
||||
verbose_stream() << " >= " << k << "\n";
|
||||
);
|
||||
|
||||
for (unsigned i = 0; i < size(); ++i) {
|
||||
args[i].second = numeral::one();
|
||||
}
|
||||
k = n1 + numeral::one();
|
||||
}
|
||||
}
|
||||
|
||||
SASSERT(well_formed());
|
||||
return l_undef;
|
||||
pb_lit_rewriter_util pbu;
|
||||
pb_rewriter_util<pb_lit_rewriter_util> util(pbu);
|
||||
return util.normalize(m_args, m_k);
|
||||
}
|
||||
|
||||
app_ref theory_pb::ineq::to_expr(context& ctx, ast_manager& m) {
|
||||
|
@ -403,6 +213,7 @@ namespace smt {
|
|||
break;
|
||||
}
|
||||
|
||||
#if 0
|
||||
// TBD: special cases: k == 1, or args.size() == 1
|
||||
|
||||
if (c->k().is_one()) {
|
||||
|
@ -416,7 +227,7 @@ namespace smt {
|
|||
ctx.mk_th_axiom(get_id(), lits.size(), lits.c_ptr());
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// maximal coefficient:
|
||||
numeral& max_watch = c->m_max_watch;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue