3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 11:25:51 +00:00

merge with unstable

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2014-01-05 20:44:56 -08:00
commit 23e811d136
95 changed files with 24076 additions and 414 deletions

1044
src/duality/duality.h Normal file

File diff suppressed because it is too large Load diff

169
src/duality/duality_hash.h Executable file
View file

@ -0,0 +1,169 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
iz3hash.h
Abstract:
Wrapper for stl hash tables
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
// pull in the headers for has_map and hash_set
// these live in non-standard places
#ifndef IZ3_HASH_H
#define IZ3_HASH_H
//#define USE_UNORDERED_MAP
#ifdef USE_UNORDERED_MAP
#define stl_ext std
#define hash_space std
#include <unordered_map>
#include <unordered_set>
#define hash_map unordered_map
#define hash_set unordered_set
#else
#if __GNUC__ >= 3
#undef __DEPRECATED
#define stl_ext __gnu_cxx
#define hash_space stl_ext
#include <ext/hash_map>
#include <ext/hash_set>
#else
#ifdef WIN32
#define stl_ext stdext
#define hash_space std
#include <hash_map>
#include <hash_set>
#else
#define stl_ext std
#define hash_space std
#include <hash_map>
#include <hash_set>
#endif
#endif
#endif
#include <string>
// stupid STL doesn't include hash function for class string
#ifndef WIN32
namespace stl_ext {
template <>
class hash<std::string> {
stl_ext::hash<char *> H;
public:
size_t operator()(const std::string &s) const {
return H(s.c_str());
}
};
}
#endif
namespace hash_space {
template <>
class hash<std::pair<int,int> > {
public:
size_t operator()(const std::pair<int,int> &p) const {
return p.first + p.second;
}
};
}
#ifdef WIN32
template <> inline
size_t stdext::hash_value<std::pair<int,int> >(const std::pair<int,int>& p)
{ // hash _Keyval to size_t value one-to-one
return p.first + p.second;
}
#endif
namespace hash_space {
template <class T>
class hash<std::pair<T *, T *> > {
public:
size_t operator()(const std::pair<T *,T *> &p) const {
return (size_t)p.first + (size_t)p.second;
}
};
}
#if 0
template <class T> inline
size_t stdext::hash_value<std::pair<T *, T *> >(const std::pair<T *, T *>& p)
{ // hash _Keyval to size_t value one-to-one
return (size_t)p.first + (size_t)p.second;
}
#endif
#ifdef WIN32
namespace std {
template <>
class less<std::pair<int,int> > {
public:
bool operator()(const pair<int,int> &x, const pair<int,int> &y) const {
return x.first < y.first || x.first == y.first && x.second < y.second;
}
};
}
namespace std {
template <class T>
class less<std::pair<T *,T *> > {
public:
bool operator()(const pair<T *,T *> &x, const pair<T *,T *> &y) const {
return (size_t)x.first < (size_t)y.first || (size_t)x.first == (size_t)y.first && (size_t)x.second < (size_t)y.second;
}
};
}
#endif
#ifndef WIN32
namespace stl_ext {
template <class T>
class hash<T *> {
public:
size_t operator()(const T *p) const {
return (size_t) p;
}
};
}
#endif
#ifdef WIN32
template <class K, class T>
class hash_map : public stl_ext::hash_map<K,T,stl_ext::hash_compare<K,std::less<K> > > {};
template <class K>
class hash_set : public stl_ext::hash_set<K,stl_ext::hash_compare<K,std::less<K> > > {};
#endif
#endif

126
src/duality/duality_profiling.cpp Executable file
View file

@ -0,0 +1,126 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
duality_profiling.cpp
Abstract:
collection performance information for duality
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#include <map>
#include <iostream>
#include <string>
#include <string.h>
#include <stdlib.h>
#include "duality_wrapper.h"
namespace Duality {
void show_time(){
output_time(std::cout,current_time());
std::cout << "\n";
}
typedef std::map<const char*, struct node> nmap;
struct node {
std::string name;
clock_t time;
clock_t start_time;
nmap sub;
struct node *parent;
node();
} top;
node::node(){
time = 0;
parent = 0;
}
struct node *current;
struct init {
init(){
top.name = "TOTAL";
current = &top;
}
} initializer;
struct time_entry {
clock_t t;
time_entry(){t = 0;};
void add(clock_t incr){t += incr;}
};
struct ltstr
{
bool operator()(const char* s1, const char* s2) const
{
return strcmp(s1, s2) < 0;
}
};
typedef std::map<const char*, time_entry, ltstr> tmap;
static std::ostream *pfs;
void print_node(node &top, int indent, tmap &totals){
for(int i = 0; i < indent; i++) (*pfs) << " ";
(*pfs) << top.name;
int dots = 70 - 2 * indent - top.name.size();
for(int i = 0; i <dots; i++) (*pfs) << ".";
output_time(*pfs, top.time);
(*pfs) << std::endl;
if(indent != 0)totals[top.name.c_str()].add(top.time);
for(nmap::iterator it = top.sub.begin(); it != top.sub.end(); it++)
print_node(it->second,indent+1,totals);
}
void print_profile(std::ostream &os) {
pfs = &os;
top.time = 0;
for(nmap::iterator it = top.sub.begin(); it != top.sub.end(); it++)
top.time += it->second.time;
tmap totals;
print_node(top,0,totals);
(*pfs) << "TOTALS:" << std::endl;
for(tmap::iterator it = totals.begin(); it != totals.end(); it++){
(*pfs) << (it->first) << " ";
output_time(*pfs, it->second.t);
(*pfs) << std::endl;
}
}
void timer_start(const char *name){
node &child = current->sub[name];
if(child.name.empty()){ // a new node
child.parent = current;
child.name = name;
}
child.start_time = current_time();
current = &child;
}
void timer_stop(const char *name){
if(current->name != name || !current->parent){
std::cerr << "imbalanced timer_start and timer_stop";
exit(1);
}
current->time += (current_time() - current->start_time);
current = current->parent;
}
}

38
src/duality/duality_profiling.h Executable file
View file

@ -0,0 +1,38 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
duality_profiling.h
Abstract:
collection performance information for duality
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#ifndef DUALITYPROFILING_H
#define DUALITYPROFILING_H
#include <ostream>
namespace Duality {
/** Start a timer with given name */
void timer_start(const char *);
/** Stop a timer with given name */
void timer_stop(const char *);
/** Print out timings */
void print_profile(std::ostream &s);
/** Show the current time. */
void show_time();
}
#endif

2894
src/duality/duality_rpfp.cpp Normal file

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,677 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
wrapper.cpp
Abstract:
wrap various objects in the style expected by duality
Author:
Ken McMillan (kenmcmil)
Revision History:
--*/
#include "duality_wrapper.h"
#include <iostream>
#include "smt_solver.h"
#include "iz3interp.h"
#include "statistics.h"
#include "expr_abstract.h"
#include "stopwatch.h"
#include "model_smt2_pp.h"
#include "qe_lite.h"
namespace Duality {
solver::solver(Duality::context& c, bool extensional) : object(c), the_model(c) {
params_ref p;
p.set_bool("proof", true); // this is currently useless
p.set_bool("model", true);
p.set_bool("unsat_core", true);
p.set_bool("mbqi",true);
p.set_str("mbqi.id","itp"); // use mbqi for quantifiers in interpolants
p.set_uint("mbqi.max_iterations",1); // use mbqi for quantifiers in interpolants
if(true || extensional)
p.set_bool("array.extensional",true);
scoped_ptr<solver_factory> sf = mk_smt_solver_factory();
m_solver = (*sf)(m(), p, true, true, true, ::symbol::null);
m_solver->updt_params(p); // why do we have to do this?
canceled = false;
}
expr context::constant(const std::string &name, const sort &ty){
symbol s = str_symbol(name.c_str());
return cook(m().mk_const(m().mk_const_decl(s, ty)));
}
expr context::make(decl_kind op, int n, ::expr **args){
switch(op) {
case True: return mki(m_basic_fid,OP_TRUE,n,args);
case False: return mki(m_basic_fid,OP_FALSE,n,args);
case Equal: return mki(m_basic_fid,OP_EQ,n,args);
case Distinct: return mki(m_basic_fid,OP_DISTINCT,n,args);
case Ite: return mki(m_basic_fid,OP_ITE,n,args);
case And: return mki(m_basic_fid,OP_AND,n,args);
case Or: return mki(m_basic_fid,OP_OR,n,args);
case Iff: return mki(m_basic_fid,OP_IFF,n,args);
case Xor: return mki(m_basic_fid,OP_XOR,n,args);
case Not: return mki(m_basic_fid,OP_NOT,n,args);
case Implies: return mki(m_basic_fid,OP_IMPLIES,n,args);
case Oeq: return mki(m_basic_fid,OP_OEQ,n,args);
case Interp: return mki(m_basic_fid,OP_INTERP,n,args);
case Leq: return mki(m_arith_fid,OP_LE,n,args);
case Geq: return mki(m_arith_fid,OP_GE,n,args);
case Lt: return mki(m_arith_fid,OP_LT,n,args);
case Gt: return mki(m_arith_fid,OP_GT,n,args);
case Plus: return mki(m_arith_fid,OP_ADD,n,args);
case Sub: return mki(m_arith_fid,OP_SUB,n,args);
case Uminus: return mki(m_arith_fid,OP_UMINUS,n,args);
case Times: return mki(m_arith_fid,OP_MUL,n,args);
case Div: return mki(m_arith_fid,OP_DIV,n,args);
case Idiv: return mki(m_arith_fid,OP_IDIV,n,args);
case Rem: return mki(m_arith_fid,OP_REM,n,args);
case Mod: return mki(m_arith_fid,OP_MOD,n,args);
case Power: return mki(m_arith_fid,OP_POWER,n,args);
case ToReal: return mki(m_arith_fid,OP_TO_REAL,n,args);
case ToInt: return mki(m_arith_fid,OP_TO_INT,n,args);
case IsInt: return mki(m_arith_fid,OP_IS_INT,n,args);
case Store: return mki(m_array_fid,OP_STORE,n,args);
case Select: return mki(m_array_fid,OP_SELECT,n,args);
case ConstArray: return mki(m_array_fid,OP_CONST_ARRAY,n,args);
case ArrayDefault: return mki(m_array_fid,OP_ARRAY_DEFAULT,n,args);
case ArrayMap: return mki(m_array_fid,OP_ARRAY_MAP,n,args);
case SetUnion: return mki(m_array_fid,OP_SET_UNION,n,args);
case SetIntersect: return mki(m_array_fid,OP_SET_INTERSECT,n,args);
case SetDifference: return mki(m_array_fid,OP_SET_DIFFERENCE,n,args);
case SetComplement: return mki(m_array_fid,OP_SET_COMPLEMENT,n,args);
case SetSubSet: return mki(m_array_fid,OP_SET_SUBSET,n,args);
case AsArray: return mki(m_array_fid,OP_AS_ARRAY,n,args);
default:
assert(0);
return expr(*this);
}
}
expr context::mki(family_id fid, ::decl_kind dk, int n, ::expr **args){
return cook(m().mk_app(fid, dk, 0, 0, n, (::expr **)args));
}
expr context::make(decl_kind op, const std::vector<expr> &args){
static std::vector< ::expr*> a(10);
if(a.size() < args.size())
a.resize(args.size());
for(unsigned i = 0; i < args.size(); i++)
a[i] = to_expr(args[i].raw());
return make(op,args.size(), args.size() ? &a[0] : 0);
}
expr context::make(decl_kind op){
return make(op,0,0);
}
expr context::make(decl_kind op, const expr &arg0){
::expr *a = to_expr(arg0.raw());
return make(op,1,&a);
}
expr context::make(decl_kind op, const expr &arg0, const expr &arg1){
::expr *args[2];
args[0] = to_expr(arg0.raw());
args[1] = to_expr(arg1.raw());
return make(op,2,args);
}
expr context::make(decl_kind op, const expr &arg0, const expr &arg1, const expr &arg2){
::expr *args[3];
args[0] = to_expr(arg0.raw());
args[1] = to_expr(arg1.raw());
args[2] = to_expr(arg2.raw());
return make(op,3,args);
}
expr context::make_quant(decl_kind op, const std::vector<expr> &bvs, const expr &body){
if(bvs.size() == 0) return body;
std::vector< ::expr *> foo(bvs.size());
std::vector< ::symbol> names;
std::vector< ::sort *> types;
std::vector< ::expr *> bound_asts;
unsigned num_bound = bvs.size();
for (unsigned i = 0; i < num_bound; ++i) {
app* a = to_app(bvs[i].raw());
::symbol s(to_app(a)->get_decl()->get_name());
names.push_back(s);
types.push_back(m().get_sort(a));
bound_asts.push_back(a);
}
expr_ref abs_body(m());
expr_abstract(m(), 0, num_bound, &bound_asts[0], to_expr(body.raw()), abs_body);
expr_ref result(m());
result = m().mk_quantifier(
op == Forall,
names.size(), &types[0], &names[0], abs_body.get(),
0,
::symbol(),
::symbol(),
0, 0,
0, 0
);
return cook(result.get());
}
expr context::make_quant(decl_kind op, const std::vector<sort> &_sorts, const std::vector<symbol> &_names, const expr &body){
if(_sorts.size() == 0) return body;
std::vector< ::symbol> names;
std::vector< ::sort *> types;
std::vector< ::expr *> bound_asts;
unsigned num_bound = _sorts.size();
for (unsigned i = 0; i < num_bound; ++i) {
names.push_back(_names[i]);
types.push_back(to_sort(_sorts[i].raw()));
}
expr_ref result(m());
result = m().mk_quantifier(
op == Forall,
names.size(), &types[0], &names[0], to_expr(body.raw()),
0,
::symbol(),
::symbol(),
0, 0,
0, 0
);
return cook(result.get());
}
decl_kind func_decl::get_decl_kind() const {
return ctx().get_decl_kind(*this);
}
decl_kind context::get_decl_kind(const func_decl &t){
::func_decl *d = to_func_decl(t.raw());
if (null_family_id == d->get_family_id())
return Uninterpreted;
// return (opr)d->get_decl_kind();
if (m_basic_fid == d->get_family_id()) {
switch(d->get_decl_kind()) {
case OP_TRUE: return True;
case OP_FALSE: return False;
case OP_EQ: return Equal;
case OP_DISTINCT: return Distinct;
case OP_ITE: return Ite;
case OP_AND: return And;
case OP_OR: return Or;
case OP_IFF: return Iff;
case OP_XOR: return Xor;
case OP_NOT: return Not;
case OP_IMPLIES: return Implies;
case OP_OEQ: return Oeq;
case OP_INTERP: return Interp;
default:
return OtherBasic;
}
}
if (m_arith_fid == d->get_family_id()) {
switch(d->get_decl_kind()) {
case OP_LE: return Leq;
case OP_GE: return Geq;
case OP_LT: return Lt;
case OP_GT: return Gt;
case OP_ADD: return Plus;
case OP_SUB: return Sub;
case OP_UMINUS: return Uminus;
case OP_MUL: return Times;
case OP_DIV: return Div;
case OP_IDIV: return Idiv;
case OP_REM: return Rem;
case OP_MOD: return Mod;
case OP_POWER: return Power;
case OP_TO_REAL: return ToReal;
case OP_TO_INT: return ToInt;
case OP_IS_INT: return IsInt;
default:
return OtherArith;
}
}
if (m_array_fid == d->get_family_id()) {
switch(d->get_decl_kind()) {
case OP_STORE: return Store;
case OP_SELECT: return Select;
case OP_CONST_ARRAY: return ConstArray;
case OP_ARRAY_DEFAULT: return ArrayDefault;
case OP_ARRAY_MAP: return ArrayMap;
case OP_SET_UNION: return SetUnion;
case OP_SET_INTERSECT: return SetIntersect;
case OP_SET_DIFFERENCE: return SetDifference;
case OP_SET_COMPLEMENT: return SetComplement;
case OP_SET_SUBSET: return SetSubSet;
case OP_AS_ARRAY: return AsArray;
default:
return OtherArray;
}
}
return Other;
}
sort_kind context::get_sort_kind(const sort &s){
family_id fid = to_sort(s.raw())->get_family_id();
::decl_kind k = to_sort(s.raw())->get_decl_kind();
if (m().is_uninterp(to_sort(s.raw()))) {
return UninterpretedSort;
}
else if (fid == m_basic_fid && k == BOOL_SORT) {
return BoolSort;
}
else if (fid == m_arith_fid && k == INT_SORT) {
return IntSort;
}
else if (fid == m_arith_fid && k == REAL_SORT) {
return RealSort;
}
else if (fid == m_array_fid && k == ARRAY_SORT) {
return ArraySort;
}
else {
return UnknownSort;
}
}
expr func_decl::operator()(unsigned n, expr const * args) const {
std::vector< ::expr *> _args(n);
for(unsigned i = 0; i < n; i++)
_args[i] = to_expr(args[i].raw());
return ctx().cook(m().mk_app(to_func_decl(raw()),n,&_args[0]));
}
int solver::get_num_decisions(){
::statistics st;
m_solver->collect_statistics(st);
std::ostringstream ss;
st.display(ss);
std::string stats = ss.str();
int pos = stats.find("decisions:");
if(pos < 0) return 0; // for some reason, decisions are not reported if there are none
pos += 10;
int end = stats.find('\n',pos);
std::string val = stats.substr(pos,end-pos);
return atoi(val.c_str());
}
void context::print_expr(std::ostream &s, const ast &e){
s << mk_pp(e.raw(), m());
}
expr expr::simplify(const params &_p) const {
::expr * a = to_expr(raw());
params_ref p = _p.get();
th_rewriter m_rw(m(), p);
expr_ref result(m());
m_rw(a, result);
return ctx().cook(result);
}
expr expr::simplify() const {
params p;
return simplify(p);
}
expr expr::qe_lite() const {
::qe_lite qe(m());
expr_ref result(to_expr(raw()),m());
proof_ref pf(m());
qe(result,pf);
return ctx().cook(result);
}
expr clone_quantifier(const expr &q, const expr &b){
return q.ctx().cook(q.m().update_quantifier(to_quantifier(q.raw()), to_expr(b.raw())));
}
expr clone_quantifier(const expr &q, const expr &b, const std::vector<expr> &patterns){
quantifier *thing = to_quantifier(q.raw());
bool is_forall = thing->is_forall();
unsigned num_patterns = patterns.size();
std::vector< ::expr *> _patterns(num_patterns);
for(unsigned i = 0; i < num_patterns; i++)
_patterns[i] = to_expr(patterns[i].raw());
return q.ctx().cook(q.m().update_quantifier(thing, is_forall, num_patterns, &_patterns[0], to_expr(b.raw())));
}
void expr::get_patterns(std::vector<expr> &pats) const {
quantifier *thing = to_quantifier(raw());
unsigned num_patterns = thing->get_num_patterns();
:: expr * const *it = thing->get_patterns();
pats.resize(num_patterns);
for(unsigned i = 0; i < num_patterns; i++)
pats[i] = expr(ctx(),it[i]);
}
func_decl context::fresh_func_decl(char const * prefix, const std::vector<sort> &domain, sort const & range){
std::vector < ::sort * > _domain(domain.size());
for(unsigned i = 0; i < domain.size(); i++)
_domain[i] = to_sort(domain[i].raw());
::func_decl* d = m().mk_fresh_func_decl(prefix,
_domain.size(),
&_domain[0],
to_sort(range.raw()));
return func_decl(*this,d);
}
func_decl context::fresh_func_decl(char const * prefix, sort const & range){
::func_decl* d = m().mk_fresh_func_decl(prefix,
0,
0,
to_sort(range.raw()));
return func_decl(*this,d);
}
#if 0
lbool interpolating_solver::interpolate(
const std::vector<expr> &assumptions,
std::vector<expr> &interpolants,
model &model,
Z3_literals &labels,
bool incremental)
{
Z3_model _model = 0;
Z3_literals _labels = 0;
Z3_lbool lb;
std::vector<Z3_ast> _assumptions(assumptions.size());
std::vector<Z3_ast> _interpolants(assumptions.size()-1);
for(unsigned i = 0; i < assumptions.size(); i++)
_assumptions[i] = assumptions[i];
std::vector<Z3_ast> _theory(theory.size());
for(unsigned i = 0; i < theory.size(); i++)
_theory[i] = theory[i];
lb = Z3_interpolate(
ctx(),
_assumptions.size(),
&_assumptions[0],
0,
0,
&_interpolants[0],
&_model,
&_labels,
incremental,
_theory.size(),
&_theory[0]
);
if(lb == Z3_L_FALSE){
interpolants.resize(_interpolants.size());
for (unsigned i = 0; i < _interpolants.size(); ++i) {
interpolants[i] = expr(ctx(),_interpolants[i]);
}
}
if (_model) {
model = iz3wrapper::model(ctx(), _model);
}
if(_labels){
labels = _labels;
}
return lb;
}
#endif
static int linearize_assumptions(int num,
TermTree *assumptions,
std::vector<std::vector <expr> > &linear_assumptions,
std::vector<int> &parents){
for(unsigned i = 0; i < assumptions->getChildren().size(); i++)
num = linearize_assumptions(num, assumptions->getChildren()[i], linear_assumptions, parents);
// linear_assumptions[num].push_back(assumptions->getTerm());
for(unsigned i = 0; i < assumptions->getChildren().size(); i++)
parents[assumptions->getChildren()[i]->getNumber()] = num;
parents[num] = SHRT_MAX; // in case we have no parent
linear_assumptions[num].push_back(assumptions->getTerm());
std::vector<expr> &ts = assumptions->getTerms();
for(unsigned i = 0; i < ts.size(); i++)
linear_assumptions[num].push_back(ts[i]);
return num + 1;
}
static int unlinearize_interpolants(int num,
TermTree* assumptions,
const std::vector<expr> &interpolant,
TermTree * &tree_interpolant)
{
std::vector<TermTree *> chs(assumptions->getChildren().size());
for(unsigned i = 0; i < assumptions->getChildren().size(); i++)
num = unlinearize_interpolants(num, assumptions->getChildren()[i], interpolant,chs[i]);
expr f;
if(num < (int)interpolant.size()) // last interpolant is missing, presumed false
f = interpolant[num];
tree_interpolant = new TermTree(f,chs);
return num + 1;
}
lbool interpolating_solver::interpolate_tree(TermTree *assumptions,
TermTree *&interpolant,
model &model,
literals &labels,
bool incremental
)
{
int size = assumptions->number(0);
std::vector<std::vector<expr> > linear_assumptions(size);
std::vector<int> parents(size);
linearize_assumptions(0,assumptions,linear_assumptions,parents);
ptr_vector< ::ast> _interpolants(size-1);
vector<ptr_vector< ::ast> >_assumptions(size);
for(int i = 0; i < size; i++)
for(unsigned j = 0; j < linear_assumptions[i].size(); j++)
_assumptions[i].push_back(linear_assumptions[i][j]);
::vector<int> _parents; _parents.resize(parents.size());
for(unsigned i = 0; i < parents.size(); i++)
_parents[i] = parents[i];
ptr_vector< ::ast> _theory(theory.size());
for(unsigned i = 0; i < theory.size(); i++)
_theory[i] = theory[i];
if(!incremental){
push();
for(unsigned i = 0; i < linear_assumptions.size(); i++)
for(unsigned j = 0; j < linear_assumptions[i].size(); j++)
add(linear_assumptions[i][j]);
}
check_result res = check();
if(res == unsat){
interpolation_options_struct opts;
if(weak_mode)
opts.set("weak","1");
::ast *proof = m_solver->get_proof();
iz3interpolate(m(),proof,_assumptions,_parents,_interpolants,_theory,&opts);
std::vector<expr> linearized_interpolants(_interpolants.size());
for(unsigned i = 0; i < _interpolants.size(); i++)
linearized_interpolants[i] = expr(ctx(),_interpolants[i]);
// since iz3interpolant returns interpolants with one ref count, we decrement here
for(unsigned i = 0; i < _interpolants.size(); i++)
m().dec_ref(_interpolants[i]);
unlinearize_interpolants(0,assumptions,linearized_interpolants,interpolant);
interpolant->setTerm(ctx().bool_val(false));
}
model_ref _m;
m_solver->get_model(_m);
model = Duality::model(ctx(),_m.get());
#if 0
if(_labels){
labels = _labels;
}
#endif
if(!incremental)
pop();
return (res == unsat) ? l_false : ((res == sat) ? l_true : l_undef);
}
void interpolating_solver::SetWeakInterpolants(bool weak){
weak_mode = weak;
}
void interpolating_solver::SetPrintToFile(const std::string &filename){
print_filename = filename;
}
void interpolating_solver::AssertInterpolationAxiom(const expr & t){
add(t);
theory.push_back(t);
}
void interpolating_solver::RemoveInterpolationAxiom(const expr & t){
// theory.remove(t);
}
const char *interpolating_solver::profile(){
// return Z3_interpolation_profile(ctx());
return "";
}
static void get_assumptions_rec(stl_ext::hash_set<ast> &memo, const proof &pf, std::vector<expr> &assumps){
if(memo.find(pf) != memo.end())return;
memo.insert(pf);
pfrule dk = pf.rule();
if(dk == PR_ASSERTED){
expr con = pf.conc();
assumps.push_back(con);
}
else {
unsigned nprems = pf.num_prems();
for(unsigned i = 0; i < nprems; i++){
proof arg = pf.prem(i);
get_assumptions_rec(memo,arg,assumps);
}
}
}
void proof::get_assumptions(std::vector<expr> &assumps){
stl_ext::hash_set<ast> memo;
get_assumptions_rec(memo,*this,assumps);
}
void ast::show() const{
std::cout << mk_pp(raw(), m()) << std::endl;
}
void model::show() const {
model_smt2_pp(std::cout, m(), *m_model, 0);
std::cout << std::endl;
}
void model::show_hash() const {
std::ostringstream ss;
model_smt2_pp(ss, m(), *m_model, 0);
hash_space::hash<std::string> hasher;
unsigned h = hasher(ss.str());
std::cout << "model hash: " << h << "\n";
}
void solver::show() {
unsigned n = m_solver->get_num_assertions();
if(!n)
return;
ast_smt_pp pp(m());
for (unsigned i = 0; i < n-1; ++i)
pp.add_assumption(m_solver->get_assertion(i));
pp.display_smt2(std::cout, m_solver->get_assertion(n-1));
}
void solver::show_assertion_ids() {
#if 0
unsigned n = m_solver->get_num_assertions();
std::cerr << "assertion ids: ";
for (unsigned i = 0; i < n-1; ++i)
std::cerr << " " << m_solver->get_assertion(i)->get_id();
std::cerr << "\n";
#else
unsigned n = m_solver->get_num_assertions();
std::cerr << "assertion ids hash: ";
unsigned h = 0;
for (unsigned i = 0; i < n-1; ++i)
h += m_solver->get_assertion(i)->get_id();
std::cerr << h << "\n";
#endif
}
void include_ast_show(ast &a){
a.show();
}
void include_model_show(model &a){
a.show();
}
void show_ast(::ast *a, ast_manager &m) {
std::cout << mk_pp(a, m) << std::endl;
}
bool expr::is_label (bool &pos,std::vector<symbol> &names) const {
buffer< ::symbol> _names;
bool res = m().is_label(to_expr(raw()),pos,_names);
if(res)
for(unsigned i = 0; i < _names.size(); i++)
names.push_back(symbol(ctx(),_names[i]));
return res;
}
double current_time()
{
static stopwatch sw;
static bool started = false;
if(!started){
sw.start();
started = true;
}
return sw.get_current_seconds();
}
}

1430
src/duality/duality_wrapper.h Executable file

File diff suppressed because it is too large Load diff