3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 18:31:49 +00:00
This commit is contained in:
Nikolaj Bjorner 2017-02-13 08:16:43 -08:00
commit 216e17e5e2
25 changed files with 580 additions and 67 deletions

View file

@ -117,14 +117,16 @@ else()
set(lib_type "STATIC")
endif()
add_library(libz3 ${lib_type} ${object_files})
# FIXME: Set "VERSION" and "SOVERSION" properly
set_target_properties(libz3 PROPERTIES
# FIXME: Should we be using ${Z3_VERSION} here?
# VERSION: Sets up symlinks, does it do anything else?
# VERSION determines the version in the filename of the shared library.
# SOVERSION determines the value of the DT_SONAME field on ELF platforms.
# On ELF platforms the final compiled filename will be libz3.so.W.X.Y.Z
# but symlinks will be made to this file from libz3.so and also from
# libz3.so.W.X.
# This indicates that no breaking API changes will be made within a single
# minor version.
VERSION ${Z3_VERSION}
# SOVERSION: On platforms that use ELF this sets the API version
# and should be incremented everytime the API changes
SOVERSION ${Z3_VERSION})
SOVERSION ${Z3_VERSION_MAJOR}.${Z3_VERSION_MINOR})
if (NOT MSVC)
# On UNIX like platforms if we don't change the OUTPUT_NAME

View file

@ -12,6 +12,7 @@ z3_add_component(tactic
probe.cpp
proof_converter.cpp
replace_proof_converter.cpp
sine_filter.cpp
tactical.cpp
tactic.cpp
COMPONENT_DEPENDENCIES

View file

@ -881,8 +881,8 @@ def is_CXX_gpp():
return is_compiler(CXX, 'g++')
def is_clang_in_gpp_form(cc):
version_string = check_output([cc, '--version'])
return str(version_string).find('clang') != -1
version_string = check_output([cc, '--version']).encode('utf-8').decode('utf-8')
return version_string.find('clang') != -1
def is_CXX_clangpp():
if is_compiler(CXX, 'g++'):

View file

@ -1110,29 +1110,32 @@ extern "C" {
if (mk_c(c)->get_seq_fid() == _d->get_family_id()) {
switch (_d->get_decl_kind()) {
case Z3_OP_SEQ_UNIT: return Z3_OP_SEQ_UNIT;
case Z3_OP_SEQ_EMPTY: return Z3_OP_SEQ_EMPTY;
case Z3_OP_SEQ_CONCAT: return Z3_OP_SEQ_CONCAT;
case Z3_OP_SEQ_PREFIX: return Z3_OP_SEQ_PREFIX;
case Z3_OP_SEQ_SUFFIX: return Z3_OP_SEQ_SUFFIX;
case Z3_OP_SEQ_CONTAINS: return Z3_OP_SEQ_CONTAINS;
case Z3_OP_SEQ_EXTRACT: return Z3_OP_SEQ_EXTRACT;
case Z3_OP_SEQ_REPLACE: return Z3_OP_SEQ_REPLACE;
case Z3_OP_SEQ_AT: return Z3_OP_SEQ_AT;
case Z3_OP_SEQ_LENGTH: return Z3_OP_SEQ_LENGTH;
case Z3_OP_SEQ_INDEX: return Z3_OP_SEQ_INDEX;
case Z3_OP_SEQ_TO_RE: return Z3_OP_SEQ_TO_RE;
case Z3_OP_SEQ_IN_RE: return Z3_OP_SEQ_IN_RE;
case OP_SEQ_UNIT: return Z3_OP_SEQ_UNIT;
case OP_SEQ_EMPTY: return Z3_OP_SEQ_EMPTY;
case OP_SEQ_CONCAT: return Z3_OP_SEQ_CONCAT;
case OP_SEQ_PREFIX: return Z3_OP_SEQ_PREFIX;
case OP_SEQ_SUFFIX: return Z3_OP_SEQ_SUFFIX;
case OP_SEQ_CONTAINS: return Z3_OP_SEQ_CONTAINS;
case OP_SEQ_EXTRACT: return Z3_OP_SEQ_EXTRACT;
case OP_SEQ_REPLACE: return Z3_OP_SEQ_REPLACE;
case OP_SEQ_AT: return Z3_OP_SEQ_AT;
case OP_SEQ_LENGTH: return Z3_OP_SEQ_LENGTH;
case OP_SEQ_INDEX: return Z3_OP_SEQ_INDEX;
case OP_SEQ_TO_RE: return Z3_OP_SEQ_TO_RE;
case OP_SEQ_IN_RE: return Z3_OP_SEQ_IN_RE;
case Z3_OP_RE_PLUS: return Z3_OP_RE_PLUS;
case Z3_OP_RE_STAR: return Z3_OP_RE_STAR;
case Z3_OP_RE_OPTION: return Z3_OP_RE_OPTION;
case Z3_OP_RE_CONCAT: return Z3_OP_RE_CONCAT;
case Z3_OP_RE_UNION: return Z3_OP_RE_UNION;
case Z3_OP_RE_INTERSECT: return Z3_OP_RE_INTERSECT;
case Z3_OP_RE_LOOP: return Z3_OP_RE_LOOP;
case Z3_OP_RE_FULL_SET: return Z3_OP_RE_FULL_SET;
case Z3_OP_RE_EMPTY_SET: return Z3_OP_RE_EMPTY_SET;
case OP_STRING_STOI: return Z3_OP_STR_TO_INT;
case OP_STRING_ITOS: return Z3_OP_INT_TO_STR;
case OP_RE_PLUS: return Z3_OP_RE_PLUS;
case OP_RE_STAR: return Z3_OP_RE_STAR;
case OP_RE_OPTION: return Z3_OP_RE_OPTION;
case OP_RE_CONCAT: return Z3_OP_RE_CONCAT;
case OP_RE_UNION: return Z3_OP_RE_UNION;
case OP_RE_INTERSECT: return Z3_OP_RE_INTERSECT;
case OP_RE_LOOP: return Z3_OP_RE_LOOP;
case OP_RE_FULL_SET: return Z3_OP_RE_FULL_SET;
case OP_RE_EMPTY_SET: return Z3_OP_RE_EMPTY_SET;
default:
return Z3_OP_INTERNAL;
}

View file

@ -141,6 +141,10 @@ extern "C" {
MK_UNARY(Z3_mk_seq_to_re, mk_c(c)->get_seq_fid(), OP_SEQ_TO_RE, SKIP);
MK_BINARY(Z3_mk_seq_in_re, mk_c(c)->get_seq_fid(), OP_SEQ_IN_RE, SKIP);
MK_UNARY(Z3_mk_int_to_str, mk_c(c)->get_seq_fid(), OP_STRING_ITOS, SKIP);
MK_UNARY(Z3_mk_str_to_int, mk_c(c)->get_seq_fid(), OP_STRING_STOI, SKIP);
Z3_ast Z3_API Z3_mk_re_loop(Z3_context c, Z3_ast r, unsigned lo, unsigned hi) {
Z3_TRY;
LOG_Z3_mk_re_loop(c, r, lo, hi);

View file

@ -435,6 +435,8 @@ namespace z3 {
Z3_ast_kind kind() const { Z3_ast_kind r = Z3_get_ast_kind(ctx(), m_ast); check_error(); return r; }
unsigned hash() const { unsigned r = Z3_get_ast_hash(ctx(), m_ast); check_error(); return r; }
friend std::ostream & operator<<(std::ostream & out, ast const & n);
std::string to_string() const { return std::string(Z3_ast_to_string(ctx(), m_ast)); }
/**
\brief Return true if the ASTs are structurally identical.
@ -757,7 +759,25 @@ namespace z3 {
}
return result;
}
Z3_lbool bool_value() const {
return Z3_get_bool_value(ctx(), m_ast);
}
expr numerator() const {
assert(is_numeral());
Z3_ast r = Z3_get_numerator(ctx(), m_ast);
check_error();
return expr(ctx(),r);
}
expr denominator() const {
assert(is_numeral());
Z3_ast r = Z3_get_denominator(ctx(), m_ast);
check_error();
return expr(ctx(),r);
}
operator Z3_app() const { assert(is_app()); return reinterpret_cast<Z3_app>(m_ast); }
@ -875,13 +895,23 @@ namespace z3 {
friend expr operator*(expr const & a, int b);
friend expr operator*(int a, expr const & b);
/**
\brief Power operator
*/
/* \brief Power operator */
friend expr pw(expr const & a, expr const & b);
friend expr pw(expr const & a, int b);
friend expr pw(int a, expr const & b);
/* \brief mod operator */
friend expr mod(expr const& a, expr const& b);
friend expr mod(expr const& a, int b);
friend expr mod(int a, expr const& b);
/* \brief rem operator */
friend expr rem(expr const& a, expr const& b);
friend expr rem(expr const& a, int b);
friend expr rem(int a, expr const& b);
friend expr is_int(expr const& e);
friend expr operator/(expr const & a, expr const & b);
friend expr operator/(expr const & a, int b);
friend expr operator/(int a, expr const & b);
@ -964,6 +994,17 @@ namespace z3 {
check_error();
return expr(ctx(), r);
}
expr stoi() const {
Z3_ast r = Z3_mk_str_to_int(ctx(), *this);
check_error();
return expr(ctx(), r);
}
expr itos() const {
Z3_ast r = Z3_mk_int_to_str(ctx(), *this);
check_error();
return expr(ctx(), r);
}
friend expr range(expr const& lo, expr const& hi);
/**
\brief create a looping regular expression.
@ -1001,34 +1042,46 @@ namespace z3 {
};
#define _Z3_MK_BIN_(a, b, binop) \
check_context(a, b); \
Z3_ast r = binop(a.ctx(), a, b); \
a.check_error(); \
return expr(a.ctx(), r); \
inline expr implies(expr const & a, expr const & b) {
check_context(a, b);
assert(a.is_bool() && b.is_bool());
Z3_ast r = Z3_mk_implies(a.ctx(), a, b);
a.check_error();
return expr(a.ctx(), r);
assert(a.is_bool() && b.is_bool());
_Z3_MK_BIN_(a, b, Z3_mk_implies);
}
inline expr implies(expr const & a, bool b) { return implies(a, a.ctx().bool_val(b)); }
inline expr implies(bool a, expr const & b) { return implies(b.ctx().bool_val(a), b); }
inline expr pw(expr const & a, expr const & b) {
assert(a.is_arith() && b.is_arith());
check_context(a, b);
Z3_ast r = Z3_mk_power(a.ctx(), a, b);
a.check_error();
return expr(a.ctx(), r);
}
inline expr pw(expr const & a, expr const & b) { _Z3_MK_BIN_(a, b, Z3_mk_power); }
inline expr pw(expr const & a, int b) { return pw(a, a.ctx().num_val(b, a.get_sort())); }
inline expr pw(int a, expr const & b) { return pw(b.ctx().num_val(a, b.get_sort()), b); }
inline expr mod(expr const& a, expr const& b) { _Z3_MK_BIN_(a, b, Z3_mk_mod); }
inline expr mod(expr const & a, int b) { return mod(a, a.ctx().num_val(b, a.get_sort())); }
inline expr mod(int a, expr const & b) { return mod(b.ctx().num_val(a, b.get_sort()), b); }
inline expr operator!(expr const & a) {
assert(a.is_bool());
Z3_ast r = Z3_mk_not(a.ctx(), a);
a.check_error();
return expr(a.ctx(), r);
}
inline expr rem(expr const& a, expr const& b) { _Z3_MK_BIN_(a, b, Z3_mk_rem); }
inline expr rem(expr const & a, int b) { return rem(a, a.ctx().num_val(b, a.get_sort())); }
inline expr rem(int a, expr const & b) { return rem(b.ctx().num_val(a, b.get_sort()), b); }
#undef _Z3_MK_BIN_
#define _Z3_MK_UN_(a, mkun) \
Z3_ast r = mkun(a.ctx(), a); \
a.check_error(); \
return expr(a.ctx(), r); \
inline expr operator!(expr const & a) { assert(a.is_bool()); _Z3_MK_UN_(a, Z3_mk_not); }
inline expr is_int(expr const& e) { _Z3_MK_UN_(e, Z3_mk_is_int); }
#undef _Z3_MK_UN_
inline expr operator&&(expr const & a, expr const & b) {
check_context(a, b);

View file

@ -2420,6 +2420,29 @@ namespace Microsoft.Z3
return new SeqExpr(this, Native.Z3_mk_string(nCtx, s));
}
/// <summary>
/// Convert an integer expression to a string.
/// </summary>
public SeqExpr IntToString(Expr e)
{
Contract.Requires(e != null);
Contract.Requires(e is ArithExpr);
Contract.Ensures(Contract.Result<SeqExpr>() != null);
return new SeqExpr(this, Native.Z3_mk_int_to_str(nCtx, e.NativeObject));
}
/// <summary>
/// Convert an integer expression to a string.
/// </summary>
public IntExpr StringToInt(Expr e)
{
Contract.Requires(e != null);
Contract.Requires(e is SeqExpr);
Contract.Ensures(Contract.Result<IntExpr>() != null);
return new IntExpr(this, Native.Z3_mk_str_to_int(nCtx, e.NativeObject));
}
/// <summary>
/// Concatentate sequences.
/// </summary>

View file

@ -868,6 +868,9 @@ class ExprRef(AstRef):
_args, sz = _to_ast_array((a, b))
return BoolRef(Z3_mk_distinct(self.ctx_ref(), 2, _args), self.ctx)
def params(self):
return self.decl().params()
def decl(self):
"""Return the Z3 function declaration associated with a Z3 application.
@ -1011,6 +1014,7 @@ def _coerce_exprs(a, b, ctx=None):
b = s.cast(b)
return (a, b)
def _reduce(f, l, a):
r = a
for e in l:
@ -1296,7 +1300,7 @@ class BoolSortRef(SortRef):
if isinstance(val, bool):
return BoolVal(val, self.ctx)
if __debug__:
_z3_assert(is_expr(val), "True, False or Z3 Boolean expression expected")
_z3_assert(is_expr(val), "True, False or Z3 Boolean expression expected. Received %s" % val)
_z3_assert(self.eq(val.sort()), "Value cannot be converted into a Z3 Boolean value")
return val
@ -2012,7 +2016,7 @@ class ArithSortRef(SortRef):
if self.is_real():
return RealVal(val, self.ctx)
if __debug__:
_z3_assert(False, "int, long, float, string (numeral), or Z3 Integer/Real expression expected")
_z3_assert(False, "int, long, float, string (numeral), or Z3 Integer/Real expression expected. Got %s" % self)
def is_arith_sort(s):
"""Return `True` if s is an arithmetical sort (type).
@ -9660,6 +9664,29 @@ def Length(s):
s = _coerce_seq(s)
return ArithRef(Z3_mk_seq_length(s.ctx_ref(), s.as_ast()), s.ctx)
def StrToInt(s):
"""Convert string expression to integer
>>> a = StrToInt("1")
>>> simplify(1 == a)
True
>>> b = StrToInt("2")
>>> simplify(1 == b)
False
>>> c = StrToInt(IntToStr(2))
>>> simplify(1 == c)
False
"""
s = _coerce_seq(s)
return ArithRef(Z3_mk_str_to_int(s.ctx_ref(), s.as_ast()), s.ctx)
def IntToStr(s):
"""Convert integer expression to string"""
if not is_expr(s):
s = _py2expr(s)
return SeqRef(Z3_mk_int_to_str(s.ctx_ref(), s.as_ast()), s.ctx)
def Re(s, ctx=None):
"""The regular expression that accepts sequence 's'
>>> s1 = Re("ab")

View file

@ -1152,6 +1152,10 @@ typedef enum {
Z3_OP_SEQ_TO_RE,
Z3_OP_SEQ_IN_RE,
// strings
Z3_OP_STR_TO_INT,
Z3_OP_INT_TO_STR,
// regular expressions
Z3_OP_RE_PLUS,
Z3_OP_RE_STAR,
@ -3325,6 +3329,21 @@ extern "C" {
*/
Z3_ast Z3_API Z3_mk_seq_index(Z3_context c, Z3_ast s, Z3_ast substr, Z3_ast offset);
/**
\brief Convert string to integer.
def_API('Z3_mk_str_to_int' ,AST ,(_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_str_to_int(Z3_context c, Z3_ast s);
/**
\brief Integer to string conversion.
def_API('Z3_mk_int_to_str' ,AST ,(_in(CONTEXT), _in(AST)))
*/
Z3_ast Z3_API Z3_mk_int_to_str(Z3_context c, Z3_ast s);
/**
\brief Create a regular expression that accepts the sequence \c seq.

View file

@ -2326,6 +2326,22 @@ bool ast_manager::is_pattern(expr const * n) const {
return true;
}
bool ast_manager::is_pattern(expr const * n, ptr_vector<expr> &args) {
if (!is_app_of(n, m_pattern_family_id, OP_PATTERN)) {
return false;
}
for (unsigned i = 0; i < to_app(n)->get_num_args(); ++i) {
expr *arg = to_app(n)->get_arg(i);
if (!is_app(arg)) {
return false;
}
args.push_back(arg);
}
return true;
}
quantifier * ast_manager::mk_quantifier(bool forall, unsigned num_decls, sort * const * decl_sorts, symbol const * decl_names,
expr * body, int weight , symbol const & qid, symbol const & skid,
unsigned num_patterns, expr * const * patterns,

View file

@ -1840,6 +1840,8 @@ public:
bool is_pattern(expr const * n) const;
bool is_pattern(expr const *n, ptr_vector<expr> &args);
public:
quantifier * mk_quantifier(bool forall, unsigned num_decls, sort * const * decl_sorts, symbol const * decl_names, expr * body,

View file

@ -165,7 +165,21 @@ public:
}
};
typedef simple_check_sat_result check_sat_tactic_result;
struct check_sat_tactic_result : public simple_check_sat_result {
public:
labels_vec labels;
check_sat_tactic_result(ast_manager & m) : simple_check_sat_result(m) {
}
virtual void get_labels(svector<symbol> & r) {
r.append(labels);
}
virtual void add_labels(svector<symbol> & r) {
labels.append(r);
}
};
class check_sat_using_tactict_cmd : public exec_given_tactic_cmd {
public:
@ -189,6 +203,7 @@ public:
ast_manager & m = ctx.m();
unsigned timeout = p.get_uint("timeout", ctx.params().m_timeout);
unsigned rlimit = p.get_uint("rlimit", ctx.params().m_rlimit);
labels_vec labels;
goal_ref g = alloc(goal, m, ctx.produce_proofs(), ctx.produce_models(), ctx.produce_unsat_cores());
assert_exprs_from(ctx, *g);
TRACE("check_sat_using", g->display(tout););
@ -208,7 +223,7 @@ public:
cmd_context::scoped_watch sw(ctx);
lbool r = l_undef;
try {
r = check_sat(t, g, md, pr, core, reason_unknown);
r = check_sat(t, g, md, result->labels, pr, core, reason_unknown);
ctx.display_sat_result(r);
result->set_status(r);
if (r == l_undef) {

View file

@ -204,7 +204,9 @@ public:
if (in->models_enabled()) {
model_ref md;
m_ctx->get_model(md);
mc = model2model_converter(md.get());
buffer<symbol> r;
m_ctx->get_relevant_labels(0, r);
mc = model_and_labels2model_converter(md.get(), r);
mc = concat(fmc.get(), mc.get());
}
return;
@ -251,7 +253,9 @@ public:
if (in->models_enabled()) {
model_ref md;
m_ctx->get_model(md);
mc = model2model_converter(md.get());
buffer<symbol> r;
m_ctx->get_relevant_labels(0, r);
mc = model_and_labels2model_converter(md.get(), r);
}
return;
default:

View file

@ -946,6 +946,7 @@ namespace smt {
//
// -----------------------------------
typedef int_hashtable<int_hash, default_eq<int> > row_set;
bool m_model_depends_on_computed_epsilon;
unsigned m_nl_rounds;
bool m_nl_gb_exhausted;
unsigned m_nl_strategy_idx; // for fairness

View file

@ -1405,6 +1405,7 @@ namespace smt {
template<typename Ext>
final_check_status theory_arith<Ext>::final_check_core() {
m_model_depends_on_computed_epsilon = false;
unsigned old_idx = m_final_check_idx;
final_check_status result = FC_DONE;
final_check_status ok;
@ -1669,6 +1670,7 @@ namespace smt {
m_liberal_final_check(true),
m_changed_assignment(false),
m_assume_eq_head(0),
m_model_depends_on_computed_epsilon(false),
m_nl_rounds(0),
m_nl_gb_exhausted(false),
m_nl_new_exprs(m),
@ -3220,7 +3222,9 @@ namespace smt {
m_factory = alloc(arith_factory, get_manager());
m.register_factory(m_factory);
compute_epsilon();
refine_epsilon();
if (!m_model_depends_on_computed_epsilon) {
refine_epsilon();
}
}
template<typename Ext>

View file

@ -638,6 +638,7 @@ namespace smt {
if (!val.get_infinitesimal().is_zero() && !computed_epsilon) {
compute_epsilon();
computed_epsilon = true;
m_model_depends_on_computed_epsilon = true;
}
return val.get_rational().to_rational() + m_epsilon.to_rational() * val.get_infinitesimal().to_rational();
}
@ -652,14 +653,18 @@ namespace smt {
bool theory_arith<Ext>::check_monomial_assignment(theory_var v, bool & computed_epsilon) {
SASSERT(is_pure_monomial(var2expr(v)));
expr * m = var2expr(v);
rational val(1);
rational val(1), v_val;
for (unsigned i = 0; i < to_app(m)->get_num_args(); i++) {
expr * arg = to_app(m)->get_arg(i);
theory_var curr = expr2var(arg);
SASSERT(curr != null_theory_var);
val *= get_value(curr, computed_epsilon);
v_val = get_value(curr, computed_epsilon);
TRACE("non_linear", tout << mk_pp(arg, get_manager()) << " = " << v_val << "\n";);
val *= v_val;
}
return get_value(v, computed_epsilon) == val;
v_val = get_value(v, computed_epsilon);
TRACE("non_linear", tout << "v" << v << " := " << v_val << " == " << val << "\n";);
return v_val == val;
}
@ -2356,6 +2361,7 @@ namespace smt {
*/
template<typename Ext>
final_check_status theory_arith<Ext>::process_non_linear() {
m_model_depends_on_computed_epsilon = false;
if (m_nl_monomials.empty())
return FC_DONE;

View file

@ -146,8 +146,9 @@ lbool tactic2solver::check_sat_core(unsigned num_assumptions, expr * const * ass
proof_ref pr(m);
expr_dependency_ref core(m);
std::string reason_unknown = "unknown";
labels_vec labels;
try {
switch (::check_sat(*m_tactic, g, md, pr, core, reason_unknown)) {
switch (::check_sat(*m_tactic, g, md, labels, pr, core, reason_unknown)) {
case l_true:
m_result->set_status(l_true);
break;

View file

@ -51,6 +51,9 @@ void filter_model_converter::operator()(model_ref & old_model, unsigned goal_idx
TRACE("filter_mc", tout << "after filter_model_converter\n"; model_v2_pp(tout, *old_model););
}
void filter_model_converter::operator()(svector<symbol> & labels, unsigned goal_idx) {
}
void filter_model_converter::display(std::ostream & out) {
out << "(filter-model-converter";
for (unsigned i = 0; i < m_decls.size(); i++) {

View file

@ -32,6 +32,8 @@ public:
virtual void operator()(model_ref & md, unsigned goal_idx);
virtual void operator()(svector<symbol> & labels, unsigned goal_idx);
virtual void operator()(model_ref & md) { operator()(md, 0); } // TODO: delete
virtual void cancel() {}

View file

@ -33,6 +33,12 @@ public:
this->m_c1->operator()(m, 0);
}
virtual void operator()(labels_vec & r, unsigned goal_idx) {
this->m_c2->operator()(r, goal_idx);
this->m_c1->operator()(r, 0);
}
virtual char const * get_name() const { return "concat-model-converter"; }
virtual model_converter * translate(ast_translation & translator) {
@ -76,6 +82,24 @@ public:
}
UNREACHABLE();
}
virtual void operator()(labels_vec & r, unsigned goal_idx) {
unsigned num = this->m_c2s.size();
for (unsigned i = 0; i < num; i++) {
if (goal_idx < this->m_szs[i]) {
// found the model converter that should be used
model_converter * c2 = this->m_c2s[i];
if (c2)
c2->operator()(r, goal_idx);
if (m_c1)
this->m_c1->operator()(r, i);
return;
}
// invalid goal
goal_idx -= this->m_szs[i];
}
UNREACHABLE();
}
virtual char const * get_name() const { return "concat-star-model-converter"; }
@ -102,8 +126,12 @@ model_converter * concat(model_converter * mc1, unsigned num, model_converter *
class model2mc : public model_converter {
model_ref m_model;
buffer<symbol> m_labels;
public:
model2mc(model * m):m_model(m) {}
model2mc(model * m, buffer<symbol> const & r):m_model(m), m_labels(r) {}
virtual ~model2mc() {}
virtual void operator()(model_ref & m) {
@ -114,7 +142,11 @@ public:
m = m_model;
}
virtual void cancel() {
virtual void operator()(labels_vec & r, unsigned goal_idx) {
r.append(m_labels.size(), m_labels.c_ptr());
}
virtual void cancel() {
}
virtual void display(std::ostream & out) {
@ -135,6 +167,12 @@ model_converter * model2model_converter(model * m) {
return alloc(model2mc, m);
}
model_converter * model_and_labels2model_converter(model * m, buffer<symbol> & r) {
if (m == 0)
return 0;
return alloc(model2mc, m, r);
}
void model_converter2model(ast_manager & mng, model_converter * mc, model_ref & m) {
if (mc) {
m = alloc(model, mng);

View file

@ -23,6 +23,8 @@ Notes:
#include"converter.h"
#include"ref.h"
class labels_vec : public svector<symbol> {};
class model_converter : public converter {
public:
virtual void operator()(model_ref & m) {} // TODO: delete
@ -32,6 +34,8 @@ public:
SASSERT(goal_idx == 0);
operator()(m);
}
virtual void operator()(labels_vec & r, unsigned goal_idx) {}
virtual model_converter * translate(ast_translation & translator) = 0;
};
@ -49,6 +53,8 @@ model_converter * concat(model_converter * mc1, unsigned num, model_converter *
model_converter * model2model_converter(model * m);
model_converter * model_and_labels2model_converter(model * m, buffer<symbol> &r);
void model_converter2model(ast_manager & mng, model_converter * mc, model_ref & m);
void apply(model_converter_ref & mc, model_ref & m, unsigned gidx);

245
src/tactic/sine_filter.cpp Normal file
View file

@ -0,0 +1,245 @@
/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
sine_filter.cpp
Abstract:
Tactic that performs Sine Qua Non premise selection
Author:
Doug Woos
Revision History:
--*/
#include "sine_filter.h"
#include "tactical.h"
#include "filter_model_converter.h"
#include "datatype_decl_plugin.h"
#include "rewriter_def.h"
#include "filter_model_converter.h"
#include "extension_model_converter.h"
#include "var_subst.h"
#include "ast_util.h"
#include "obj_pair_hashtable.h"
#include "ast_pp.h"
class sine_tactic : public tactic {
ast_manager& m;
params_ref m_params;
public:
sine_tactic(ast_manager& m, params_ref const& p):
m(m), m_params(p) {}
virtual tactic * translate(ast_manager & m) {
return alloc(sine_tactic, m, m_params);
}
virtual void updt_params(params_ref const & p) {
}
virtual void collect_param_descrs(param_descrs & r) {
}
virtual void operator()(goal_ref const & g,
goal_ref_buffer & result,
model_converter_ref & mc,
proof_converter_ref & pc,
expr_dependency_ref & core) {
mc = 0; pc = 0; core = 0;
TRACE("sine", g->display(tout););
TRACE("sine", tout << g->size(););
ptr_vector<expr> new_forms;
filter_expressions(g, new_forms);
TRACE("sine", tout << new_forms.size(););
g->reset();
for (unsigned i = 0; i < new_forms.size(); i++) {
g->assert_expr(new_forms.get(i), 0, 0);
}
g->inc_depth();
g->updt_prec(goal::OVER);
result.push_back(g.get());
TRACE("sine", result[0]->display(tout););
SASSERT(g->is_well_sorted());
filter_model_converter * fmc = alloc(filter_model_converter, m);
mc = fmc;
}
virtual void cleanup() {
}
private:
typedef std::pair<expr*,expr*> t_work_item;
t_work_item work_item(expr *e, expr *root) {
return std::pair<expr*, expr*>(e, root);
}
void find_constants(expr *e, obj_hashtable<func_decl> &consts) {
ptr_vector<expr> stack;
stack.push_back(e);
expr *curr;
while (!stack.empty()) {
curr = stack.back();
stack.pop_back();
if (is_app(curr)) {
app *a = to_app(curr);
if (is_uninterp(a)) {
func_decl *f = a->get_decl();
consts.insert_if_not_there(f);
}
}
}
}
bool quantifier_matches(quantifier *q,
obj_hashtable<func_decl> const & consts,
ptr_vector<func_decl> & next_consts) {
TRACE("sine", tout << "size of consts is "; tout << consts.size(); tout << "\n";);
for (obj_hashtable<func_decl>::iterator constit = consts.begin(), constend = consts.end(); constit != constend; constit++) {
TRACE("sine", tout << *constit; tout << "\n";);
}
bool matched = false;
for (unsigned i = 0; i < q->get_num_patterns(); i++) {
bool p_matched = true;
ptr_vector<expr> stack;
expr *curr;
// patterns are wrapped with "pattern"
if (!m.is_pattern(q->get_pattern(i), stack)) {
continue;
}
while (!stack.empty()) {
curr = stack.back();
stack.pop_back();
if (is_app(curr)) {
app *a = to_app(curr);
func_decl *f = a->get_decl();
if (!consts.contains(f)) {
TRACE("sine", tout << mk_pp(f, m) << "\n";);
p_matched = false;
next_consts.push_back(f);
break;
}
for (unsigned j = 0; j < a->get_num_args(); j++) {
stack.push_back(a->get_arg(j));
}
}
}
if (p_matched) {
matched = true;
break;
}
}
return matched;
}
void filter_expressions(goal_ref const & g, ptr_vector<expr> & new_exprs) {
obj_map<func_decl, obj_hashtable<expr> > const2exp;
obj_map<expr, obj_hashtable<func_decl> > exp2const;
obj_map<func_decl, obj_pair_hashtable<expr, expr> > const2quantifier;
obj_hashtable<func_decl> consts;
vector<t_work_item> stack;
for (unsigned i = 0; i < g->size(); i++) {
stack.push_back(work_item(g->form(i), g->form(i)));
}
t_work_item curr;
while (!stack.empty()) {
curr = stack.back();
stack.pop_back();
if (is_app(curr.first)) {
app *a = to_app(curr.first);
if (is_uninterp(a)) {
func_decl *f = a->get_decl();
if (!consts.contains(f)) {
consts.insert(f);
if (const2quantifier.contains(f)) {
for (obj_pair_hashtable<expr, expr>::iterator it = const2quantifier[f].begin(), end = const2quantifier[f].end(); it != end; it++) {
stack.push_back(*it);
}
const2quantifier.remove(f);
}
}
if (!const2exp.contains(f)) {
const2exp.insert(f, obj_hashtable<expr>());
}
if (!const2exp[f].contains(curr.second)) {
const2exp[f].insert(curr.second);
}
if (!exp2const.contains(curr.second)) {
exp2const.insert(curr.second, obj_hashtable<func_decl>());
}
if (!exp2const[curr.second].contains(f)) {
exp2const[curr.second].insert(f);
}
}
for (unsigned i = 0; i < a->get_num_args(); i++) {
stack.push_back(work_item(a->get_arg(i), curr.second));
}
}
else if (is_quantifier(curr.first)) {
quantifier *q = to_quantifier(curr.first);
if (q->is_forall()) {
if (q->has_patterns()) {
ptr_vector<func_decl> next_consts;
if (quantifier_matches(q, consts, next_consts)) {
stack.push_back(work_item(q->get_expr(), curr.second));
}
else {
for (unsigned i = 0; i < next_consts.size(); i++) {
func_decl *c = next_consts.get(i);
if (!const2quantifier.contains(c)) {
const2quantifier.insert(c, obj_pair_hashtable<expr, expr>());
}
if (!const2quantifier[c].contains(curr)) {
const2quantifier[c].insert(curr);
}
}
}
}
else {
stack.push_back(work_item(q->get_expr(), curr.second));
}
}
else if (q->is_exists()) {
stack.push_back(work_item(q->get_expr(), curr.second));
}
}
}
// ok, now we just need to find the connected component of the last term
obj_hashtable<expr> visited;
ptr_vector<expr> to_visit;
to_visit.push_back(g->form(g->size() - 1));
expr *visiting;
while (!to_visit.empty()) {
visiting = to_visit.back();
to_visit.pop_back();
visited.insert(visiting);
for (obj_hashtable<func_decl>::iterator constit = exp2const[visiting].begin(), constend = exp2const[visiting].end(); constit != constend; constit++) {
for (obj_hashtable<expr>::iterator exprit = const2exp[*constit].begin(), exprend = const2exp[*constit].end(); exprit != exprend; exprit++) {
if (!visited.contains(*exprit)) {
to_visit.push_back(*exprit);
}
}
}
}
for (unsigned i = 0; i < g->size(); i++) {
if (visited.contains(g->form(i))) {
new_exprs.push_back(g->form(i));
}
}
}
};
tactic * mk_sine_tactic(ast_manager & m, params_ref const & p) {
return alloc(sine_tactic, m, p);
}

32
src/tactic/sine_filter.h Normal file
View file

@ -0,0 +1,32 @@
/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
sine_filter.h
Abstract:
Tactic that performs Sine Qua Non premise selection
Author:
Doug Woos
Revision History:
--*/
#ifndef SINE_TACTIC_H_
#define SINE_TACTIC_H_
#include"params.h"
class ast_manager;
class tactic;
tactic * mk_sine_tactic(ast_manager & m, params_ref const & p = params_ref());
/*
ADD_TACTIC("sine-filter", "eliminate premises using Sine Qua Non", "mk_sine_tactic(m, p)")
*/
#endif

View file

@ -175,7 +175,7 @@ void exec(tactic & t, goal_ref const & in, goal_ref_buffer & result, model_conve
}
}
lbool check_sat(tactic & t, goal_ref & g, model_ref & md, proof_ref & pr, expr_dependency_ref & core, std::string & reason_unknown) {
lbool check_sat(tactic & t, goal_ref & g, model_ref & md, labels_vec & labels, proof_ref & pr, expr_dependency_ref & core, std::string & reason_unknown) {
bool models_enabled = g->models_enabled();
bool proofs_enabled = g->proofs_enabled();
bool cores_enabled = g->unsat_core_enabled();
@ -200,6 +200,8 @@ lbool check_sat(tactic & t, goal_ref & g, model_ref & md, proof_ref & pr, expr_d
if (is_decided_sat(r)) {
if (models_enabled) {
if (mc)
(*mc)(labels, 0);
model_converter2model(m, mc.get(), md);
if (!md) {
// create empty model.
@ -216,7 +218,11 @@ lbool check_sat(tactic & t, goal_ref & g, model_ref & md, proof_ref & pr, expr_d
return l_false;
}
else {
if (models_enabled) model_converter2model(m, mc.get(), md);
if (models_enabled) {
model_converter2model(m, mc.get(), md);
if (mc)
(*mc)(labels, 0);
}
reason_unknown = "incomplete";
return l_undef;
}

View file

@ -153,7 +153,7 @@ public:
#define MK_SIMPLE_TACTIC_FACTORY(NAME, ST) MK_TACTIC_FACTORY(NAME, return ST;)
void exec(tactic & t, goal_ref const & in, goal_ref_buffer & result, model_converter_ref & mc, proof_converter_ref & pc, expr_dependency_ref & core);
lbool check_sat(tactic & t, goal_ref & g, model_ref & md, proof_ref & pr, expr_dependency_ref & core, std::string & reason_unknown);
lbool check_sat(tactic & t, goal_ref & g, model_ref & md, labels_vec & labels, proof_ref & pr, expr_dependency_ref & core, std::string & reason_unknown);
// Throws an exception if goal \c in requires proof generation.
void fail_if_proof_generation(char const * tactic_name, goal_ref const & in);