mirror of
https://github.com/Z3Prover/z3
synced 2025-11-03 13:07:53 +00:00
Merge branch 'finite-sets' into copilot/add-implementation-finite-set-axioms
This commit is contained in:
commit
20e59cd65c
5 changed files with 278 additions and 3 deletions
|
|
@ -1 +1,85 @@
|
|||
/*++
|
||||
Copyright (c) 2025 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
finite_set_rewriter.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Rewriting Simplification for finite sets
|
||||
|
||||
Author:
|
||||
|
||||
GitHub Copilot Agent 2025
|
||||
|
||||
--*/
|
||||
|
||||
#include "ast/rewriter/finite_set_rewriter.h"
|
||||
|
||||
br_status finite_set_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result) {
|
||||
SASSERT(f->get_family_id() == get_fid());
|
||||
|
||||
switch (f->get_decl_kind()) {
|
||||
case OP_FINITE_SET_UNION:
|
||||
return mk_union(num_args, args, result);
|
||||
case OP_FINITE_SET_INTERSECT:
|
||||
return mk_intersect(num_args, args, result);
|
||||
case OP_FINITE_SET_DIFFERENCE:
|
||||
SASSERT(num_args == 2);
|
||||
return mk_difference(args[0], args[1], result);
|
||||
case OP_FINITE_SET_SUBSET:
|
||||
SASSERT(num_args == 2);
|
||||
return mk_subset(args[0], args[1], result);
|
||||
default:
|
||||
return BR_FAILED;
|
||||
}
|
||||
}
|
||||
|
||||
br_status finite_set_rewriter::mk_union(unsigned num_args, expr * const * args, expr_ref & result) {
|
||||
// Handle binary case - check if both arguments are the same
|
||||
// set.union(x, x) -> x
|
||||
if (num_args == 2 && args[0] == args[1]) {
|
||||
result = args[0];
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
// Additional simplifications can be added here
|
||||
// For example: set.union(x, empty) -> x
|
||||
// But for now, we keep it minimal as per requirements
|
||||
|
||||
return BR_FAILED;
|
||||
}
|
||||
|
||||
br_status finite_set_rewriter::mk_intersect(unsigned num_args, expr * const * args, expr_ref & result) {
|
||||
// set.intersect(x, x) -> x
|
||||
if (num_args == 2 && args[0] == args[1]) {
|
||||
result = args[0];
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
return BR_FAILED;
|
||||
}
|
||||
|
||||
br_status finite_set_rewriter::mk_difference(expr * arg1, expr * arg2, expr_ref & result) {
|
||||
// set.difference(x, x) -> set.empty
|
||||
if (arg1 == arg2) {
|
||||
// Get the set sort directly from the argument
|
||||
sort* set_sort = arg1->get_sort();
|
||||
SASSERT(m_util.is_finite_set(set_sort));
|
||||
|
||||
// Call mk_empty with set_sort directly as suggested
|
||||
result = m_util.mk_empty(set_sort);
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
return BR_FAILED;
|
||||
}
|
||||
|
||||
br_status finite_set_rewriter::mk_subset(expr * arg1, expr * arg2, expr_ref & result) {
|
||||
// set.subset(x, y) -> set.intersect(x, y) = x
|
||||
expr_ref intersect(m());
|
||||
intersect = m_util.mk_intersect(arg1, arg2);
|
||||
result = m().mk_eq(intersect, arg1);
|
||||
return BR_REWRITE3;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -9,12 +9,44 @@ Abstract:
|
|||
Rewriting Simplification for finite sets
|
||||
|
||||
|
||||
Sampe rewrite rules:
|
||||
Sample rewrite rules:
|
||||
set.union s set.empty -> s
|
||||
set.intersect s set.empty -> set.empty
|
||||
set.in x (set.singleton y) -> x = y
|
||||
set.subset(x,y) -> set.intersect(x,y) = x
|
||||
set.union(x, x) -> x
|
||||
set.intersect(x, x) -> x
|
||||
set.difference(x, x) -> set.empty
|
||||
|
||||
Generally this module implements basic algebraic simplificaiton rules for finite sets
|
||||
where the signature is defined in finite_sets_decl_plugin.h.
|
||||
Generally this module implements basic algebraic simplification rules for finite sets
|
||||
where the signature is defined in finite_set_decl_plugin.h.
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
||||
#include "ast/finite_set_decl_plugin.h"
|
||||
#include "ast/rewriter/rewriter_types.h"
|
||||
#include "util/params.h"
|
||||
|
||||
/**
|
||||
\brief Cheap rewrite rules for finite sets
|
||||
*/
|
||||
class finite_set_rewriter {
|
||||
finite_set_util m_util;
|
||||
// Rewrite rules for set operations
|
||||
br_status mk_union(unsigned num_args, expr * const * args, expr_ref & result);
|
||||
br_status mk_intersect(unsigned num_args, expr * const * args, expr_ref & result);
|
||||
br_status mk_difference(expr * arg1, expr * arg2, expr_ref & result);
|
||||
br_status mk_subset(expr * arg1, expr * arg2, expr_ref & result);
|
||||
public:
|
||||
finite_set_rewriter(ast_manager & m, params_ref const & p = params_ref()):
|
||||
m_util(m) {
|
||||
}
|
||||
|
||||
ast_manager & m() const { return m_util.get_manager(); }
|
||||
family_id get_fid() const { return m_util.get_family_id(); }
|
||||
finite_set_util& util() { return m_util; }
|
||||
|
||||
br_status mk_app_core(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result);
|
||||
|
||||
};
|
||||
|
|
|
|||
|
|
@ -55,6 +55,7 @@ add_executable(test-z3
|
|||
ext_numeral.cpp
|
||||
f2n.cpp
|
||||
finite_set.cpp
|
||||
finite_set_rewriter.cpp
|
||||
factor_rewriter.cpp
|
||||
finder.cpp
|
||||
fixed_bit_vector.cpp
|
||||
|
|
|
|||
157
src/test/finite_set_rewriter.cpp
Normal file
157
src/test/finite_set_rewriter.cpp
Normal file
|
|
@ -0,0 +1,157 @@
|
|||
/*++
|
||||
Copyright (c) 2025 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
finite_set_rewriter.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Test finite set rewriter
|
||||
|
||||
Author:
|
||||
|
||||
GitHub Copilot Agent 2025
|
||||
|
||||
--*/
|
||||
|
||||
#include "ast/ast.h"
|
||||
#include "ast/finite_set_decl_plugin.h"
|
||||
#include "ast/reg_decl_plugins.h"
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
#include "ast/rewriter/finite_set_rewriter.h"
|
||||
|
||||
static void test_union_idempotent() {
|
||||
ast_manager m;
|
||||
reg_decl_plugins(m);
|
||||
|
||||
finite_set_util fsets(m);
|
||||
finite_set_rewriter rw(m);
|
||||
arith_util arith(m);
|
||||
|
||||
// Create a set
|
||||
sort_ref int_sort(arith.mk_int(), m);
|
||||
expr_ref zero(arith.mk_int(0), m);
|
||||
expr_ref ten(arith.mk_int(10), m);
|
||||
app_ref s1(fsets.mk_range(zero, ten), m);
|
||||
|
||||
// Test set.union(s1, s1) -> s1
|
||||
expr* args[2] = { s1, s1 };
|
||||
expr_ref result(m);
|
||||
br_status st = rw.mk_union(2, args, result);
|
||||
|
||||
ENSURE(st == BR_DONE);
|
||||
ENSURE(result == s1);
|
||||
}
|
||||
|
||||
static void test_intersect_idempotent() {
|
||||
ast_manager m;
|
||||
reg_decl_plugins(m);
|
||||
|
||||
finite_set_util fsets(m);
|
||||
finite_set_rewriter rw(m);
|
||||
arith_util arith(m);
|
||||
|
||||
// Create a set
|
||||
sort_ref int_sort(arith.mk_int(), m);
|
||||
expr_ref zero(arith.mk_int(0), m);
|
||||
expr_ref ten(arith.mk_int(10), m);
|
||||
app_ref s1(fsets.mk_range(zero, ten), m);
|
||||
|
||||
// Test set.intersect(s1, s1) -> s1
|
||||
expr* args[2] = { s1, s1 };
|
||||
expr_ref result(m);
|
||||
br_status st = rw.mk_intersect(2, args, result);
|
||||
|
||||
ENSURE(st == BR_DONE);
|
||||
ENSURE(result == s1);
|
||||
}
|
||||
|
||||
static void test_difference_same() {
|
||||
ast_manager m;
|
||||
reg_decl_plugins(m);
|
||||
|
||||
finite_set_util fsets(m);
|
||||
finite_set_rewriter rw(m);
|
||||
arith_util arith(m);
|
||||
|
||||
// Create a set
|
||||
sort_ref int_sort(arith.mk_int(), m);
|
||||
expr_ref zero(arith.mk_int(0), m);
|
||||
expr_ref ten(arith.mk_int(10), m);
|
||||
app_ref s1(fsets.mk_range(zero, ten), m);
|
||||
|
||||
// Test set.difference(s1, s1) -> empty
|
||||
expr_ref result(m);
|
||||
br_status st = rw.mk_difference(s1, s1, result);
|
||||
|
||||
ENSURE(st == BR_DONE);
|
||||
ENSURE(fsets.is_empty(result));
|
||||
}
|
||||
|
||||
static void test_subset_rewrite() {
|
||||
ast_manager m;
|
||||
reg_decl_plugins(m);
|
||||
|
||||
finite_set_util fsets(m);
|
||||
finite_set_rewriter rw(m);
|
||||
arith_util arith(m);
|
||||
|
||||
// Create two sets
|
||||
sort_ref int_sort(arith.mk_int(), m);
|
||||
expr_ref zero(arith.mk_int(0), m);
|
||||
expr_ref ten(arith.mk_int(10), m);
|
||||
expr_ref twenty(arith.mk_int(20), m);
|
||||
app_ref s1(fsets.mk_range(zero, ten), m);
|
||||
app_ref s2(fsets.mk_range(zero, twenty), m);
|
||||
|
||||
// Test set.subset(s1, s2) -> set.intersect(s1, s2) = s1
|
||||
expr_ref result(m);
|
||||
br_status st = rw.mk_subset(s1, s2, result);
|
||||
|
||||
ENSURE(st == BR_REWRITE3);
|
||||
ENSURE(m.is_eq(result));
|
||||
|
||||
// Check that result is an equality
|
||||
app* eq = to_app(result);
|
||||
ENSURE(eq->get_num_args() == 2);
|
||||
|
||||
// The left side should be set.intersect(s1, s2)
|
||||
expr* lhs = eq->get_arg(0);
|
||||
ENSURE(fsets.is_intersect(lhs));
|
||||
|
||||
// The right side should be s1
|
||||
expr* rhs = eq->get_arg(1);
|
||||
ENSURE(rhs == s1);
|
||||
}
|
||||
|
||||
static void test_mk_app_core() {
|
||||
ast_manager m;
|
||||
reg_decl_plugins(m);
|
||||
|
||||
finite_set_util fsets(m);
|
||||
finite_set_rewriter rw(m);
|
||||
arith_util arith(m);
|
||||
|
||||
// Create sets
|
||||
sort_ref int_sort(arith.mk_int(), m);
|
||||
expr_ref zero(arith.mk_int(0), m);
|
||||
expr_ref ten(arith.mk_int(10), m);
|
||||
app_ref s1(fsets.mk_range(zero, ten), m);
|
||||
|
||||
// Test union through mk_app_core
|
||||
app_ref union_app(fsets.mk_union(s1, s1), m);
|
||||
expr_ref result(m);
|
||||
br_status st = rw.mk_app_core(union_app->get_decl(), union_app->get_num_args(), union_app->get_args(), result);
|
||||
|
||||
ENSURE(st == BR_DONE);
|
||||
ENSURE(result == s1);
|
||||
}
|
||||
|
||||
void tst_finite_set_rewriter() {
|
||||
test_union_idempotent();
|
||||
test_intersect_idempotent();
|
||||
test_difference_same();
|
||||
test_subset_rewrite();
|
||||
test_mk_app_core();
|
||||
}
|
||||
|
|
@ -283,4 +283,5 @@ int main(int argc, char ** argv) {
|
|||
TST(sls_seq_plugin);
|
||||
TST(ho_matcher);
|
||||
TST(finite_set);
|
||||
TST(finite_set_rewriter);
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue