3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-14 06:45:25 +00:00

moving remaining qsat functionality over

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2016-03-19 15:35:26 -07:00
parent 296addf246
commit 20bbdfe31a
23 changed files with 3876 additions and 225 deletions

View file

@ -22,9 +22,11 @@ Revision History:
#include"nlsat_solver.h"
#include"nlsat_scoped_literal_vector.h"
#include"polynomial_cache.h"
#include"algebraic_numbers.h"
namespace nlsat {
class evaluator;
class explain {
public:
@ -32,8 +34,8 @@ namespace nlsat {
private:
imp * m_imp;
public:
explain(solver & s, assignment const & x2v, polynomial::cache & u, atom_vector const & atoms, atom_vector const & x2eq,
evaluator & ev);
explain(solver & s, assignment const & x2v, polynomial::cache & u,
atom_vector const& atoms, atom_vector const& x2eq, evaluator & ev);
~explain();
void reset();
@ -41,6 +43,7 @@ namespace nlsat {
void set_full_dimensional(bool f);
void set_minimize_cores(bool f);
void set_factor(bool f);
void set_signed_project(bool f);
/**
\brief Given a set of literals ls[0], ... ls[n-1] s.t.
@ -60,6 +63,48 @@ namespace nlsat {
- s_1, ..., s_m are false in the current interpretation
*/
void operator()(unsigned n, literal const * ls, scoped_literal_vector & result);
/**
\brief projection for a given variable.
Given: M |= l1[x] /\ ... /\ ln[x]
Find: M |= s1, ..., sm
Such that: |= ~s1 \/ ... \/ ~sm \/ E x. l1[x] /\ ... /\ ln[x]
Contrast this with with the core-based projection above:
Given: M |= A x . l1[x] \/ ... \/ ln[x]
Find: M |= ~s1, ..., ~sm.
Such that: |= s1 \/ ... \/ sm \/ A x . l1[x] \/ ... \/ ln[x]
Claim: the two compute the same solutions if the projection operators are independent of the value of x.
Claim: A complete, convergent projection operator can be obtained from M in a way that is independent of x.
*/
void project(var x, unsigned n, literal const * ls, scoped_literal_vector & result);
/**
Maximize the value of x (locally) under the current assignment to other variables and
while maintaining the assignment to the literals ls.
Set unbounded to 'true' if the value of x is unbounded.
Precondition: the set of literals are true in the current model.
By local optimization we understand that x is increased to the largest value within
the signs delineated by the roots of the polynomials in ls.
*/
void maximize(var x, unsigned n, literal const * ls, scoped_anum& val, bool& unbounded);
/**
Unit test routine.
*/
void test_root_literal(atom::kind k, var y, unsigned i, poly* p, scoped_literal_vector & result);
};
};