mirror of
https://github.com/Z3Prover/z3
synced 2025-04-25 18:15:32 +00:00
Polysat: expand conflict explanation rules (#5366)
* update example to match slides * Add normalized view of inequalities * workaround * Add a conflict explanation rule * unit clauses should be asserted at the base level * Add src constraint to interval * support non-strict case in first rule * print conflict constraints only once * update second rule * update third rule as well
This commit is contained in:
parent
dec37aee34
commit
20a5baeb70
10 changed files with 249 additions and 159 deletions
|
@ -27,12 +27,18 @@ namespace polysat {
|
|||
for (auto* c : cjust)
|
||||
m_conflict.push_back(c);
|
||||
|
||||
for (auto* c : m_conflict.units())
|
||||
LOG("Constraint: " << show_deref(c));
|
||||
for (auto* c : m_conflict.clauses())
|
||||
LOG("Clause: " << show_deref(c));
|
||||
|
||||
// TODO: we should share work done for examining constraints between different resolution methods
|
||||
clause_ref lemma;
|
||||
if (!lemma) lemma = by_polynomial_superposition();
|
||||
if (!lemma) lemma = by_ugt_x();
|
||||
if (!lemma) lemma = by_ugt_y();
|
||||
if (!lemma) lemma = by_ugt_z();
|
||||
if (!lemma) lemma = y_ule_ax_and_x_ule_z();
|
||||
|
||||
if (lemma) {
|
||||
LOG("New lemma: " << *lemma);
|
||||
|
@ -73,102 +79,83 @@ namespace polysat {
|
|||
return nullptr;
|
||||
}
|
||||
|
||||
/// [x] zx > yx ==> ...
|
||||
/// [x] zx > yx ==> Ω*(x,y) \/ z > y
|
||||
/// [x] yx <= zx ==> Ω*(x,y) \/ y <= z
|
||||
clause_ref conflict_explainer::by_ugt_x() {
|
||||
LOG_H3("Try zx > yx where x := v" << m_var);
|
||||
for (auto* c : m_conflict.units())
|
||||
LOG("Constraint: " << show_deref(c));
|
||||
for (auto* c : m_conflict.clauses())
|
||||
LOG("Clause: " << show_deref(c));
|
||||
|
||||
// Find constraint of desired shape
|
||||
for (auto* c : m_conflict.units()) {
|
||||
if (!c->is_ule())
|
||||
pdd const x = m_solver.var(m_var);
|
||||
unsigned const sz = m_solver.size(m_var);
|
||||
pdd const zero = m_solver.sz2pdd(sz).zero();
|
||||
|
||||
// Find constraint of shape: yx <= zx
|
||||
for (auto* c1 : m_conflict.units()) {
|
||||
auto c = c1->as_inequality();
|
||||
if (c.lhs.degree(m_var) != 1)
|
||||
continue;
|
||||
pdd const& lhs = c->to_ule().lhs();
|
||||
pdd const& rhs = c->to_ule().rhs();
|
||||
if (lhs.degree(m_var) != 1)
|
||||
if (c.rhs.degree(m_var) != 1)
|
||||
continue;
|
||||
if (rhs.degree(m_var) != 1)
|
||||
continue;
|
||||
pdd y = lhs;
|
||||
pdd rest = lhs;
|
||||
rhs.factor(m_var, 1, y, rest);
|
||||
pdd y = zero;
|
||||
pdd rest = zero;
|
||||
c.lhs.factor(m_var, 1, y, rest);
|
||||
if (!rest.is_zero())
|
||||
continue;
|
||||
pdd z = lhs;
|
||||
lhs.factor(m_var, 1, z, rest);
|
||||
pdd z = zero;
|
||||
c.rhs.factor(m_var, 1, z, rest);
|
||||
if (!rest.is_zero())
|
||||
continue;
|
||||
|
||||
if (c->is_positive()) {
|
||||
// zx <= yx
|
||||
NOT_IMPLEMENTED_YET();
|
||||
}
|
||||
else {
|
||||
SASSERT(c->is_negative());
|
||||
// zx > yx
|
||||
unsigned const lvl = c.src->level();
|
||||
|
||||
unsigned const lvl = c->level();
|
||||
|
||||
pdd x = m_solver.var(m_var);
|
||||
unsigned const p = m_solver.size(m_var);
|
||||
|
||||
clause_builder clause(m_solver);
|
||||
// Omega^*(x, y)
|
||||
push_omega_mul(clause, lvl, p, x, y);
|
||||
// z > y
|
||||
constraint_ref z_gt_y = m_solver.m_constraints.ult(lvl, pos_t, y, z, null_dep());
|
||||
LOG("z>y: " << show_deref(z_gt_y));
|
||||
clause.push_new_constraint(std::move(z_gt_y));
|
||||
|
||||
p_dependency_ref d(c->dep(), m_solver.m_dm);
|
||||
return clause.build(lvl, d);
|
||||
}
|
||||
clause_builder clause(m_solver);
|
||||
// Omega^*(x, y)
|
||||
if (!push_omega_mul(clause, lvl, sz, x, y))
|
||||
continue;
|
||||
constraint_ref y_le_z;
|
||||
if (c.is_strict)
|
||||
y_le_z = m_solver.m_constraints.ult(lvl, pos_t, y, z, null_dep());
|
||||
else
|
||||
y_le_z = m_solver.m_constraints.ule(lvl, pos_t, y, z, null_dep());
|
||||
LOG("z>y: " << show_deref(y_le_z));
|
||||
clause.push_new_constraint(std::move(y_le_z));
|
||||
|
||||
p_dependency_ref dep(c.src->dep(), m_solver.m_dm);
|
||||
return clause.build(lvl, dep);
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
/// [y] z' <= y /\ zx > yx ==> ...
|
||||
/// [y] z' <= y /\ zx > yx ==> Ω*(x,y) \/ zx > z'x
|
||||
/// [y] z' <= y /\ yx <= zx ==> Ω*(x,y) \/ z'x <= zx
|
||||
clause_ref conflict_explainer::by_ugt_y() {
|
||||
LOG_H3("Try z' <= y && zx > yx where y := v" << m_var);
|
||||
for (auto* c : m_conflict.units())
|
||||
LOG("Constraint: " << show_deref(c));
|
||||
for (auto* c : m_conflict.clauses())
|
||||
LOG("Clause: " << show_deref(c));
|
||||
|
||||
pdd const y = m_solver.var(m_var);
|
||||
unsigned const sz = m_solver.size(m_var);
|
||||
pdd const zero = m_solver.sz2pdd(sz).zero();
|
||||
|
||||
// Collect constraints of shape "_ <= y"
|
||||
ptr_vector<constraint> ds;
|
||||
for (auto* d : m_conflict.units()) {
|
||||
if (!d->is_ule())
|
||||
continue;
|
||||
if (!d->is_positive())
|
||||
continue;
|
||||
pdd const& rhs = d->to_ule().rhs();
|
||||
vector<inequality> ds;
|
||||
for (auto* d1 : m_conflict.units()) {
|
||||
auto d = d1->as_inequality();
|
||||
// TODO: a*y where 'a' divides 'x' should also be easy to handle (assuming for now they're numbers)
|
||||
// TODO: also z' < y should follow the same pattern.
|
||||
if (rhs != y)
|
||||
if (d.rhs != y)
|
||||
continue;
|
||||
LOG("z' <= y candidate: " << show_deref(d));
|
||||
ds.push_back(d);
|
||||
LOG("z' <= y candidate: " << show_deref(d.src));
|
||||
ds.push_back(std::move(d));
|
||||
}
|
||||
if (ds.empty())
|
||||
return nullptr;
|
||||
|
||||
// Find constraint of shape: zx > yx
|
||||
for (auto* c : m_conflict.units()) {
|
||||
if (!c->is_ule())
|
||||
// Find constraint of shape: yx <= zx
|
||||
for (auto* c1 : m_conflict.units()) {
|
||||
auto c = c1->as_inequality();
|
||||
if (c.lhs.degree(m_var) != 1)
|
||||
continue;
|
||||
pdd const& lhs = c->to_ule().lhs();
|
||||
pdd const& rhs = c->to_ule().rhs();
|
||||
if (rhs.degree(m_var) != 1)
|
||||
continue;
|
||||
pdd x = lhs;
|
||||
pdd rest = lhs;
|
||||
rhs.factor(m_var, 1, x, rest);
|
||||
pdd x = zero;
|
||||
pdd rest = zero;
|
||||
c.lhs.factor(m_var, 1, x, rest);
|
||||
if (!rest.is_zero())
|
||||
continue;
|
||||
// TODO: in principle, 'x' could be any polynomial. However, we need to divide the lhs by x, and we don't have general polynomial division yet.
|
||||
|
@ -178,85 +165,72 @@ namespace polysat {
|
|||
continue;
|
||||
unsigned x_var = x.var();
|
||||
rational x_coeff = x.hi().val();
|
||||
pdd xz = lhs;
|
||||
if (!lhs.try_div(x_coeff, xz))
|
||||
pdd xz = zero;
|
||||
if (!c.rhs.try_div(x_coeff, xz))
|
||||
continue;
|
||||
pdd z = lhs;
|
||||
pdd z = zero;
|
||||
xz.factor(x_var, 1, z, rest);
|
||||
if (!rest.is_zero())
|
||||
continue;
|
||||
|
||||
unsigned const lvl = c->level();
|
||||
if (c->is_positive()) {
|
||||
// zx <= yx
|
||||
NOT_IMPLEMENTED_YET();
|
||||
}
|
||||
else {
|
||||
SASSERT(c->is_negative());
|
||||
// zx > yx
|
||||
LOG("zx > yx: " << show_deref(c.src));
|
||||
|
||||
LOG("zx > yx: " << show_deref(c));
|
||||
|
||||
// TODO: for now, we just choose the first of the other constraints
|
||||
constraint* d = ds[0];
|
||||
SASSERT(d->is_ule() && d->is_positive());
|
||||
pdd const& z_prime = d->to_ule().lhs();
|
||||
|
||||
unsigned const p = m_solver.size(m_var);
|
||||
// TODO: for now, we just try all ds
|
||||
for (auto const& d : ds) {
|
||||
unsigned const lvl = std::max(c.src->level(), d.src->level());
|
||||
pdd const& z_prime = d.lhs;
|
||||
|
||||
clause_builder clause(m_solver);
|
||||
// Omega^*(x, y)
|
||||
push_omega_mul(clause, lvl, p, x, y);
|
||||
// zx > z'x
|
||||
constraint_ref zx_gt_zpx = m_solver.m_constraints.ult(lvl, pos_t, z*x, z_prime*x, null_dep());
|
||||
LOG("zx>z'x: " << show_deref(zx_gt_zpx));
|
||||
clause.push_new_constraint(std::move(zx_gt_zpx));
|
||||
if (!push_omega_mul(clause, lvl, sz, x, y))
|
||||
continue;
|
||||
// z'x <= zx
|
||||
constraint_ref zpx_le_zx;
|
||||
if (c.is_strict || d.is_strict)
|
||||
zpx_le_zx = m_solver.m_constraints.ult(lvl, pos_t, z_prime*x, z*x, null_dep());
|
||||
else
|
||||
zpx_le_zx = m_solver.m_constraints.ule(lvl, pos_t, z_prime*x, z*x, null_dep());
|
||||
LOG("zx>z'x: " << show_deref(zpx_le_zx));
|
||||
clause.push_new_constraint(std::move(zpx_le_zx));
|
||||
|
||||
return clause.build(lvl, {c->dep(), m_solver.m_dm});
|
||||
p_dependency_ref dep(m_solver.m_dm.mk_join(c.src->dep(), d.src->dep()), m_solver.m_dm);
|
||||
return clause.build(lvl, dep);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
/// [z] z <= y' /\ zx > yx ==> ...
|
||||
/// [z] z <= y' /\ zx > yx ==> Ω*(x,y') \/ y'x > yx
|
||||
/// [z] z <= y' /\ yx <= zx ==> Ω*(x,y') \/ yx <= y'x
|
||||
clause_ref conflict_explainer::by_ugt_z() {
|
||||
LOG_H3("Try z <= y' && zx > yx where z := v" << m_var);
|
||||
for (auto* c : m_conflict.units())
|
||||
LOG("Constraint: " << show_deref(c));
|
||||
for (auto* c : m_conflict.clauses())
|
||||
LOG("Clause: " << show_deref(c));
|
||||
|
||||
pdd const z = m_solver.var(m_var);
|
||||
unsigned const sz = m_solver.size(m_var);
|
||||
pdd const zero = m_solver.sz2pdd(sz).zero();
|
||||
|
||||
// Collect constraints of shape "z <= _"
|
||||
ptr_vector<constraint> ds;
|
||||
for (auto* d : m_conflict.units()) {
|
||||
if (!d->is_ule())
|
||||
continue;
|
||||
if (!d->is_positive())
|
||||
continue;
|
||||
pdd const& lhs = d->to_ule().lhs();
|
||||
vector<inequality> ds;
|
||||
for (auto* d1 : m_conflict.units()) {
|
||||
auto d = d1->as_inequality();
|
||||
// TODO: a*y where 'a' divides 'x' should also be easy to handle (assuming for now they're numbers)
|
||||
// TODO: also z < y' should follow the same pattern.
|
||||
if (lhs != z)
|
||||
if (d.lhs != z)
|
||||
continue;
|
||||
LOG("z <= y' candidate: " << show_deref(d));
|
||||
ds.push_back(d);
|
||||
LOG("z <= y' candidate: " << show_deref(d.src));
|
||||
ds.push_back(std::move(d));
|
||||
}
|
||||
if (ds.empty())
|
||||
return nullptr;
|
||||
|
||||
// Find constraint of shape: zx > yx
|
||||
for (auto* c : m_conflict.units()) {
|
||||
if (!c->is_ule())
|
||||
// Find constraint of shape: yx <= zx
|
||||
for (auto* c1 : m_conflict.units()) {
|
||||
auto c = c1->as_inequality();
|
||||
if (c.rhs.degree(m_var) != 1)
|
||||
continue;
|
||||
pdd const& lhs = c->to_ule().lhs();
|
||||
pdd const& rhs = c->to_ule().rhs();
|
||||
if (lhs.degree(m_var) != 1)
|
||||
continue;
|
||||
pdd x = lhs;
|
||||
pdd rest = lhs;
|
||||
lhs.factor(m_var, 1, x, rest);
|
||||
pdd x = zero;
|
||||
pdd rest = zero;
|
||||
c.rhs.factor(m_var, 1, x, rest);
|
||||
if (!rest.is_zero())
|
||||
continue;
|
||||
// TODO: in principle, 'x' could be any polynomial. However, we need to divide the lhs by x, and we don't have general polynomial division yet.
|
||||
|
@ -266,41 +240,96 @@ namespace polysat {
|
|||
continue;
|
||||
unsigned x_var = x.var();
|
||||
rational x_coeff = x.hi().val();
|
||||
pdd xy = lhs;
|
||||
if (!rhs.try_div(x_coeff, xy))
|
||||
pdd xy = zero;
|
||||
if (!c.lhs.try_div(x_coeff, xy))
|
||||
continue;
|
||||
pdd y = lhs;
|
||||
pdd y = zero;
|
||||
xy.factor(x_var, 1, y, rest);
|
||||
if (!rest.is_zero())
|
||||
continue;
|
||||
|
||||
unsigned const lvl = c->level();
|
||||
if (c->is_positive()) {
|
||||
// zx <= yx
|
||||
NOT_IMPLEMENTED_YET();
|
||||
}
|
||||
else {
|
||||
SASSERT(c->is_negative());
|
||||
// zx > yx
|
||||
LOG("zx > yx: " << show_deref(c.src));
|
||||
|
||||
LOG("zx > yx: " << show_deref(c));
|
||||
|
||||
// TODO: for now, we just choose the first of the other constraints
|
||||
constraint* d = ds[0];
|
||||
SASSERT(d->is_ule() && d->is_positive());
|
||||
pdd const& y_prime = d->to_ule().rhs();
|
||||
|
||||
unsigned const p = m_solver.size(m_var);
|
||||
// TODO: for now, we just try all ds
|
||||
for (auto const& d : ds) {
|
||||
unsigned const lvl = std::max(c.src->level(), d.src->level());
|
||||
pdd const& y_prime = d.rhs;
|
||||
|
||||
clause_builder clause(m_solver);
|
||||
// Omega^*(x, y')
|
||||
push_omega_mul(clause, lvl, p, x, y_prime);
|
||||
// y'x > yx
|
||||
constraint_ref ypx_gt_yx = m_solver.m_constraints.ult(lvl, pos_t, y_prime*x, y*x, null_dep());
|
||||
LOG("y'x>yx: " << show_deref(ypx_gt_yx));
|
||||
clause.push_new_constraint(std::move(ypx_gt_yx));
|
||||
if (!push_omega_mul(clause, lvl, sz, x, y_prime))
|
||||
continue;
|
||||
// yx <= y'x
|
||||
constraint_ref yx_le_ypx;
|
||||
if (c.is_strict || d.is_strict)
|
||||
yx_le_ypx = m_solver.m_constraints.ult(lvl, pos_t, y*x, y_prime*x, null_dep());
|
||||
else
|
||||
yx_le_ypx = m_solver.m_constraints.ule(lvl, pos_t, y*x, y_prime*x, null_dep());
|
||||
LOG("y'x>yx: " << show_deref(yx_le_ypx));
|
||||
clause.push_new_constraint(std::move(yx_le_ypx));
|
||||
|
||||
return clause.build(lvl, {c->dep(), m_solver.m_dm});
|
||||
p_dependency_ref dep(m_solver.m_dm.mk_join(c.src->dep(), d.src->dep()), m_solver.m_dm);
|
||||
return clause.build(lvl, dep);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
/// [x] y <= ax /\ x <= z (non-overflow case)
|
||||
/// ==> Ω*(a, z) \/ y <= az
|
||||
clause_ref conflict_explainer::y_ule_ax_and_x_ule_z() {
|
||||
LOG_H3("Try y <= ax && x <= z where x := v" << m_var);
|
||||
|
||||
pdd const x = m_solver.var(m_var);
|
||||
unsigned const sz = m_solver.size(m_var);
|
||||
pdd const zero = m_solver.sz2pdd(sz).zero();
|
||||
|
||||
// Collect constraints of shape "x <= _"
|
||||
vector<inequality> ds;
|
||||
for (auto* d1 : m_conflict.units()) {
|
||||
inequality d = d1->as_inequality();
|
||||
if (d.lhs != x)
|
||||
continue;
|
||||
LOG("x <= z' candidate: " << show_deref(d.src));
|
||||
ds.push_back(std::move(d));
|
||||
}
|
||||
if (ds.empty())
|
||||
return nullptr;
|
||||
|
||||
// Find constraint of shape: y <= ax
|
||||
for (auto* c1 : m_conflict.units()) {
|
||||
inequality c = c1->as_inequality();
|
||||
if (c.rhs.degree(m_var) != 1)
|
||||
continue;
|
||||
pdd a = zero;
|
||||
pdd rest = zero;
|
||||
c.rhs.factor(m_var, 1, a, rest);
|
||||
if (!rest.is_zero())
|
||||
continue;
|
||||
pdd const& y = c.lhs;
|
||||
|
||||
LOG("y <= ax: " << show_deref(c1));
|
||||
|
||||
// TODO: for now, we just try all of the other constraints in order
|
||||
for (auto const& d : ds) {
|
||||
unsigned const lvl = std::max(c1->level(), d.src->level());
|
||||
pdd const& z = d.rhs;
|
||||
|
||||
clause_builder clause(m_solver);
|
||||
// Omega^*(a, z)
|
||||
if (!push_omega_mul(clause, lvl, sz, a, z))
|
||||
continue;
|
||||
// y'x > yx
|
||||
constraint_ref y_ule_az;
|
||||
if (c.is_strict || d.is_strict)
|
||||
y_ule_az = m_solver.m_constraints.ult(lvl, pos_t, y, a*z, null_dep());
|
||||
else
|
||||
y_ule_az = m_solver.m_constraints.ule(lvl, pos_t, y, a*z, null_dep());
|
||||
LOG("y<=az: " << show_deref(y_ule_az));
|
||||
clause.push_new_constraint(std::move(y_ule_az));
|
||||
|
||||
p_dependency_ref dep(m_solver.m_dm.mk_join(c1->dep(), d.src->dep()), m_solver.m_dm);
|
||||
return clause.build(lvl, dep);
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
|
@ -309,7 +338,7 @@ namespace polysat {
|
|||
/// Add Ω*(x, y) to the clause.
|
||||
///
|
||||
/// @param[in] p bit width
|
||||
void conflict_explainer::push_omega_mul(clause_builder& clause, unsigned level, unsigned p, pdd const& x, pdd const& y) {
|
||||
bool conflict_explainer::push_omega_mul(clause_builder& clause, unsigned level, unsigned p, pdd const& x, pdd const& y) {
|
||||
LOG_H3("Omega^*(x, y)");
|
||||
LOG("x = " << x);
|
||||
LOG("y = " << y);
|
||||
|
@ -334,7 +363,14 @@ namespace polysat {
|
|||
max_k = p - y_bits;
|
||||
}
|
||||
|
||||
SASSERT(min_k <= max_k); // in this case, cannot choose k s.t. both literals are false
|
||||
if (min_k > max_k) {
|
||||
// In this case, we cannot choose k such that both literals are false.
|
||||
// This means x*y overflows in the current model and the chosen rule is not applicable.
|
||||
// (or maybe we are in the case where we need the msb-encoding for overflow).
|
||||
return false;
|
||||
}
|
||||
|
||||
SASSERT(min_k <= max_k); // if this assertion fails, we cannot choose k s.t. both literals are false
|
||||
|
||||
// TODO: could also choose other value for k (but between the bounds)
|
||||
if (min_k == 0)
|
||||
|
@ -351,5 +387,6 @@ namespace polysat {
|
|||
constraint_ref c2 = m_solver.m_constraints.ule(level, pos_t, pddm.mk_val(rational::power_of_two(p-k)), y, null_dep());
|
||||
clause.push_new_constraint(std::move(c1));
|
||||
clause.push_new_constraint(std::move(c2));
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue