mirror of
https://github.com/Z3Prover/z3
synced 2025-04-15 13:28:47 +00:00
restore some code that was removed during the rebase
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
e3a9794d98
commit
2087ee3fb0
|
@ -800,9 +800,105 @@ br_status arith_rewriter::mk_idiv_core(expr * arg1, expr * arg2, expr_ref & resu
|
|||
result = m_util.mk_numeral(div(v1, v2), is_int);
|
||||
return BR_DONE;
|
||||
}
|
||||
if (m_util.is_numeral(arg2, v2, is_int) && v2.is_one()) {
|
||||
result = arg1;
|
||||
return BR_DONE;
|
||||
}
|
||||
if (m_util.is_numeral(arg2, v2, is_int) && v2.is_zero()) {
|
||||
return BR_FAILED;
|
||||
}
|
||||
if (arg1 == arg2) {
|
||||
expr_ref zero(m_util.mk_int(0), m());
|
||||
result = m().mk_ite(m().mk_eq(arg1, zero), m_util.mk_idiv(zero, zero), m_util.mk_int(1));
|
||||
return BR_REWRITE3;
|
||||
}
|
||||
if (divides(arg1, arg2, result)) {
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
return BR_FAILED;
|
||||
}
|
||||
|
||||
//
|
||||
// implement div ab ac = floor( ab / ac) = floor (b / c) = div b c
|
||||
//
|
||||
bool arith_rewriter::divides(expr* num, expr* den, expr_ref& result) {
|
||||
expr_fast_mark1 mark;
|
||||
rational num_r(1), den_r(1);
|
||||
expr* num_e = nullptr, *den_e = nullptr;
|
||||
ptr_buffer<expr> args1, args2;
|
||||
flat_mul(num, args1);
|
||||
flat_mul(den, args2);
|
||||
for (expr * arg : args1) {
|
||||
mark.mark(arg);
|
||||
if (m_util.is_numeral(arg, num_r)) num_e = arg;
|
||||
}
|
||||
for (expr* arg : args2) {
|
||||
if (mark.is_marked(arg)) {
|
||||
result = remove_divisor(arg, num, den);
|
||||
return true;
|
||||
}
|
||||
if (m_util.is_numeral(arg, den_r)) den_e = arg;
|
||||
}
|
||||
rational g = gcd(num_r, den_r);
|
||||
if (!g.is_one()) {
|
||||
SASSERT(g.is_pos());
|
||||
// replace num_e, den_e by their gcd reduction.
|
||||
for (unsigned i = 0; i < args1.size(); ++i) {
|
||||
if (args1[i] == num_e) {
|
||||
args1[i] = m_util.mk_numeral(num_r / g, true);
|
||||
break;
|
||||
}
|
||||
}
|
||||
for (unsigned i = 0; i < args2.size(); ++i) {
|
||||
if (args2[i] == den_e) {
|
||||
args2[i] = m_util.mk_numeral(den_r / g, true);
|
||||
break;
|
||||
}
|
||||
}
|
||||
num = m_util.mk_mul(args1.size(), args1.c_ptr());
|
||||
den = m_util.mk_mul(args2.size(), args2.c_ptr());
|
||||
result = m_util.mk_idiv(num, den);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
expr_ref arith_rewriter::remove_divisor(expr* arg, expr* num, expr* den) {
|
||||
ptr_buffer<expr> args1, args2;
|
||||
flat_mul(num, args1);
|
||||
flat_mul(den, args2);
|
||||
remove_divisor(arg, args1);
|
||||
remove_divisor(arg, args2);
|
||||
expr_ref zero(m_util.mk_int(0), m());
|
||||
num = args1.empty() ? m_util.mk_int(1) : m_util.mk_mul(args1.size(), args1.c_ptr());
|
||||
den = args2.empty() ? m_util.mk_int(1) : m_util.mk_mul(args2.size(), args2.c_ptr());
|
||||
return expr_ref(m().mk_ite(m().mk_eq(zero, arg), m_util.mk_idiv(zero, zero), m_util.mk_idiv(num, den)), m());
|
||||
}
|
||||
|
||||
void arith_rewriter::flat_mul(expr* e, ptr_buffer<expr>& args) {
|
||||
args.push_back(e);
|
||||
for (unsigned i = 0; i < args.size(); ++i) {
|
||||
e = args[i];
|
||||
if (m_util.is_mul(e)) {
|
||||
args.append(to_app(e)->get_num_args(), to_app(e)->get_args());
|
||||
args[i] = args.back();
|
||||
args.shrink(args.size()-1);
|
||||
--i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void arith_rewriter::remove_divisor(expr* d, ptr_buffer<expr>& args) {
|
||||
for (unsigned i = 0; i < args.size(); ++i) {
|
||||
if (args[i] == d) {
|
||||
args[i] = args.back();
|
||||
args.shrink(args.size()-1);
|
||||
return;
|
||||
}
|
||||
}
|
||||
UNREACHABLE();
|
||||
}
|
||||
|
||||
br_status arith_rewriter::mk_mod_core(expr * arg1, expr * arg2, expr_ref & result) {
|
||||
set_curr_sort(m().get_sort(arg1));
|
||||
numeral v1, v2;
|
||||
|
|
|
@ -95,7 +95,10 @@ class arith_rewriter : public poly_rewriter<arith_rewriter_core> {
|
|||
expr_ref neg_monomial(expr * e) const;
|
||||
expr * mk_sin_value(rational const & k);
|
||||
app * mk_sqrt(rational const & k);
|
||||
|
||||
bool divides(expr* d, expr* n, expr_ref& result);
|
||||
expr_ref remove_divisor(expr* arg, expr* num, expr* den);
|
||||
void flat_mul(expr* e, ptr_buffer<expr>& args);
|
||||
void remove_divisor(expr* d, ptr_buffer<expr>& args);
|
||||
public:
|
||||
arith_rewriter(ast_manager & m, params_ref const & p = params_ref()):
|
||||
poly_rewriter<arith_rewriter_core>(m, p) {
|
||||
|
|
|
@ -1,97 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2007 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
arith_simplifier_plugin.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Simplifier for the arithmetic family.
|
||||
|
||||
Author:
|
||||
|
||||
Leonardo (leonardo) 2008-01-08
|
||||
|
||||
--*/
|
||||
#ifndef ARITH_SIMPLIFIER_PLUGIN_H_
|
||||
#define ARITH_SIMPLIFIER_PLUGIN_H_
|
||||
|
||||
#include"basic_simplifier_plugin.h"
|
||||
#include"poly_simplifier_plugin.h"
|
||||
#include"arith_decl_plugin.h"
|
||||
#include"arith_simplifier_params.h"
|
||||
|
||||
/**
|
||||
\brief Simplifier for the arith family.
|
||||
*/
|
||||
class arith_simplifier_plugin : public poly_simplifier_plugin {
|
||||
public:
|
||||
enum op_kind {
|
||||
LE, GE, EQ
|
||||
};
|
||||
protected:
|
||||
arith_simplifier_params & m_params;
|
||||
arith_util m_util;
|
||||
basic_simplifier_plugin & m_bsimp;
|
||||
expr_ref m_int_zero;
|
||||
expr_ref m_real_zero;
|
||||
|
||||
bool is_neg_poly(expr * t) const;
|
||||
|
||||
template<op_kind k>
|
||||
void mk_le_ge_eq_core(expr * arg1, expr * arg2, expr_ref & result);
|
||||
|
||||
void prop_mod_const(expr * e, unsigned depth, numeral const& k, expr_ref& result);
|
||||
|
||||
void gcd_reduce_monomial(expr_ref_vector& monomials, numeral& k);
|
||||
|
||||
void div_monomial(expr_ref_vector& monomials, numeral const& g);
|
||||
void get_monomial_gcd(expr_ref_vector& monomials, numeral& g);
|
||||
bool divides(expr* d, expr* n, expr_ref& quot);
|
||||
|
||||
public:
|
||||
arith_simplifier_plugin(ast_manager & m, basic_simplifier_plugin & b, arith_simplifier_params & p);
|
||||
~arith_simplifier_plugin();
|
||||
arith_util & get_arith_util() { return m_util; }
|
||||
virtual numeral norm(const numeral & n) { return n; }
|
||||
virtual bool is_numeral(expr * n, rational & val) const { bool f; return m_util.is_numeral(n, val, f); }
|
||||
bool is_numeral(expr * n) const { return m_util.is_numeral(n); }
|
||||
virtual bool is_minus_one(expr * n) const { numeral tmp; return is_numeral(n, tmp) && tmp.is_minus_one(); }
|
||||
virtual expr * get_zero(sort * s) const { return m_util.is_int(s) ? m_int_zero.get() : m_real_zero.get(); }
|
||||
|
||||
virtual app * mk_numeral(numeral const & n) { return m_util.mk_numeral(n, m_curr_sort->get_decl_kind() == INT_SORT); }
|
||||
app * mk_numeral(numeral const & n, bool is_int) { return m_util.mk_numeral(n, is_int); }
|
||||
bool is_int_sort(sort const * s) const { return m_util.is_int(s); }
|
||||
bool is_real_sort(sort const * s) const { return m_util.is_real(s); }
|
||||
bool is_arith_sort(sort const * s) const { return is_int_sort(s) || is_real_sort(s); }
|
||||
bool is_int(expr const * n) const { return m_util.is_int(n); }
|
||||
bool is_le(expr const * n) const { return m_util.is_le(n); }
|
||||
bool is_ge(expr const * n) const { return m_util.is_ge(n); }
|
||||
|
||||
virtual bool is_le_ge(expr * n) const { return is_le(n) || is_ge(n); }
|
||||
|
||||
void mk_le(expr * arg1, expr * arg2, expr_ref & result);
|
||||
void mk_ge(expr * arg1, expr * arg2, expr_ref & result);
|
||||
void mk_lt(expr * arg1, expr * arg2, expr_ref & result);
|
||||
void mk_gt(expr * arg1, expr * arg2, expr_ref & result);
|
||||
void mk_arith_eq(expr * arg1, expr * arg2, expr_ref & result);
|
||||
void mk_div(expr * arg1, expr * arg2, expr_ref & result);
|
||||
void mk_idiv(expr * arg1, expr * arg2, expr_ref & result);
|
||||
void mk_mod(expr * arg1, expr * arg2, expr_ref & result);
|
||||
void mk_rem(expr * arg1, expr * arg2, expr_ref & result);
|
||||
void mk_to_real(expr * arg, expr_ref & result);
|
||||
void mk_to_int(expr * arg, expr_ref & result);
|
||||
void mk_is_int(expr * arg, expr_ref & result);
|
||||
void mk_abs(expr * arg, expr_ref & result);
|
||||
|
||||
virtual bool reduce(func_decl * f, unsigned num_args, expr * const * args, expr_ref & result);
|
||||
virtual bool reduce_eq(expr * lhs, expr * rhs, expr_ref & result);
|
||||
|
||||
bool is_arith_term(expr * n) const;
|
||||
|
||||
void gcd_normalize(numeral & coeff, expr_ref& term);
|
||||
|
||||
};
|
||||
|
||||
#endif /* ARITH_SIMPLIFIER_PLUGIN_H_ */
|
|
@ -296,9 +296,6 @@ void parse_cmd_line_args(int argc, char ** argv) {
|
|||
|
||||
int STD_CALL main(int argc, char ** argv) {
|
||||
try{
|
||||
DEBUG_CODE( for (int i = 0; i < argc; i++)
|
||||
std::cout << argv[i] << " ";
|
||||
std::cout << std::endl;);
|
||||
unsigned return_value = 0;
|
||||
memory::initialize(0);
|
||||
memory::exit_when_out_of_memory(true, "ERROR: out of memory");
|
||||
|
|
|
@ -979,7 +979,7 @@ namespace smt {
|
|||
if (st.num_theories() == 2 && st.has_uf() && is_arith(st)) {
|
||||
if (!st.m_has_real)
|
||||
setup_QF_UFLIA(st);
|
||||
else if (!st.m_has_int)
|
||||
else if (!st.m_has_int && st.m_num_non_linear == 0)
|
||||
setup_QF_UFLRA();
|
||||
else
|
||||
setup_unknown();
|
||||
|
|
Loading…
Reference in a new issue