3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 17:15:31 +00:00

move bdd to separate space

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2019-12-17 10:03:01 -08:00
parent c560ee54e8
commit 1fdde9e056
7 changed files with 36 additions and 35 deletions

894
src/math/dd/dd_bdd.cpp Normal file
View file

@ -0,0 +1,894 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
dd_bdd.cpp
Abstract:
Simple BDD package modeled after BuDDy, which is modeled after CUDD.
Author:
Nikolaj Bjorner (nbjorner) 2017-10-13
Revision History:
--*/
#include "util/trace.h"
#include "util/stopwatch.h"
#include "math/dd/dd_bdd.h"
namespace dd {
bdd_manager::bdd_manager(unsigned num_vars) {
m_cost_metric = bdd_cost;
m_cost_bdd = 0;
for (BDD a = 0; a < 2; ++a) {
for (BDD b = 0; b < 2; ++b) {
for (unsigned op = bdd_and_op; op < bdd_not_op; ++op) {
unsigned index = a + 2*b + 4*op;
m_apply_const.reserve(index+1);
m_apply_const[index] = apply_const(a, b, static_cast<bdd_op>(op));
}
}
}
// add dummy nodes for operations, and true, false bdds.
for (unsigned i = 0; i <= bdd_no_op + 2; ++i) {
m_nodes.push_back(bdd_node(0,0,0));
m_nodes.back().m_refcount = max_rc;
m_nodes.back().m_index = m_nodes.size()-1;
}
m_spare_entry = nullptr;
m_max_num_bdd_nodes = 1 << 24; // up to 16M nodes
m_mark_level = 0;
alloc_free_nodes(1024 + num_vars);
m_disable_gc = false;
m_is_new_node = false;
// add variables
for (unsigned i = 0; i < num_vars; ++i) {
reserve_var(i);
}
}
bdd_manager::~bdd_manager() {
if (m_spare_entry) {
m_alloc.deallocate(sizeof(*m_spare_entry), m_spare_entry);
}
for (auto* e : m_op_cache) {
SASSERT(e != m_spare_entry);
m_alloc.deallocate(sizeof(*e), e);
}
}
bdd_manager::BDD bdd_manager::apply_const(BDD a, BDD b, bdd_op op) {
SASSERT(is_const(a) && is_const(b));
switch (op) {
case bdd_and_op:
return (a == true_bdd && b == true_bdd) ? true_bdd : false_bdd;
case bdd_or_op:
return (a == true_bdd || b == true_bdd) ? true_bdd : false_bdd;
case bdd_xor_op:
return (a == b) ? false_bdd : true_bdd;
default:
return false_bdd;
}
}
bdd_manager::BDD bdd_manager::apply(BDD arg1, BDD arg2, bdd_op op) {
bool first = true;
SASSERT(well_formed());
while (true) {
try {
return apply_rec(arg1, arg2, op);
}
catch (const mem_out &) {
try_reorder();
if (!first) throw;
first = false;
}
}
SASSERT(well_formed());
}
bdd bdd_manager::mk_true() { return bdd(true_bdd, this); }
bdd bdd_manager::mk_false() { return bdd(false_bdd, this); }
bdd bdd_manager::mk_and(bdd const& a, bdd const& b) { return bdd(apply(a.root, b.root, bdd_and_op), this); }
bdd bdd_manager::mk_or(bdd const& a, bdd const& b) { return bdd(apply(a.root, b.root, bdd_or_op), this); }
bdd bdd_manager::mk_xor(bdd const& a, bdd const& b) { return bdd(apply(a.root, b.root, bdd_xor_op), this); }
bdd bdd_manager::mk_exists(unsigned v, bdd const& b) { return mk_exists(1, &v, b); }
bdd bdd_manager::mk_forall(unsigned v, bdd const& b) { return mk_forall(1, &v, b); }
bool bdd_manager::check_result(op_entry*& e1, op_entry const* e2, BDD a, BDD b, BDD c) {
if (e1 != e2) {
SASSERT(e2->m_result != null_bdd);
push_entry(e1);
e1 = nullptr;
return true;
}
else {
e1->m_bdd1 = a;
e1->m_bdd2 = b;
e1->m_op = c;
SASSERT(e1->m_result == null_bdd);
return false;
}
}
bdd_manager::BDD bdd_manager::apply_rec(BDD a, BDD b, bdd_op op) {
switch (op) {
case bdd_and_op:
if (a == b) return a;
if (is_false(a) || is_false(b)) return false_bdd;
if (is_true(a)) return b;
if (is_true(b)) return a;
break;
case bdd_or_op:
if (a == b) return a;
if (is_false(a)) return b;
if (is_false(b)) return a;
if (is_true(a) || is_true(b)) return true_bdd;
break;
case bdd_xor_op:
if (a == b) return false_bdd;
if (is_false(a)) return b;
if (is_false(b)) return a;
break;
default:
UNREACHABLE();
break;
}
if (is_const(a) && is_const(b)) {
return m_apply_const[a + 2*b + 4*op];
}
op_entry * e1 = pop_entry(a, b, op);
op_entry const* e2 = m_op_cache.insert_if_not_there(e1);
if (check_result(e1, e2, a, b, op)) {
SASSERT(!m_free_nodes.contains(e2->m_result));
return e2->m_result;
}
// SASSERT(well_formed());
BDD r;
if (level(a) == level(b)) {
push(apply_rec(lo(a), lo(b), op));
push(apply_rec(hi(a), hi(b), op));
r = make_node(level(a), read(2), read(1));
}
else if (level(a) > level(b)) {
push(apply_rec(lo(a), b, op));
push(apply_rec(hi(a), b, op));
r = make_node(level(a), read(2), read(1));
}
else {
push(apply_rec(a, lo(b), op));
push(apply_rec(a, hi(b), op));
r = make_node(level(b), read(2), read(1));
}
pop(2);
e1->m_result = r;
// SASSERT(well_formed());
SASSERT(!m_free_nodes.contains(r));
return r;
}
void bdd_manager::push(BDD b) {
m_bdd_stack.push_back(b);
}
void bdd_manager::pop(unsigned num_scopes) {
m_bdd_stack.shrink(m_bdd_stack.size() - num_scopes);
}
bdd_manager::BDD bdd_manager::read(unsigned index) {
return m_bdd_stack[m_bdd_stack.size() - index];
}
bdd_manager::op_entry* bdd_manager::pop_entry(BDD l, BDD r, BDD op) {
op_entry* result = nullptr;
if (m_spare_entry) {
result = m_spare_entry;
m_spare_entry = nullptr;
result->m_bdd1 = l;
result->m_bdd2 = r;
result->m_op = op;
}
else {
void * mem = m_alloc.allocate(sizeof(op_entry));
result = new (mem) op_entry(l, r, op);
}
result->m_result = null_bdd;
return result;
}
void bdd_manager::push_entry(op_entry* e) {
SASSERT(!m_spare_entry);
m_spare_entry = e;
}
bdd_manager::BDD bdd_manager::make_node(unsigned lvl, BDD l, BDD h) {
m_is_new_node = false;
if (l == h) {
return l;
}
SASSERT(is_const(l) || level(l) < lvl);
SASSERT(is_const(h) || level(h) < lvl);
bdd_node n(lvl, l, h);
node_table::entry* e = m_node_table.insert_if_not_there2(n);
if (e->get_data().m_index != 0) {
unsigned result = e->get_data().m_index;
return result;
}
e->get_data().m_refcount = 0;
bool do_gc = m_free_nodes.empty();
if (do_gc && !m_disable_gc) {
gc();
e = m_node_table.insert_if_not_there2(n);
e->get_data().m_refcount = 0;
}
if (do_gc && m_free_nodes.size()*3 < m_nodes.size()) {
if (m_nodes.size() > m_max_num_bdd_nodes) {
throw mem_out();
}
alloc_free_nodes(m_nodes.size()/2);
}
SASSERT(!m_free_nodes.empty());
unsigned result = m_free_nodes.back();
m_free_nodes.pop_back();
e->get_data().m_index = result;
m_nodes[result] = e->get_data();
m_is_new_node = true;
SASSERT(!m_free_nodes.contains(result));
SASSERT(m_nodes[result].m_index == result);
return result;
}
void bdd_manager::try_cnf_reorder(bdd const& b) {
m_cost_bdd = b.root;
m_cost_metric = cnf_cost;
try_reorder();
m_cost_metric = bdd_cost;
m_cost_bdd = 0;
}
void bdd_manager::try_reorder() {
gc();
for (auto* e : m_op_cache) {
m_alloc.deallocate(sizeof(*e), e);
}
m_op_cache.reset();
init_reorder();
for (unsigned i = 0; i < m_var2level.size(); ++i) {
sift_var(i);
}
SASSERT(m_op_cache.empty());
SASSERT(well_formed());
}
double bdd_manager::current_cost() {
switch (m_cost_metric) {
case bdd_cost:
return m_nodes.size() - m_free_nodes.size();
case cnf_cost:
return cnf_size(m_cost_bdd);
case dnf_cost:
return dnf_size(m_cost_bdd);
default:
UNREACHABLE();
return 0;
}
}
bool bdd_manager::is_bad_cost(double current_cost, double best_cost) const {
return current_cost > 1.1 * best_cost;
}
void bdd_manager::sift_var(unsigned v) {
unsigned lvl = m_var2level[v];
unsigned start = lvl;
double best_cost = current_cost();
bool first = true;
unsigned max_lvl = m_level2nodes.size()-1;
if (lvl*2 < max_lvl) {
goto go_down;
}
go_up:
TRACE("bdd", tout << "sift up " << lvl << "\n";);
while (lvl < max_lvl) {
sift_up(lvl++);
double cost = current_cost();
if (is_bad_cost(cost, best_cost)) break;
best_cost = std::min(cost, best_cost);
}
if (first) {
first = false;
while (lvl != start) {
sift_up(--lvl);
}
goto go_down;
}
else {
while (current_cost() != best_cost) {
sift_up(--lvl);
}
return;
}
go_down:
TRACE("bdd", tout << "sift down " << lvl << "\n";);
while (lvl > 0) {
sift_up(--lvl);
double cost = current_cost();
if (is_bad_cost(cost, best_cost)) break;
best_cost = std::min(cost, best_cost);
}
if (first) {
first = false;
while (lvl != start) {
sift_up(lvl++);
}
goto go_up;
}
else {
while (current_cost() != best_cost) {
sift_up(lvl++);
}
return;
}
}
void bdd_manager::sift_up(unsigned lvl) {
if (m_level2nodes[lvl].empty()) return;
// SASSERT(well_formed());
// exchange level and level + 1.
m_S.reset();
m_T.reset();
m_to_free.reset();
m_disable_gc = true;
for (unsigned n : m_level2nodes[lvl + 1]) {
BDD l = lo(n);
BDD h = hi(n);
if (l == 0 && h == 0) continue;
if ((is_const(l) || level(l) != lvl) &&
(is_const(h) || level(h) != lvl)) {
m_S.push_back(n);
}
else {
reorder_decref(l);
reorder_decref(h);
m_T.push_back(n);
}
TRACE("bdd", tout << "remove " << n << "\n";);
m_node_table.remove(m_nodes[n]);
}
m_level2nodes[lvl + 1].reset();
m_level2nodes[lvl + 1].append(m_T);
for (unsigned n : m_level2nodes[lvl]) {
bdd_node& node = m_nodes[n];
m_node_table.remove(node);
node.m_level = lvl + 1;
if (m_reorder_rc[n] == 0) {
m_to_free.push_back(n);
}
else {
TRACE("bdd", tout << "set level " << n << " to " << lvl + 1 << "\n";);
m_node_table.insert(node);
m_level2nodes[lvl + 1].push_back(n);
}
}
m_level2nodes[lvl].reset();
m_level2nodes[lvl].append(m_S);
for (unsigned n : m_S) {
m_nodes[n].m_level = lvl;
m_node_table.insert(m_nodes[n]);
}
for (unsigned n : m_T) {
BDD l = lo(n);
BDD h = hi(n);
if (l == 0 && h == 0) continue;
BDD a, b, c, d;
if (level(l) == lvl + 1) {
a = lo(l);
b = hi(l);
}
else {
a = b = l;
}
if (level(h) == lvl + 1) {
c = lo(h);
d = hi(h);
}
else {
c = d = h;
}
unsigned ac = make_node(lvl, a, c);
if (is_new_node()) {
m_level2nodes[lvl].push_back(ac);
m_reorder_rc.reserve(ac+1);
reorder_incref(a);
reorder_incref(c);
}
unsigned bd = make_node(lvl, b, d);
if (is_new_node()) {
m_level2nodes[lvl].push_back(bd);
m_reorder_rc.reserve(bd+1);
reorder_incref(b);
reorder_incref(d);
}
m_nodes[n].m_lo = ac;
m_nodes[n].m_hi = bd;
reorder_incref(ac);
reorder_incref(bd);
TRACE("bdd", tout << "transform " << n << " " << " " << a << " " << b << " " << c << " " << d << " " << ac << " " << bd << "\n";);
m_node_table.insert(m_nodes[n]);
}
unsigned v = m_level2var[lvl];
unsigned w = m_level2var[lvl+1];
std::swap(m_level2var[lvl], m_level2var[lvl+1]);
std::swap(m_var2level[v], m_var2level[w]);
m_disable_gc = false;
// add orphaned nodes to free-list
for (unsigned i = 0; i < m_to_free.size(); ++i) {
unsigned n = m_to_free[i];
bdd_node& node = m_nodes[n];
if (!node.is_internal()) {
SASSERT(!m_free_nodes.contains(n));
SASSERT(node.m_refcount == 0);
m_free_nodes.push_back(n);
m_node_table.remove(node);
BDD l = lo(n);
BDD h = hi(n);
node.set_internal();
reorder_decref(l);
if (!m_nodes[l].is_internal() && m_reorder_rc[l] == 0) {
m_to_free.push_back(l);
}
reorder_decref(h);
if (!m_nodes[h].is_internal() && m_reorder_rc[h] == 0) {
m_to_free.push_back(h);
}
}
}
TRACE("bdd", tout << "sift " << lvl << "\n"; display(tout); );
DEBUG_CODE(
for (unsigned i = 0; i < m_level2nodes.size(); ++i) {
for (unsigned n : m_level2nodes[i]) {
bdd_node const& node = m_nodes[n];
SASSERT(node.m_level == i);
}
});
TRACE("bdd",
for (unsigned i = 0; i < m_nodes.size(); ++i) {
if (m_reorder_rc[i] != 0) {
tout << i << " " << m_reorder_rc[i] << "\n";
}});
// SASSERT(well_formed());
}
void bdd_manager::init_reorder() {
m_level2nodes.reset();
unsigned sz = m_nodes.size();
m_reorder_rc.fill(sz, 0);
for (unsigned i = 0; i < sz; ++i) {
if (m_nodes[i].m_refcount > 0)
m_reorder_rc[i] = UINT_MAX;
}
for (unsigned i = 0; i < sz; ++i) {
bdd_node const& n = m_nodes[i];
if (n.is_internal()) continue;
unsigned lvl = n.m_level;
SASSERT(i == m_nodes[i].m_index);
m_level2nodes.reserve(lvl + 1);
m_level2nodes[lvl].push_back(i);
reorder_incref(n.m_lo);
reorder_incref(n.m_hi);
}
TRACE("bdd",
display(tout);
for (unsigned i = 0; i < sz; ++i) {
bdd_node const& n = m_nodes[i];
if (n.is_internal()) continue;
unsigned lvl = n.m_level;
tout << i << " lvl: " << lvl << " rc: " << m_reorder_rc[i] << " lo " << n.m_lo << " hi " << n.m_hi << "\n";
}
);
}
void bdd_manager::reorder_incref(unsigned n) {
if (m_reorder_rc[n] != UINT_MAX) m_reorder_rc[n]++;
}
void bdd_manager::reorder_decref(unsigned n) {
if (m_reorder_rc[n] != UINT_MAX) m_reorder_rc[n]--;
}
void bdd_manager::reserve_var(unsigned i) {
while (m_var2level.size() <= i) {
unsigned v = m_var2level.size();
m_var2bdd.push_back(make_node(v, false_bdd, true_bdd));
m_var2bdd.push_back(make_node(v, true_bdd, false_bdd));
m_nodes[m_var2bdd[2*v]].m_refcount = max_rc;
m_nodes[m_var2bdd[2*v+1]].m_refcount = max_rc;
m_var2level.push_back(v);
m_level2var.push_back(v);
}
}
bdd bdd_manager::mk_var(unsigned i) {
reserve_var(i);
return bdd(m_var2bdd[2*i], this);
}
bdd bdd_manager::mk_nvar(unsigned i) {
reserve_var(i);
return bdd(m_var2bdd[2*i+1], this);
}
bdd bdd_manager::mk_not(bdd b) {
bool first = true;
while (true) {
try {
return bdd(mk_not_rec(b.root), this);
}
catch (const mem_out &) {
try_reorder();
if (!first) throw;
first = false;
}
}
}
bdd_manager::BDD bdd_manager::mk_not_rec(BDD b) {
if (is_true(b)) return false_bdd;
if (is_false(b)) return true_bdd;
op_entry* e1 = pop_entry(b, b, bdd_not_op);
op_entry const* e2 = m_op_cache.insert_if_not_there(e1);
if (check_result(e1, e2, b, b, bdd_not_op))
return e2->m_result;
push(mk_not_rec(lo(b)));
push(mk_not_rec(hi(b)));
BDD r = make_node(level(b), read(2), read(1));
pop(2);
e1->m_result = r;
return r;
}
bdd bdd_manager::mk_ite(bdd const& c, bdd const& t, bdd const& e) {
bool first = true;
while (true) {
try {
return bdd(mk_ite_rec(c.root, t.root, e.root), this);
}
catch (const mem_out &) {
try_reorder();
if (!first) throw;
first = false;
}
}
}
bdd_manager::BDD bdd_manager::mk_ite_rec(BDD a, BDD b, BDD c) {
if (is_true(a)) return b;
if (is_false(a)) return c;
if (b == c) return b;
if (is_true(b)) return apply(a, c, bdd_or_op);
if (is_false(c)) return apply(a, b, bdd_and_op);
if (is_false(b)) return apply(mk_not_rec(a), c, bdd_and_op);
if (is_true(c)) return apply(mk_not_rec(a), b, bdd_or_op);
SASSERT(!is_const(a) && !is_const(b) && !is_const(c));
op_entry * e1 = pop_entry(a, b, c);
op_entry const* e2 = m_op_cache.insert_if_not_there(e1);
if (check_result(e1, e2, a, b, c))
return e2->m_result;
unsigned la = level(a), lb = level(b), lc = level(c);
BDD r;
BDD a1, b1, c1, a2, b2, c2;
unsigned lvl = la;
if (la >= lb && la >= lc) {
a1 = lo(a), a2 = hi(a);
lvl = la;
}
else {
a1 = a, a2 = a;
}
if (lb >= la && lb >= lc) {
b1 = lo(b), b2 = hi(b);
lvl = lb;
}
else {
b1 = b, b2 = b;
}
if (lc >= la && lc >= lb) {
c1 = lo(c), c2 = hi(c);
lvl = lc;
}
else {
c1 = c, c2 = c;
}
push(mk_ite_rec(a1, b1, c1));
push(mk_ite_rec(a2, b2, c2));
r = make_node(lvl, read(2), read(1));
pop(2);
e1->m_result = r;
return r;
}
bdd bdd_manager::mk_exists(unsigned n, unsigned const* vars, bdd const& b) {
// SASSERT(well_formed());
return bdd(mk_quant(n, vars, b.root, bdd_or_op), this);
}
bdd bdd_manager::mk_forall(unsigned n, unsigned const* vars, bdd const& b) {
return bdd(mk_quant(n, vars, b.root, bdd_and_op), this);
}
bdd_manager::BDD bdd_manager::mk_quant(unsigned n, unsigned const* vars, BDD b, bdd_op op) {
BDD result = b;
for (unsigned i = 0; i < n; ++i) {
result = mk_quant_rec(m_var2level[vars[i]], result, op);
}
return result;
}
bdd_manager::BDD bdd_manager::mk_quant_rec(unsigned l, BDD b, bdd_op op) {
unsigned lvl = level(b);
BDD r;
if (is_const(b)) {
r = b;
}
else if (lvl == l) {
r = apply(lo(b), hi(b), op);
}
else if (lvl < l) {
r = b;
}
else {
BDD a = level2bdd(l);
bdd_op q_op = op == bdd_and_op ? bdd_and_proj_op : bdd_or_proj_op;
op_entry * e1 = pop_entry(a, b, q_op);
op_entry const* e2 = m_op_cache.insert_if_not_there(e1);
if (check_result(e1, e2, a, b, q_op)) {
r = e2->m_result;
}
else {
SASSERT(e1->m_result == null_bdd);
push(mk_quant_rec(l, lo(b), op));
push(mk_quant_rec(l, hi(b), op));
r = make_node(lvl, read(2), read(1));
pop(2);
e1->m_result = r;
}
}
SASSERT(r != UINT_MAX);
return r;
}
double bdd_manager::count(BDD b, unsigned z) {
init_mark();
m_count.resize(m_nodes.size());
m_count[0] = z;
m_count[1] = 1-z;
set_mark(0);
set_mark(1);
m_todo.push_back(b);
while (!m_todo.empty()) {
BDD r = m_todo.back();
if (is_marked(r)) {
m_todo.pop_back();
}
else if (!is_marked(lo(r))) {
SASSERT (is_const(r) || r != lo(r));
m_todo.push_back(lo(r));
}
else if (!is_marked(hi(r))) {
SASSERT (is_const(r) || r != hi(r));
m_todo.push_back(hi(r));
}
else {
m_count[r] = m_count[lo(r)] + m_count[hi(r)];
set_mark(r);
m_todo.pop_back();
}
}
return m_count[b];
}
unsigned bdd_manager::bdd_size(bdd const& b) {
init_mark();
set_mark(0);
set_mark(1);
unsigned sz = 0;
m_todo.push_back(b.root);
while (!m_todo.empty()) {
BDD r = m_todo.back();
m_todo.pop_back();
if (!is_marked(r)) {
++sz;
set_mark(r);
if (!is_marked(lo(r))) {
m_todo.push_back(lo(r));
}
if (!is_marked(hi(r))) {
m_todo.push_back(hi(r));
}
}
}
return sz;
}
void bdd_manager::alloc_free_nodes(unsigned n) {
for (unsigned i = 0; i < n; ++i) {
m_free_nodes.push_back(m_nodes.size());
m_nodes.push_back(bdd_node());
m_nodes.back().m_index = m_nodes.size() - 1;
}
m_free_nodes.reverse();
}
void bdd_manager::gc() {
m_free_nodes.reset();
IF_VERBOSE(13, verbose_stream() << "(bdd :gc " << m_nodes.size() << ")\n";);
svector<bool> reachable(m_nodes.size(), false);
for (unsigned i = m_bdd_stack.size(); i-- > 0; ) {
reachable[m_bdd_stack[i]] = true;
m_todo.push_back(m_bdd_stack[i]);
}
for (unsigned i = m_nodes.size(); i-- > 2; ) {
if (m_nodes[i].m_refcount > 0) {
reachable[i] = true;
m_todo.push_back(i);
}
}
while (!m_todo.empty()) {
BDD b = m_todo.back();
m_todo.pop_back();
SASSERT(reachable[b]);
if (is_const(b)) continue;
if (!reachable[lo(b)]) {
reachable[lo(b)] = true;
m_todo.push_back(lo(b));
}
if (!reachable[hi(b)]) {
reachable[hi(b)] = true;
m_todo.push_back(hi(b));
}
}
for (unsigned i = m_nodes.size(); i-- > 2; ) {
if (!reachable[i]) {
m_nodes[i].set_internal();
SASSERT(m_nodes[i].m_refcount == 0);
m_free_nodes.push_back(i);
}
}
// sort free nodes so that adjacent nodes are picked in order of use
std::sort(m_free_nodes.begin(), m_free_nodes.end());
m_free_nodes.reverse();
ptr_vector<op_entry> to_delete, to_keep;
for (auto* e : m_op_cache) {
if (e->m_result != null_bdd) {
to_delete.push_back(e);
}
else {
to_keep.push_back(e);
}
}
m_op_cache.reset();
for (op_entry* e : to_delete) {
m_alloc.deallocate(sizeof(*e), e);
}
for (op_entry* e : to_keep) {
m_op_cache.insert(e);
}
m_node_table.reset();
// re-populate node cache
for (unsigned i = m_nodes.size(); i-- > 2; ) {
if (reachable[i]) {
SASSERT(m_nodes[i].m_index == i);
m_node_table.insert(m_nodes[i]);
}
}
SASSERT(well_formed());
}
void bdd_manager::init_mark() {
m_mark.resize(m_nodes.size());
++m_mark_level;
if (m_mark_level == 0) {
m_mark.fill(0);
++m_mark_level;
}
}
std::ostream& bdd_manager::display(std::ostream& out, bdd const& b) {
init_mark();
m_todo.push_back(b.root);
m_reorder_rc.reserve(m_nodes.size());
while (!m_todo.empty()) {
BDD r = m_todo.back();
if (is_marked(r)) {
m_todo.pop_back();
}
else if (lo(r) == 0 && hi(r) == 0) {
set_mark(r);
m_todo.pop_back();
}
else if (!is_marked(lo(r))) {
m_todo.push_back(lo(r));
}
else if (!is_marked(hi(r))) {
m_todo.push_back(hi(r));
}
else {
out << r << " : " << var(r) << " @ " << level(r) << " " << lo(r) << " " << hi(r) << " " << m_reorder_rc[r] << "\n";
set_mark(r);
m_todo.pop_back();
}
}
return out;
}
bool bdd_manager::well_formed() {
bool ok = true;
for (unsigned n : m_free_nodes) {
ok &= (lo(n) == 0 && hi(n) == 0 && m_nodes[n].m_refcount == 0);
if (!ok) {
IF_VERBOSE(0,
verbose_stream() << "free node is not internal " << n << " " << lo(n) << " " << hi(n) << " " << m_nodes[n].m_refcount << "\n";
display(verbose_stream()););
UNREACHABLE();
return false;
}
}
for (bdd_node const& n : m_nodes) {
if (n.is_internal()) continue;
unsigned lvl = n.m_level;
BDD lo = n.m_lo;
BDD hi = n.m_hi;
ok &= is_const(lo) || level(lo) < lvl;
ok &= is_const(hi) || level(hi) < lvl;
ok &= is_const(lo) || !m_nodes[lo].is_internal();
ok &= is_const(hi) || !m_nodes[hi].is_internal();
if (!ok) {
IF_VERBOSE(0, display(verbose_stream() << n.m_index << " lo " << lo << " hi " << hi << "\n"););
UNREACHABLE();
return false;
}
}
return ok;
}
std::ostream& bdd_manager::display(std::ostream& out) {
m_reorder_rc.reserve(m_nodes.size());
for (unsigned i = 0; i < m_nodes.size(); ++i) {
bdd_node const& n = m_nodes[i];
if (n.is_internal()) continue;
out << i << " : v" << m_level2var[n.m_level] << " " << n.m_lo << " " << n.m_hi << " rc " << m_reorder_rc[i] << "\n";
}
for (unsigned i = 0; i < m_level2nodes.size(); ++i) {
out << "level: " << i << " : " << m_level2nodes[i] << "\n";
}
return out;
}
bdd& bdd::operator=(bdd const& other) { unsigned r1 = root; root = other.root; m->inc_ref(root); m->dec_ref(r1); return *this; }
std::ostream& operator<<(std::ostream& out, bdd const& b) { return b.display(out); }
}

260
src/math/dd/dd_bdd.h Normal file
View file

@ -0,0 +1,260 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
dd_bdd
Abstract:
Simple BDD package modeled after BuDDy, which is modeled after CUDD.
Author:
Nikolaj Bjorner (nbjorner) 2017-10-13
Revision History:
--*/
#ifndef DD_BDD_H_
#define DD_BDD_H_
#include "util/vector.h"
#include "util/map.h"
#include "util/small_object_allocator.h"
namespace dd {
class bdd;
class bdd_manager {
friend bdd;
typedef unsigned BDD;
const BDD null_bdd = UINT_MAX;
enum bdd_op {
bdd_and_op = 2,
bdd_or_op = 3,
bdd_xor_op = 4,
bdd_not_op = 5,
bdd_and_proj_op = 6,
bdd_or_proj_op = 7,
bdd_no_op = 8,
};
struct bdd_node {
bdd_node(unsigned level, BDD lo, BDD hi):
m_refcount(0),
m_level(level),
m_lo(lo),
m_hi(hi),
m_index(0)
{}
bdd_node(): m_refcount(0), m_level(0), m_lo(0), m_hi(0), m_index(0) {}
unsigned m_refcount : 10;
unsigned m_level : 22;
BDD m_lo;
BDD m_hi;
unsigned m_index;
unsigned hash() const { return mk_mix(m_level, m_lo, m_hi); }
bool is_internal() const { return m_lo == 0 && m_hi == 0; }
void set_internal() { m_lo = 0; m_hi = 0; }
};
enum cost_metric {
cnf_cost,
dnf_cost,
bdd_cost
};
struct hash_node {
unsigned operator()(bdd_node const& n) const { return n.hash(); }
};
struct eq_node {
bool operator()(bdd_node const& a, bdd_node const& b) const {
return a.m_lo == b.m_lo && a.m_hi == b.m_hi && a.m_level == b.m_level;
}
};
typedef hashtable<bdd_node, hash_node, eq_node> node_table;
struct op_entry {
op_entry(BDD l, BDD r, BDD op):
m_bdd1(l),
m_bdd2(r),
m_op(op),
m_result(0)
{}
BDD m_bdd1;
BDD m_bdd2;
BDD m_op;
BDD m_result;
unsigned hash() const { return mk_mix(m_bdd1, m_bdd2, m_op); }
};
struct hash_entry {
unsigned operator()(op_entry* e) const { return e->hash(); }
};
struct eq_entry {
bool operator()(op_entry * a, op_entry * b) const {
return a->m_bdd1 == b->m_bdd2 && a->m_bdd2 == b->m_bdd2 && a->m_op == b->m_op;
}
};
typedef ptr_hashtable<op_entry, hash_entry, eq_entry> op_table;
svector<bdd_node> m_nodes;
op_table m_op_cache;
node_table m_node_table;
unsigned_vector m_apply_const;
svector<BDD> m_bdd_stack;
op_entry* m_spare_entry;
svector<BDD> m_var2bdd;
unsigned_vector m_var2level, m_level2var;
unsigned_vector m_free_nodes;
small_object_allocator m_alloc;
mutable svector<unsigned> m_mark;
mutable unsigned m_mark_level;
mutable svector<double> m_count;
mutable svector<BDD> m_todo;
bool m_disable_gc;
bool m_is_new_node;
unsigned m_max_num_bdd_nodes;
unsigned_vector m_S, m_T, m_to_free; // used for reordering
vector<unsigned_vector> m_level2nodes;
unsigned_vector m_reorder_rc;
cost_metric m_cost_metric;
BDD m_cost_bdd;
BDD make_node(unsigned level, BDD l, BDD r);
bool is_new_node() const { return m_is_new_node; }
BDD apply_const(BDD a, BDD b, bdd_op op);
BDD apply(BDD arg1, BDD arg2, bdd_op op);
BDD mk_quant(unsigned n, unsigned const* vars, BDD b, bdd_op op);
BDD apply_rec(BDD arg1, BDD arg2, bdd_op op);
BDD mk_not_rec(BDD b);
BDD mk_ite_rec(BDD a, BDD b, BDD c);
BDD mk_quant_rec(unsigned lvl, BDD b, bdd_op op);
void push(BDD b);
void pop(unsigned num_scopes);
BDD read(unsigned index);
op_entry* pop_entry(BDD l, BDD r, BDD op);
void push_entry(op_entry* e);
bool check_result(op_entry*& e1, op_entry const* e2, BDD a, BDD b, BDD c);
double count(BDD b, unsigned z);
void alloc_free_nodes(unsigned n);
void init_mark();
void set_mark(unsigned i) { m_mark[i] = m_mark_level; }
bool is_marked(unsigned i) { return m_mark[i] == m_mark_level; }
void init_reorder();
void reorder_incref(unsigned n);
void reorder_decref(unsigned n);
void sift_up(unsigned level);
void sift_var(unsigned v);
double current_cost();
bool is_bad_cost(double new_cost, double best_cost) const;
static const BDD false_bdd = 0;
static const BDD true_bdd = 1;
static const unsigned max_rc = (1 << 10) - 1;
inline bool is_true(BDD b) const { return b == true_bdd; }
inline bool is_false(BDD b) const { return b == false_bdd; }
inline bool is_const(BDD b) const { return b <= 1; }
inline unsigned level(BDD b) const { return m_nodes[b].m_level; }
inline unsigned var(BDD b) const { return m_level2var[level(b)]; }
inline BDD lo(BDD b) const { return m_nodes[b].m_lo; }
inline BDD hi(BDD b) const { return m_nodes[b].m_hi; }
inline void inc_ref(BDD b) { if (m_nodes[b].m_refcount != max_rc) m_nodes[b].m_refcount++; VERIFY(!m_free_nodes.contains(b)); }
inline void dec_ref(BDD b) { if (m_nodes[b].m_refcount != max_rc) m_nodes[b].m_refcount--; VERIFY(!m_free_nodes.contains(b)); }
inline BDD level2bdd(unsigned l) const { return m_var2bdd[m_level2var[l]]; }
double dnf_size(BDD b) { return count(b, 0); }
double cnf_size(BDD b) { return count(b, 1); }
unsigned bdd_size(bdd const& b);
bdd mk_not(bdd b);
bdd mk_and(bdd const& a, bdd const& b);
bdd mk_or(bdd const& a, bdd const& b);
bdd mk_xor(bdd const& a, bdd const& b);
void reserve_var(unsigned v);
bool well_formed();
public:
struct mem_out {};
bdd_manager(unsigned nodes);
~bdd_manager();
void set_max_num_nodes(unsigned n) { m_max_num_bdd_nodes = n; }
bdd mk_var(unsigned i);
bdd mk_nvar(unsigned i);
bdd mk_true();
bdd mk_false();
bdd mk_exists(unsigned n, unsigned const* vars, bdd const & b);
bdd mk_forall(unsigned n, unsigned const* vars, bdd const & b);
bdd mk_exists(unsigned v, bdd const& b);
bdd mk_forall(unsigned v, bdd const& b);
bdd mk_ite(bdd const& c, bdd const& t, bdd const& e);
std::ostream& display(std::ostream& out);
std::ostream& display(std::ostream& out, bdd const& b);
void gc();
void try_reorder();
void try_cnf_reorder(bdd const& b);
};
class bdd {
friend class bdd_manager;
unsigned root;
bdd_manager* m;
bdd(unsigned root, bdd_manager* m): root(root), m(m) { m->inc_ref(root); }
public:
bdd(bdd & other): root(other.root), m(other.m) { m->inc_ref(root); }
bdd(bdd && other): root(0), m(other.m) { std::swap(root, other.root); }
bdd& operator=(bdd const& other);
~bdd() { m->dec_ref(root); }
bdd lo() const { return bdd(m->lo(root), m); }
bdd hi() const { return bdd(m->hi(root), m); }
unsigned var() const { return m->var(root); }
bool is_true() const { return root == bdd_manager::true_bdd; }
bool is_false() const { return root == bdd_manager::false_bdd; }
bdd operator!() { return m->mk_not(*this); }
bdd operator&&(bdd const& other) { return m->mk_and(*this, other); }
bdd operator||(bdd const& other) { return m->mk_or(*this, other); }
bdd operator^(bdd const& other) { return m->mk_xor(*this, other); }
bdd operator|=(bdd const& other) { return *this = *this || other; }
bdd operator&=(bdd const& other) { return *this = *this && other; }
std::ostream& display(std::ostream& out) const { return m->display(out, *this); }
bool operator==(bdd const& other) const { return root == other.root; }
bool operator!=(bdd const& other) const { return root != other.root; }
double cnf_size() const { return m->cnf_size(root); }
double dnf_size() const { return m->dnf_size(root); }
unsigned bdd_size() const { return m->bdd_size(*this); }
};
std::ostream& operator<<(std::ostream& out, bdd const& b);
}
#endif