3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

niil_solver basic case progress

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2018-08-24 19:57:03 +08:00
parent c1b976fbf4
commit 1fce8ee0b1
2 changed files with 94 additions and 42 deletions

View file

@ -21,14 +21,17 @@ Revision History:
namespace lp {
class explanation {
vector<std::pair<mpq, constraint_index>> m_explanation;
std::unordered_set<unsigned> m_set_of_ci;
public:
void clear() { m_explanation.clear(); }
void clear() { m_explanation.clear(); m_set_of_ci.clear(); }
vector<std::pair<mpq, constraint_index>>::const_iterator begin() const { return m_explanation.begin(); }
vector<std::pair<mpq, constraint_index>>::const_iterator end() const { return m_explanation.end(); }
void push_justification(constraint_index j, const mpq& v) {
m_explanation.push_back(std::make_pair(v, j));
}
void push_justification(constraint_index j) {
if (m_set_of_ci.find(j) != m_set_of_ci.end()) return;
m_set_of_ci.insert(j);
m_explanation.push_back(std::make_pair(one_of_type<mpq>(), j));
}
void reset() { m_explanation.reset(); }

View file

@ -181,7 +181,7 @@ struct solver::imp {
}
template <typename T>
void add_expl_from_monomial(const T & m, expl_set & exp) const {
void add_explanation_of_reducing_to_mininal_monomial(const T & m, expl_set & exp) const {
for (auto j : m)
add_equiv_exp(j, exp);
}
@ -281,8 +281,8 @@ struct solver::imp {
return ! ( sign * m_lar_solver.get_column_value(j) == m_lar_solver.get_column_value(k));
}
void add_expl_from_monomial(const mon_eq& m, expl_set & eset) const {
m_vars_equivalence.add_expl_from_monomial(m, eset);
void add_explanation_of_reducing_to_mininal_monomial(const mon_eq& m, expl_set & eset) const {
m_vars_equivalence.add_explanation_of_reducing_to_mininal_monomial(m, eset);
}
void print_monomial(const mon_eq& m, std::ostream& out) {
@ -291,12 +291,12 @@ struct solver::imp {
out << m_lar_solver.get_column_name(j) << "*";
}
}
// the monomials should be equal by modulo sign, but they are not equal in the model
// the monomials should be equal by modulo sign, but they are not equal in the model module sign
void fill_explanation_and_lemma_sign(const mon_eq& a, const mon_eq & b, int sign) {
expl_set expl;
SASSERT(sign == 1 || sign == -1);
add_expl_from_monomial(a, expl);
add_expl_from_monomial(b, expl);
add_explanation_of_reducing_to_mininal_monomial(a, expl);
add_explanation_of_reducing_to_mininal_monomial(b, expl);
m_expl->clear();
m_expl->add(expl);
TRACE("niil_solver",
@ -335,7 +335,7 @@ struct solver::imp {
}
// replaces each variable by a smaller one and flips the sing if the var comes with a minus
svector<lpvar> reduce_monomial_to_minimal(const svector<lpvar> & vars, int & sign) {
svector<lpvar> reduce_monomial_to_minimal(const svector<lpvar> & vars, int & sign) {
svector<lpvar> ret;
sign = 1;
for (unsigned i = 0; i < vars.size(); i++) {
@ -444,6 +444,7 @@ struct solver::imp {
}
bool generate_basic_lemma_for_mon_zero(unsigned i_mon) {
m_expl->clear();
const rational & mon_val = m_lar_solver.get_column_value(m_monomials[i_mon].var()).x;
bool strict;
int sign = get_mon_sign_zero(i_mon, strict);
@ -477,10 +478,12 @@ struct solver::imp {
ineq in(kind, t);
m_lemma->push_back(in);
TRACE("niil_solver",
tout << "used constraints:\n";
for (auto &p : *m_expl)
m_lar_solver.print_constraint(p.second, tout); tout << "\n";
m_lar_solver.print_constraint(p.second, tout);
tout << "derived constraint ";
m_lar_solver.print_term(t, tout);
tout << " " << lp::lconstraint_kind_string(kind) << " 0\n";
tout << " " << lp::lconstraint_kind_string(kind) << " 0\n";
print_monomial(m_monomials[i_mon], tout); tout << "\n";
lpvar mon_var = m_monomials[i_mon].var();
@ -491,34 +494,49 @@ struct solver::imp {
return true;
}
struct mono_index_with_ci {
struct var_index_with_constraints {
unsigned m_i; // the index of the variable inside of m_vs
unsigned m_lci; // constraint index of the lower bound
unsigned m_uci; // constraint index of the upper bound
svector<unsigned> m_cis; // constraint indices of the lower bound
int m_sign;
mono_index_with_ci() { }
mono_index_with_ci(unsigned i,
unsigned ci_lb,
unsigned ci_ub) : m_i(i), m_lci(ci_lb), m_uci(ci_ub) {}
var_index_with_constraints() { }
var_index_with_constraints(unsigned i,
unsigned ci0,
unsigned ci1) : m_i(i)
{
m_cis.push_back(ci0);
m_cis.push_back(ci1);
}
var_index_with_constraints(unsigned i,
unsigned ci) : m_i(i)
{
m_cis.push_back(ci);
}
void push_ci(unsigned ci) {
m_cis.push_back(ci);
}
unsigned size() const { return m_cis.size(); }
};
bool get_one_of_var(unsigned i, lpvar j, mono_index_with_ci & mi) {
bool get_one_of_var(unsigned i, lpvar j, var_index_with_constraints & mi) {
SASSERT(mi.size() == 0);
lpci lci = -1;
lpci uci = -1;
rational lb, ub;
bool lower_is_strict, upper_is_strict;
m_lar_solver.has_lower_bound(j, lci, lb, lower_is_strict);
m_lar_solver.has_upper_bound(j, uci, ub, upper_is_strict);
if (is_set(uci) && is_set(lci) && ub == rational(1) && ub == lb) {
mi.m_lci = lci;
mi.m_uci = uci;
mi.push_ci(lci);
mi.push_ci(uci);
mi.m_sign = 1;
return true;
}
if (is_set(uci) && is_set(lci) && ub == -rational(1) && ub == lb) {
mi.m_lci = lci;
mi.m_uci = uci;
mi.push_ci(lci);
mi.push_ci(uci);
mi.m_sign = -1;
return true;
}
@ -526,12 +544,12 @@ struct solver::imp {
return false;
}
vector<mono_index_with_ci> get_ones_of_monomimal(const mon_eq& m) {
vector<mono_index_with_ci> ret;
for (unsigned i = 0; i < m.m_vs.size(); i++) {
mono_index_with_ci mi;
get_one_of_var(i, m.m_vs[i], mi);
if (!is_set(mi.m_lci) || !is_set(mi.m_uci))
vector<var_index_with_constraints> get_ones_of_monomimal(const svector<lpvar> & vars) {
vector<var_index_with_constraints> ret;
for (unsigned i = 0; i < vars.size(); i++) {
var_index_with_constraints mi;
get_one_of_var(i, vars[i], mi);
if (mi.size() != 2)
continue;
ret.push_back(mi);
}
@ -540,8 +558,8 @@ struct solver::imp {
void get_large_and_small_indices_of_monomimal(const mon_eq& m,
vector<mono_index_with_ci> & large,
vector<mono_index_with_ci> & small) {
vector<var_index_with_constraints> & large,
vector<var_index_with_constraints> & small) {
for (unsigned i = 0; i < m.m_vs.size(); i++) {
unsigned j = m.m_vs[i];
@ -551,26 +569,24 @@ struct solver::imp {
if (m_lar_solver.has_lower_bound(j, lci, lb, is_strict)) {
SASSERT(!is_strict);
if (lb >= rational(1)) {
large.push_back(mono_index_with_ci(i, lci, static_cast<unsigned>(-1)));
large.push_back(var_index_with_constraints(i, lci, static_cast<unsigned>(-1)));
}
}
if (m_lar_solver.has_upper_bound(j, uci, ub, is_strict)) {
SASSERT(!is_strict);
if (ub <= -rational(1)) {
large.push_back(mono_index_with_ci(i, static_cast<unsigned>(-1), uci));
large.push_back(var_index_with_constraints(i, static_cast<unsigned>(-1), uci));
}
}
if (is_set(lci) && is_set(uci) && -rational(1) <= lb && ub <= rational(1))
small.push_back(mono_index_with_ci(i, lci, uci));
small.push_back(var_index_with_constraints(i, lci, uci));
}
}
bool generate_basic_lemma_for_mon_neutral(unsigned i_mon) {
std::cout << "generate_basic_lemma_for_mon_neutral\n";
const mon_eq & m = m_monomials[i_mon];
vector<mono_index_with_ci> ones_of_mon = get_ones_of_monomimal(m);
// v is the value of monomial, vars is the array of reduced to minimum variables of the monomial
bool generate_basic_neutral_for_reduced_monomial(const mon_eq & m, const rational & v, const svector<lpvar> & vars) {
vector<var_index_with_constraints> ones_of_mon = get_ones_of_monomimal(vars);
// if abs(m.m_vs[j]) is 1, then ones_of_mon[j] = sign, where sign is 1 in case of m.m_vs[j] = 1, or -1 otherwise.
if (ones_of_mon.empty()) {
@ -580,15 +596,48 @@ struct solver::imp {
if (m_minimal_monomials.empty() && m.size() > 2)
create_min_map();
return false;
return process_ones_of_mon(m, ones_of_mon);
}
bool generate_basic_lemma_for_mon_neutral(unsigned i_mon) {
std::cout << "generate_basic_lemma_for_mon_neutral\n";
const mon_eq & m = m_monomials[i_mon];
int sign;
svector<lpvar> reduced_vars = reduce_monomial_to_minimal(m.m_vs, sign);
rational v = m_lar_solver.get_column_value_rational(m.m_v);
if (sign == -1)
v = -v;
return generate_basic_neutral_for_reduced_monomial(m, v, reduced_vars);
}
bool process_ones_of_mon(const mon_eq& m,
const vector<var_index_with_constraints>& ones_of_monomial) {
svector<unsigned> mask(ones_of_monomial.size(), (unsigned) 0);
int sign;
svector<lpvar> min_mon = reduce_monomial_to_minimal(m.m_vs, sign);
// We will by crossing out the ones representing the mask from min_mon
do {
for (unsigned k = 0; k < mask.size(); k++) {
if (mask[k] == 0) {
mask[k] = 1;
sign *= ones_of_monomial[k].m_sign;
min_mon.erase(ones_of_monomial[k].m_i);
SASSERT(false);
} else {
SASSERT(mask[k] == 1);
sign *= ones_of_monomial[k].m_sign;
}
}
} while(true);
return false;
}
bool generate_basic_lemma_for_mon_proportionality(unsigned i_mon) {
std::cout << "generate_basic_lemma_for_mon_proportionality\n";
const mon_eq & m = m_monomials[i_mon];
vector<mono_index_with_ci> large;
vector<mono_index_with_ci> small;
vector<var_index_with_constraints> large;
vector<var_index_with_constraints> small;
get_large_and_small_indices_of_monomimal(m, large, small);
// if abs(m.m_vs[j]) is 1, then ones_of_mon[j] = sign, where sign is 1 in case of m.m_vs[j] = 1, or -1 otherwise.