3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 21:38:44 +00:00

fix the test build

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2020-04-14 16:44:32 -07:00
parent 95cb828324
commit 1f23ae8aae
3 changed files with 116 additions and 207 deletions

View file

@ -1,22 +1,22 @@
/*++ /*++
Copyright (c) 2017 Microsoft Corporation Copyright (c) 2017 Microsoft Corporation
Module Name: Module Name:
<name> <name>
Abstract: Abstract:
<abstract> <abstract>
Author: Author:
Nikolaj Bjorner (nbjorner) Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach) Lev Nachmanson (levnach)
Revision History: Revision History:
--*/ --*/
#pragma once #pragma once
#include "util/vector.h" #include "util/vector.h"
#include <utility> #include <utility>
@ -99,28 +99,20 @@ class lar_solver : public column_namer {
vector<lar_term*> m_terms; vector<lar_term*> m_terms;
indexed_vector<mpq> m_column_buffer; indexed_vector<mpq> m_column_buffer;
std::unordered_map<lar_term, std::pair<mpq, unsigned>, term_hasher, term_comparer> std::unordered_map<lar_term, std::pair<mpq, unsigned>, term_hasher, term_comparer>
m_normalized_terms_to_columns; m_normalized_terms_to_columns;
vector<impq> m_backup_x; vector<impq> m_backup_x;
// end of fields // end of fields
////////////////// methods //////////////////////////////// ////////////////// methods ////////////////////////////////
static_matrix<double, double> & A_d(); static_matrix<double, double> & A_d();
static_matrix<double, double > const & A_d() const; static_matrix<double, double > const & A_d() const;
static bool valid_index(unsigned j) { return static_cast<int>(j) >= 0;} static bool valid_index(unsigned j) { return static_cast<int>(j) >= 0;}
inline void set_column_value(unsigned j, const impq& v) {
m_mpq_lar_core_solver.m_r_solver.update_x(j, v);
}
unsigned external_to_column_index(unsigned) const; unsigned external_to_column_index(unsigned) const;
const lar_term & get_term(unsigned j) const; const lar_term & get_term(unsigned j) const;
bool row_has_a_big_num(unsigned i) const; bool row_has_a_big_num(unsigned i) const;
// init region // init region
bool strategy_is_undecided() const; bool strategy_is_undecided() const;
var_index add_named_var(unsigned ext_j, bool is_integer, const std::string&);
void register_new_ext_var_index(unsigned ext_v, bool is_int); void register_new_ext_var_index(unsigned ext_v, bool is_int);
bool term_is_int(const lar_term * t) const; bool term_is_int(const lar_term * t) const;
bool term_is_int(const vector<std::pair<mpq, unsigned int>> & coeffs) const; bool term_is_int(const vector<std::pair<mpq, unsigned int>> & coeffs) const;
@ -157,170 +149,85 @@ class lar_solver : public column_namer {
m_crossed_bounds_column = j; m_crossed_bounds_column = j;
} }
constraint_index add_constraint_from_term_and_create_new_column_row(unsigned term_j, const lar_term* term, constraint_index add_constraint_from_term_and_create_new_column_row(unsigned term_j, const lar_term* term,
lconstraint_kind kind, const mpq & right_side); lconstraint_kind kind, const mpq & right_side);
unsigned row_of_basic_column(unsigned) const; unsigned row_of_basic_column(unsigned) const;
void decide_on_strategy_and_adjust_initial_state(); void decide_on_strategy_and_adjust_initial_state();
void adjust_initial_state(); void adjust_initial_state();
void adjust_initial_state_for_lu(); void adjust_initial_state_for_lu();
void adjust_initial_state_for_tableau_rows(); void adjust_initial_state_for_tableau_rows();
// this fills the last row of A_d and sets the basis column: -1 in the last column of the row
void fill_last_row_of_A_d(static_matrix<double, double> & A, const lar_term* ls); void fill_last_row_of_A_d(static_matrix<double, double> & A, const lar_term* ls);
//end of init region
void clear(); void clear();
bool use_lu() const; bool use_lu() const;
bool sizes_are_correct() const; bool sizes_are_correct() const;
bool implied_bound_is_correctly_explained(implied_bound const & be, const vector<std::pair<mpq, unsigned>> & explanation) const; bool implied_bound_is_correctly_explained(implied_bound const & be, const vector<std::pair<mpq, unsigned>> & explanation) const;
void analyze_new_bounds_on_row( void analyze_new_bounds_on_row(
unsigned row_index, unsigned row_index,
lp_bound_propagator & bp); lp_bound_propagator & bp);
void analyze_new_bounds_on_row_tableau( void analyze_new_bounds_on_row_tableau(
unsigned row_index, unsigned row_index,
lp_bound_propagator & bp); lp_bound_propagator & bp);
void substitute_basis_var_in_terms_for_row(unsigned i); void substitute_basis_var_in_terms_for_row(unsigned i);
void calculate_implied_bounds_for_row(unsigned i, lp_bound_propagator & bp);
void calculate_implied_bounds_for_row(unsigned i, lp_bound_propagator & bp);
void propagate_bounds_on_a_term(const lar_term& t, lp_bound_propagator & bp, unsigned term_offset); void propagate_bounds_on_a_term(const lar_term& t, lp_bound_propagator & bp, unsigned term_offset);
unsigned get_total_iterations() const;
// see http://research.microsoft.com/projects/z3/smt07.pdf
// This method searches for a feasible solution with as many different values of variables, reverenced in vars, as it can find
// Attention, after a call to this method the non-basic variables don't necesserarly stick to their bounds anymore
vector<unsigned> get_list_of_all_var_indices() const;
static void clean_popped_elements(unsigned n, u_set& set); static void clean_popped_elements(unsigned n, u_set& set);
static void shrink_inf_set_after_pop(unsigned n, u_set & set); static void shrink_inf_set_after_pop(unsigned n, u_set & set);
bool maximize_term_on_tableau(const lar_term & term, bool maximize_term_on_tableau(const lar_term & term,
impq &term_max); impq &term_max);
bool costs_are_zeros_for_r_solver() const; bool costs_are_zeros_for_r_solver() const;
bool reduced_costs_are_zeroes_for_r_solver() const; bool reduced_costs_are_zeroes_for_r_solver() const;
void set_costs_to_zero(const lar_term & term); void set_costs_to_zero(const lar_term & term);
void prepare_costs_for_r_solver(const lar_term & term); void prepare_costs_for_r_solver(const lar_term & term);
bool maximize_term_on_corrected_r_solver(lar_term & term, impq &term_max); bool maximize_term_on_corrected_r_solver(lar_term & term, impq &term_max);
// starting from a given feasible state look for the maximum of the term
// return true if found and false if unbounded
void pop_core_solver_params(); void pop_core_solver_params();
void pop_core_solver_params(unsigned k); void pop_core_solver_params(unsigned k);
void set_upper_bound_witness(var_index j, constraint_index ci); void set_upper_bound_witness(var_index j, constraint_index ci);
void set_lower_bound_witness(var_index j, constraint_index ci); void set_lower_bound_witness(var_index j, constraint_index ci);
void substitute_terms_in_linear_expression( const vector<std::pair<mpq, var_index>>& left_side_with_terms, void substitute_terms_in_linear_expression( const vector<std::pair<mpq, var_index>>& left_side_with_terms,
vector<std::pair<mpq, var_index>> &left_side) const; vector<std::pair<mpq, var_index>> &left_side) const;
void detect_rows_of_bound_change_column_for_nbasic_column(unsigned j); void detect_rows_of_bound_change_column_for_nbasic_column(unsigned j);
void detect_rows_of_bound_change_column_for_nbasic_column_tableau(unsigned j); void detect_rows_of_bound_change_column_for_nbasic_column_tableau(unsigned j);
bool use_tableau() const; bool use_tableau() const;
bool use_tableau_costs() const; bool use_tableau_costs() const;
void detect_rows_of_column_with_bound_change(unsigned j); void detect_rows_of_column_with_bound_change(unsigned j);
void adjust_x_of_column(unsigned j); void adjust_x_of_column(unsigned j);
bool tableau_with_costs() const; bool tableau_with_costs() const;
bool costs_are_used() const; bool costs_are_used() const;
void change_basic_columns_dependend_on_a_given_nb_column(unsigned j, const numeric_pair<mpq> & delta); void change_basic_columns_dependend_on_a_given_nb_column(unsigned j, const numeric_pair<mpq> & delta);
void update_x_and_inf_costs_for_column_with_changed_bounds(unsigned j); void update_x_and_inf_costs_for_column_with_changed_bounds(unsigned j);
unsigned num_changed_bounds() const { return m_rows_with_changed_bounds.size(); } unsigned num_changed_bounds() const { return m_rows_with_changed_bounds.size(); }
void detect_rows_with_changed_bounds_for_column(unsigned j); void detect_rows_with_changed_bounds_for_column(unsigned j);
void detect_rows_with_changed_bounds(); void detect_rows_with_changed_bounds();
void set_value_for_nbasic_column(unsigned j, const impq & new_val); void set_value_for_nbasic_column(unsigned j, const impq & new_val);
void update_x_and_inf_costs_for_columns_with_changed_bounds(); void update_x_and_inf_costs_for_columns_with_changed_bounds();
void update_x_and_inf_costs_for_columns_with_changed_bounds_tableau(); void update_x_and_inf_costs_for_columns_with_changed_bounds_tableau();
void solve_with_core_solver(); void solve_with_core_solver();
numeric_pair<mpq> get_basic_var_value_from_row(unsigned i); numeric_pair<mpq> get_basic_var_value_from_row(unsigned i);
template <typename K, typename L> template <typename K, typename L>
void add_last_rows_to_lu(lp_primal_core_solver<K,L> & s); void add_last_rows_to_lu(lp_primal_core_solver<K,L> & s);
bool x_is_correct() const; bool x_is_correct() const;
void fill_last_row_of_A_r(static_matrix<mpq, numeric_pair<mpq>> & A, const lar_term * ls); void fill_last_row_of_A_r(static_matrix<mpq, numeric_pair<mpq>> & A, const lar_term * ls);
template <typename U, typename V> template <typename U, typename V>
void create_matrix_A(static_matrix<U, V> & matr); void create_matrix_A(static_matrix<U, V> & matr);
template <typename U, typename V> template <typename U, typename V>
void copy_from_mpq_matrix(static_matrix<U, V> & matr); void copy_from_mpq_matrix(static_matrix<U, V> & matr);
bool try_to_set_fixed(column_info<mpq> & ci); bool try_to_set_fixed(column_info<mpq> & ci);
bool all_constrained_variables_are_registered(const vector<std::pair<mpq, var_index>>& left_side); bool all_constrained_variables_are_registered(const vector<std::pair<mpq, var_index>>& left_side);
bool all_constraints_hold() const; bool all_constraints_hold() const;
bool constraint_holds(const lar_base_constraint & constr, std::unordered_map<var_index, mpq> & var_map) const; bool constraint_holds(const lar_base_constraint & constr, std::unordered_map<var_index, mpq> & var_map) const;
bool the_relations_are_of_same_type(const vector<std::pair<mpq, unsigned>> & evidence, lconstraint_kind & the_kind_of_sum) const; bool the_relations_are_of_same_type(const vector<std::pair<mpq, unsigned>> & evidence, lconstraint_kind & the_kind_of_sum) const;
static void register_in_map(std::unordered_map<var_index, mpq> & coeffs, const lar_base_constraint & cn, const mpq & a); static void register_in_map(std::unordered_map<var_index, mpq> & coeffs, const lar_base_constraint & cn, const mpq & a);
static void register_monoid_in_map(std::unordered_map<var_index, mpq> & coeffs, const mpq & a, unsigned j); static void register_monoid_in_map(std::unordered_map<var_index, mpq> & coeffs, const mpq & a, unsigned j);
bool the_left_sides_sum_to_zero(const vector<std::pair<mpq, unsigned>> & evidence) const; bool the_left_sides_sum_to_zero(const vector<std::pair<mpq, unsigned>> & evidence) const;
bool the_right_sides_do_not_sum_to_zero(const vector<std::pair<mpq, unsigned>> & evidence); bool the_right_sides_do_not_sum_to_zero(const vector<std::pair<mpq, unsigned>> & evidence);
bool explanation_is_correct(explanation&) const; bool explanation_is_correct(explanation&) const;
bool inf_explanation_is_correct() const; bool inf_explanation_is_correct() const;
mpq sum_of_right_sides_of_explanation(explanation &) const; mpq sum_of_right_sides_of_explanation(explanation &) const;
void get_infeasibility_explanation_for_inf_sign( void get_infeasibility_explanation_for_inf_sign(
explanation & exp, explanation & exp,
const vector<std::pair<mpq, unsigned>> & inf_row, const vector<std::pair<mpq, unsigned>> & inf_row,
int inf_sign) const; int inf_sign) const;
mpq get_left_side_val(const lar_base_constraint & cns, const std::unordered_map<var_index, mpq> & var_map) const; mpq get_left_side_val(const lar_base_constraint & cns, const std::unordered_map<var_index, mpq> & var_map) const;
void fill_var_set_for_random_update(unsigned sz, var_index const * vars, vector<unsigned>& column_list); void fill_var_set_for_random_update(unsigned sz, var_index const * vars, vector<unsigned>& column_list);
void pivot_fixed_vars_from_basis(); void pivot_fixed_vars_from_basis();
bool column_represents_row_in_tableau(unsigned j); bool column_represents_row_in_tableau(unsigned j);
void make_sure_that_the_bottom_right_elem_not_zero_in_tableau(unsigned i, unsigned j); void make_sure_that_the_bottom_right_elem_not_zero_in_tableau(unsigned i, unsigned j);
@ -332,16 +239,9 @@ class lar_solver : public column_namer {
void pop_tableau(); void pop_tableau();
void clean_inf_set_of_r_solver_after_pop(); void clean_inf_set_of_r_solver_after_pop();
void shrink_explanation_to_minimum(vector<std::pair<mpq, constraint_index>> & explanation) const; void shrink_explanation_to_minimum(vector<std::pair<mpq, constraint_index>> & explanation) const;
inline bool column_value_is_integer(unsigned j) const { return get_column_value(j).is_int(); }
bool column_value_is_integer(unsigned j) const {
return get_column_value(j).is_int();
}
bool model_is_int_feasible() const; bool model_is_int_feasible() const;
inline
indexed_vector<mpq> & get_column_in_lu_mode(unsigned j) { indexed_vector<mpq> & get_column_in_lu_mode(unsigned j) {
m_column_buffer.clear(); m_column_buffer.clear();
m_column_buffer.resize(A_r().row_count()); m_column_buffer.resize(A_r().row_count());
@ -349,10 +249,10 @@ class lar_solver : public column_namer {
return m_column_buffer; return m_column_buffer;
} }
bool bound_is_integer_for_integer_column(unsigned j, const mpq & right_side) const; bool bound_is_integer_for_integer_column(unsigned j, const mpq & right_side) const;
unsigned get_base_column_in_row(unsigned row_index) const { inline unsigned get_base_column_in_row(unsigned row_index) const {
return m_mpq_lar_core_solver.m_r_solver.get_base_column_in_row(row_index); return m_mpq_lar_core_solver.m_r_solver.get_base_column_in_row(row_index);
} }
lar_core_solver & get_core_solver() { return m_mpq_lar_core_solver; } inline lar_core_solver & get_core_solver() { return m_mpq_lar_core_solver; }
void catch_up_in_updating_int_solver(); void catch_up_in_updating_int_solver();
var_index to_column(unsigned ext_j) const; var_index to_column(unsigned ext_j) const;
void fix_terms_with_rounded_columns(); void fix_terms_with_rounded_columns();
@ -365,7 +265,16 @@ class lar_solver : public column_namer {
void register_normalized_term(const lar_term&, lpvar); void register_normalized_term(const lar_term&, lpvar);
void deregister_normalized_term(const lar_term&); void deregister_normalized_term(const lar_term&);
bool inside_bounds(lpvar, const impq&) const; bool inside_bounds(lpvar, const impq&) const;
inline void set_column_value(unsigned j, const impq& v) {
m_mpq_lar_core_solver.m_r_solver.update_x(j, v);
}
public: public:
vector<unsigned> get_list_of_all_var_indices() const;
inline void set_column_value_test(unsigned j, const impq& v) {
set_column_value(j, v);
}
unsigned get_total_iterations() const;
var_index add_named_var(unsigned ext_j, bool is_integer, const std::string&);
lp_status maximize_term(unsigned j_or_term, impq &term_max); lp_status maximize_term(unsigned j_or_term, impq &term_max);
inline inline
core_solver_pretty_printer<lp::mpq, lp::impq> pp(std::ostream& out) { return core_solver_pretty_printer<lp::mpq, lp::impq> pp(std::ostream& out) { return
@ -423,10 +332,10 @@ public:
const impq& get_lower_bound(column_index j) const { const impq& get_lower_bound(column_index j) const {
return m_mpq_lar_core_solver.m_r_solver.m_lower_bounds[j]; return m_mpq_lar_core_solver.m_r_solver.m_lower_bounds[j];
} }
bool has_lower_bound(var_index var, constraint_index& ci, mpq& value, bool& is_strict) const; bool has_lower_bound(var_index var, constraint_index& ci, mpq& value, bool& is_strict) const;
bool has_upper_bound(var_index var, constraint_index& ci, mpq& value, bool& is_strict) const; bool has_upper_bound(var_index var, constraint_index& ci, mpq& value, bool& is_strict) const;
bool has_value(var_index var, mpq& value) const; bool has_value(var_index var, mpq& value) const;
bool fetch_normalized_term_column(const lar_term& t, std::pair<mpq, lpvar>& ) const; bool fetch_normalized_term_column(const lar_term& t, std::pair<mpq, lpvar>& ) const;
unsigned map_term_index_to_column_index(unsigned j) const; unsigned map_term_index_to_column_index(unsigned j) const;
bool column_is_fixed(unsigned j) const; bool column_is_fixed(unsigned j) const;
bool column_is_free(unsigned j) const; bool column_is_free(unsigned j) const;
@ -447,7 +356,7 @@ bool fetch_normalized_term_column(const lar_term& t, std::pair<mpq, lpvar>& ) co
void get_model_do_not_care_about_diff_vars(std::unordered_map<var_index, mpq> & variable_values) const; void get_model_do_not_care_about_diff_vars(std::unordered_map<var_index, mpq> & variable_values) const;
std::string get_variable_name(var_index vi) const; std::string get_variable_name(var_index vi) const;
void set_variable_name(var_index vi, std::string); void set_variable_name(var_index vi, std::string);
unsigned number_of_vars() const { return m_var_register.size(); } inline unsigned number_of_vars() const { return m_var_register.size(); }
inline bool is_base(unsigned j) const { return m_mpq_lar_core_solver.m_r_heading[j] >= 0; } inline bool is_base(unsigned j) const { return m_mpq_lar_core_solver.m_r_heading[j] >= 0; }
inline const impq & column_lower_bound(unsigned j) const { inline const impq & column_lower_bound(unsigned j) const {
return m_mpq_lar_core_solver.lower_bound(j); return m_mpq_lar_core_solver.lower_bound(j);
@ -511,7 +420,7 @@ bool fetch_normalized_term_column(const lar_term& t, std::pair<mpq, lpvar>& ) co
inline lar_term const& term(unsigned i) const { return *m_terms[i]; } inline lar_term const& term(unsigned i) const { return *m_terms[i]; }
inline void set_int_solver(int_solver * int_slv) { m_int_solver = int_slv; } inline void set_int_solver(int_solver * int_slv) { m_int_solver = int_slv; }
inline int_solver * get_int_solver() { return m_int_solver; } inline int_solver * get_int_solver() { return m_int_solver; }
const lar_term & get_term(tv const& t) const { lp_assert(t.is_term()); return *m_terms[t.id()]; } inline const lar_term & get_term(tv const& t) const { lp_assert(t.is_term()); return *m_terms[t.id()]; }
lp_status find_feasible_solution(); lp_status find_feasible_solution();
bool move_non_basic_columns_to_bounds(); bool move_non_basic_columns_to_bounds();
bool move_non_basic_column_to_bounds(unsigned j); bool move_non_basic_column_to_bounds(unsigned j);
@ -528,9 +437,9 @@ bool fetch_normalized_term_column(const lar_term& t, std::pair<mpq, lpvar>& ) co
bool ax_is_correct() const; bool ax_is_correct() const;
bool get_equality_and_right_side_for_term_on_current_x(tv const& t, mpq &rs, constraint_index& ci, bool &upper_bound) const; bool get_equality_and_right_side_for_term_on_current_x(tv const& t, mpq &rs, constraint_index& ci, bool &upper_bound) const;
bool var_is_int(var_index v) const; bool var_is_int(var_index v) const;
const vector<int> & r_heading() const { return m_mpq_lar_core_solver.m_r_heading; } inline const vector<int> & r_heading() const { return m_mpq_lar_core_solver.m_r_heading; }
const vector<unsigned> & r_basis() const { return m_mpq_lar_core_solver.r_basis(); } inline const vector<unsigned> & r_basis() const { return m_mpq_lar_core_solver.r_basis(); }
const vector<unsigned> & r_nbasis() const { return m_mpq_lar_core_solver.r_nbasis(); } inline const vector<unsigned> & r_nbasis() const { return m_mpq_lar_core_solver.r_nbasis(); }
inline bool column_is_real(unsigned j) const { return !column_is_int(j); } inline bool column_is_real(unsigned j) const { return !column_is_int(j); }
lp_status get_status() const; lp_status get_status() const;
void set_status(lp_status s); void set_status(lp_status s);
@ -544,7 +453,7 @@ bool fetch_normalized_term_column(const lar_term& t, std::pair<mpq, lpvar>& ) co
virtual ~lar_solver(); virtual ~lar_solver();
const vector<impq>& r_x() const { return m_mpq_lar_core_solver.m_r_x; } const vector<impq>& r_x() const { return m_mpq_lar_core_solver.m_r_x; }
bool column_is_int(unsigned j) const; bool column_is_int(unsigned j) const;
bool column_value_is_int(unsigned j) const { return m_mpq_lar_core_solver.m_r_x[j].is_int(); } inline bool column_value_is_int(unsigned j) const { return m_mpq_lar_core_solver.m_r_x[j].is_int(); }
inline static_matrix<mpq, impq> & A_r() { return m_mpq_lar_core_solver.m_r_A; } inline static_matrix<mpq, impq> & A_r() { return m_mpq_lar_core_solver.m_r_A; }
inline const static_matrix<mpq, impq> & A_r() const { return m_mpq_lar_core_solver.m_r_A; } inline const static_matrix<mpq, impq> & A_r() const { return m_mpq_lar_core_solver.m_r_A; }
const impq& get_column_value(unsigned j) const { return m_mpq_lar_core_solver.m_r_x[j]; } const impq& get_column_value(unsigned j) const { return m_mpq_lar_core_solver.m_r_x[j]; }

View file

@ -2962,7 +2962,7 @@ void test_term() {
} }
std::cout << solver.constraints(); std::cout << solver.constraints();
std::cout << "\ntableau before cube\n"; std::cout << "\ntableau before cube\n";
solver.m_mpq_lar_core_solver.m_r_solver.pretty_print(std::cout); solver.pp(std::cout).print();
std::cout << "\n"; std::cout << "\n";
int_solver i_s(solver); int_solver i_s(solver);
solver.set_int_solver(&i_s); solver.set_int_solver(&i_s);
@ -2977,7 +2977,7 @@ void test_term() {
} }
std::cout << "\ntableu after cube\n"; std::cout << "\ntableu after cube\n";
solver.m_mpq_lar_core_solver.m_r_solver.pretty_print(std::cout); solver.pp(std::cout).print();
std::cout << "Ax_is_correct = " << solver.ax_is_correct() << "\n"; std::cout << "Ax_is_correct = " << solver.ax_is_correct() << "\n";
} }

View file

@ -183,14 +183,14 @@ void test_basic_lemma_for_mon_neutral_from_factors_to_monomial_0() {
// set abcde = ac * bde // set abcde = ac * bde
// ac = 1 then abcde = bde, but we have abcde < bde // ac = 1 then abcde = bde, but we have abcde < bde
s.set_column_value(lp_a, lp::impq(rational(4))); s.set_column_value_test(lp_a, lp::impq(rational(4)));
s.set_column_value(lp_b, lp::impq(rational(4))); s.set_column_value_test(lp_b, lp::impq(rational(4)));
s.set_column_value(lp_c, lp::impq(rational(4))); s.set_column_value_test(lp_c, lp::impq(rational(4)));
s.set_column_value(lp_d, lp::impq(rational(4))); s.set_column_value_test(lp_d, lp::impq(rational(4)));
s.set_column_value(lp_e, lp::impq(rational(4))); s.set_column_value_test(lp_e, lp::impq(rational(4)));
s.set_column_value(lp_abcde, lp::impq(rational(15))); s.set_column_value_test(lp_abcde, lp::impq(rational(15)));
s.set_column_value(lp_ac, lp::impq(rational(1))); s.set_column_value_test(lp_ac, lp::impq(rational(1)));
s.set_column_value(lp_bde, lp::impq(rational(16))); s.set_column_value_test(lp_bde, lp::impq(rational(16)));
SASSERT(nla.get_core().test_check(lv) == l_false); SASSERT(nla.get_core().test_check(lv) == l_false);
@ -223,12 +223,12 @@ void test_basic_lemma_for_mon_neutral_from_factors_to_monomial_0() {
} }
void s_set_column_value(lp::lar_solver&s, lpvar j, const rational & v) { void s_set_column_value_test(lp::lar_solver&s, lpvar j, const rational & v) {
s.set_column_value(j, lp::impq(v)); s.set_column_value_test(j, lp::impq(v));
} }
void s_set_column_value(lp::lar_solver&s, lpvar j, const lp::impq & v) { void s_set_column_value_test(lp::lar_solver&s, lpvar j, const lp::impq & v) {
s.set_column_value(j, v); s.set_column_value_test(j, v);
} }
void test_basic_lemma_for_mon_neutral_from_factors_to_monomial_1() { void test_basic_lemma_for_mon_neutral_from_factors_to_monomial_1() {
@ -252,12 +252,12 @@ void test_basic_lemma_for_mon_neutral_from_factors_to_monomial_1() {
vector<lemma> lemma; vector<lemma> lemma;
s_set_column_value(s, lp_a, rational(1)); s_set_column_value_test(s, lp_a, rational(1));
s_set_column_value(s, lp_b, rational(1)); s_set_column_value_test(s, lp_b, rational(1));
s_set_column_value(s, lp_c, rational(1)); s_set_column_value_test(s, lp_c, rational(1));
s_set_column_value(s, lp_d, rational(1)); s_set_column_value_test(s, lp_d, rational(1));
s_set_column_value(s, lp_e, rational(1)); s_set_column_value_test(s, lp_e, rational(1));
s_set_column_value(s, lp_bde, rational(3)); s_set_column_value_test(s, lp_bde, rational(3));
SASSERT(nla.get_core().test_check(lemma) == l_false); SASSERT(nla.get_core().test_check(lemma) == l_false);
SASSERT(lemma[0].size() == 4); SASSERT(lemma[0].size() == 4);
@ -332,16 +332,16 @@ void test_basic_lemma_for_mon_zero_from_factors_to_monomial() {
vector<lemma> lemma; vector<lemma> lemma;
// set vars // set vars
s_set_column_value(s, lp_a, rational(1)); s_set_column_value_test(s, lp_a, rational(1));
s_set_column_value(s, lp_b, rational(0)); s_set_column_value_test(s, lp_b, rational(0));
s_set_column_value(s, lp_c, rational(1)); s_set_column_value_test(s, lp_c, rational(1));
s_set_column_value(s, lp_d, rational(1)); s_set_column_value_test(s, lp_d, rational(1));
s_set_column_value(s, lp_e, rational(1)); s_set_column_value_test(s, lp_e, rational(1));
s_set_column_value(s, lp_abcde, rational(0)); s_set_column_value_test(s, lp_abcde, rational(0));
s_set_column_value(s, lp_ac, rational(1)); s_set_column_value_test(s, lp_ac, rational(1));
s_set_column_value(s, lp_bde, rational(0)); s_set_column_value_test(s, lp_bde, rational(0));
s_set_column_value(s, lp_acd, rational(1)); s_set_column_value_test(s, lp_acd, rational(1));
s_set_column_value(s, lp_be, rational(1)); s_set_column_value_test(s, lp_be, rational(1));
SASSERT(nla.get_core().test_check(lemma) == l_false); SASSERT(nla.get_core().test_check(lemma) == l_false);
nla.get_core().print_lemma(std::cout); nla.get_core().print_lemma(std::cout);
@ -387,10 +387,10 @@ void test_basic_lemma_for_mon_zero_from_monomial_to_factors() {
nla.add_monic(lp_acd, vec.size(), vec.begin()); nla.add_monic(lp_acd, vec.size(), vec.begin());
vector<lemma> lemma; vector<lemma> lemma;
s_set_column_value(s, lp_a, rational(1)); s_set_column_value_test(s, lp_a, rational(1));
s_set_column_value(s, lp_c, rational(1)); s_set_column_value_test(s, lp_c, rational(1));
s_set_column_value(s, lp_d, rational(1)); s_set_column_value_test(s, lp_d, rational(1));
s_set_column_value(s, lp_acd, rational(0)); s_set_column_value_test(s, lp_acd, rational(0));
SASSERT(nla.get_core().test_check(lemma) == l_false); SASSERT(nla.get_core().test_check(lemma) == l_false);
@ -455,22 +455,22 @@ void test_basic_lemma_for_mon_neutral_from_monomial_to_factors() {
vector<lemma> lemma; vector<lemma> lemma;
// set all vars to 1 // set all vars to 1
s_set_column_value(s, lp_a, rational(1)); s_set_column_value_test(s, lp_a, rational(1));
s_set_column_value(s, lp_b, rational(1)); s_set_column_value_test(s, lp_b, rational(1));
s_set_column_value(s, lp_c, rational(1)); s_set_column_value_test(s, lp_c, rational(1));
s_set_column_value(s, lp_d, rational(1)); s_set_column_value_test(s, lp_d, rational(1));
s_set_column_value(s, lp_e, rational(1)); s_set_column_value_test(s, lp_e, rational(1));
s_set_column_value(s, lp_abcde, rational(1)); s_set_column_value_test(s, lp_abcde, rational(1));
s_set_column_value(s, lp_ac, rational(1)); s_set_column_value_test(s, lp_ac, rational(1));
s_set_column_value(s, lp_bde, rational(1)); s_set_column_value_test(s, lp_bde, rational(1));
s_set_column_value(s, lp_acd, rational(1)); s_set_column_value_test(s, lp_acd, rational(1));
s_set_column_value(s, lp_be, rational(1)); s_set_column_value_test(s, lp_be, rational(1));
// set bde to 2, b to minus 2 // set bde to 2, b to minus 2
s_set_column_value(s, lp_bde, rational(2)); s_set_column_value_test(s, lp_bde, rational(2));
s_set_column_value(s, lp_b, - rational(2)); s_set_column_value_test(s, lp_b, - rational(2));
// we have bde = -b, therefore d = +-1 and e = +-1 // we have bde = -b, therefore d = +-1 and e = +-1
s_set_column_value(s, lp_d, rational(3)); s_set_column_value_test(s, lp_d, rational(3));
SASSERT(nla.get_core().test_check(lemma) == l_false); SASSERT(nla.get_core().test_check(lemma) == l_false);
@ -573,18 +573,18 @@ void test_basic_sign_lemma() {
// set the values of the factors so it should be bde = -acd according to the model // set the values of the factors so it should be bde = -acd according to the model
// b = -a // b = -a
s_set_column_value(s, lp_a, rational(7)); s_set_column_value_test(s, lp_a, rational(7));
s_set_column_value(s, lp_b, rational(-7)); s_set_column_value_test(s, lp_b, rational(-7));
// e - c = 0 // e - c = 0
s_set_column_value(s, lp_e, rational(4)); s_set_column_value_test(s, lp_e, rational(4));
s_set_column_value(s, lp_c, rational(4)); s_set_column_value_test(s, lp_c, rational(4));
s_set_column_value(s, lp_d, rational(6)); s_set_column_value_test(s, lp_d, rational(6));
// make bde != -acd according to the model // make bde != -acd according to the model
s_set_column_value(s, lp_bde, rational(5)); s_set_column_value_test(s, lp_bde, rational(5));
s_set_column_value(s, lp_acd, rational(3)); s_set_column_value_test(s, lp_acd, rational(3));
vector<lemma> lemmas; vector<lemma> lemmas;
SASSERT(nla.get_core().test_check(lemmas) == l_false); SASSERT(nla.get_core().test_check(lemmas) == l_false);
@ -623,7 +623,7 @@ void test_order_lemma_params(bool var_equiv, int sign) {
lpvar lp_cdij = s.add_named_var(cdij, true, "cdij"); lpvar lp_cdij = s.add_named_var(cdij, true, "cdij");
for (unsigned j = 0; j < s.number_of_vars(); j++) { for (unsigned j = 0; j < s.number_of_vars(); j++) {
s_set_column_value(s, j, rational(j + 2)); s_set_column_value_test(s, j, rational(j + 2));
} }
reslimit l; reslimit l;
@ -679,17 +679,17 @@ void test_order_lemma_params(bool var_equiv, int sign) {
auto mon_cdij = nla.add_monic(lp_cdij, vec.size(), vec.begin()); auto mon_cdij = nla.add_monic(lp_cdij, vec.size(), vec.begin());
// set i == e // set i == e
s_set_column_value(s, lp_e, s.get_column_value(lp_i)); s_set_column_value_test(s, lp_e, s.get_column_value(lp_i));
// set f == sign*j // set f == sign*j
s_set_column_value(s, lp_f, rational(sign) * s.get_column_value(lp_j)); s_set_column_value_test(s, lp_f, rational(sign) * s.get_column_value(lp_j));
if (var_equiv) { if (var_equiv) {
s_set_column_value(s, lp_k, s.get_column_value(lp_j)); s_set_column_value_test(s, lp_k, s.get_column_value(lp_j));
} }
// set the values of ab, ef, cd, and ij correctly // set the values of ab, ef, cd, and ij correctly
s_set_column_value(s, lp_ab, nla.get_core().mon_value_by_vars(mon_ab)); s_set_column_value_test(s, lp_ab, nla.get_core().mon_value_by_vars(mon_ab));
s_set_column_value(s, lp_ef, nla.get_core().mon_value_by_vars(mon_ef)); s_set_column_value_test(s, lp_ef, nla.get_core().mon_value_by_vars(mon_ef));
s_set_column_value(s, lp_cd, nla.get_core().mon_value_by_vars(mon_cd)); s_set_column_value_test(s, lp_cd, nla.get_core().mon_value_by_vars(mon_cd));
s_set_column_value(s, lp_ij, nla.get_core().mon_value_by_vars(mon_ij)); s_set_column_value_test(s, lp_ij, nla.get_core().mon_value_by_vars(mon_ij));
// set abef = cdij, while it has to be abef < cdij // set abef = cdij, while it has to be abef < cdij
if (sign > 0) { if (sign > 0) {
@ -697,16 +697,16 @@ void test_order_lemma_params(bool var_equiv, int sign) {
// we have ab < cd // we have ab < cd
// we need to have ab*ef < cd*ij, so let us make ab*ef > cd*ij // we need to have ab*ef < cd*ij, so let us make ab*ef > cd*ij
s_set_column_value(s, lp_cdij, nla.get_core().mon_value_by_vars(mon_cdij)); s_set_column_value_test(s, lp_cdij, nla.get_core().mon_value_by_vars(mon_cdij));
s_set_column_value(s, lp_abef, nla.get_core().mon_value_by_vars(mon_cdij) s_set_column_value_test(s, lp_abef, nla.get_core().mon_value_by_vars(mon_cdij)
+ rational(1)); + rational(1));
} }
else { else {
SASSERT(-s.get_column_value(lp_ab) < s.get_column_value(lp_cd)); SASSERT(-s.get_column_value(lp_ab) < s.get_column_value(lp_cd));
// we need to have abef < cdij, so let us make abef < cdij // we need to have abef < cdij, so let us make abef < cdij
s_set_column_value(s, lp_cdij, nla.get_core().mon_value_by_vars(mon_cdij)); s_set_column_value_test(s, lp_cdij, nla.get_core().mon_value_by_vars(mon_cdij));
s_set_column_value(s, lp_abef, nla.get_core().mon_value_by_vars(mon_cdij) s_set_column_value_test(s, lp_abef, nla.get_core().mon_value_by_vars(mon_cdij)
+ rational(1)); + rational(1));
} }
vector<lemma> lemma; vector<lemma> lemma;
@ -754,7 +754,7 @@ void test_monotone_lemma() {
lpvar lp_ef = s.add_named_var(ef, true, "ef"); lpvar lp_ef = s.add_named_var(ef, true, "ef");
lpvar lp_ij = s.add_named_var(ij, true, "ij"); lpvar lp_ij = s.add_named_var(ij, true, "ij");
for (unsigned j = 0; j < s.number_of_vars(); j++) { for (unsigned j = 0; j < s.number_of_vars(); j++) {
s_set_column_value(s, j, rational((j + 2)*(j + 2))); s_set_column_value_test(s, j, rational((j + 2)*(j + 2)));
} }
reslimit l; reslimit l;
@ -782,17 +782,17 @@ void test_monotone_lemma() {
int mon_ij = nla.add_monic(lp_ij, vec.size(), vec.begin()); int mon_ij = nla.add_monic(lp_ij, vec.size(), vec.begin());
// set e == i + 1 // set e == i + 1
s_set_column_value(s, lp_e, s.get_column_value(lp_i) + lp::impq(rational(1))); s_set_column_value_test(s, lp_e, s.get_column_value(lp_i) + lp::impq(rational(1)));
// set f == j + 1 // set f == j + 1
s_set_column_value(s, lp_f, s.get_column_value(lp_j) +lp::impq( rational(1))); s_set_column_value_test(s, lp_f, s.get_column_value(lp_j) +lp::impq( rational(1)));
// set the values of ab, ef, cd, and ij correctly // set the values of ab, ef, cd, and ij correctly
s_set_column_value(s, lp_ab, nla.get_core().mon_value_by_vars(mon_ab)); s_set_column_value_test(s, lp_ab, nla.get_core().mon_value_by_vars(mon_ab));
s_set_column_value(s, lp_cd, nla.get_core().mon_value_by_vars(mon_cd)); s_set_column_value_test(s, lp_cd, nla.get_core().mon_value_by_vars(mon_cd));
s_set_column_value(s, lp_ij, nla.get_core().mon_value_by_vars(mon_ij)); s_set_column_value_test(s, lp_ij, nla.get_core().mon_value_by_vars(mon_ij));
// set ef = ij while it has to be ef > ij // set ef = ij while it has to be ef > ij
s_set_column_value(s, lp_ef, s.get_column_value(lp_ij)); s_set_column_value_test(s, lp_ef, s.get_column_value(lp_ij));
vector<lemma> lemma; vector<lemma> lemma;
SASSERT(nla.get_core().test_check(lemma) == l_false); SASSERT(nla.get_core().test_check(lemma) == l_false);
@ -810,10 +810,10 @@ void test_tangent_lemma_rat() {
lpvar lp_a = s.add_named_var(a, true, "a"); lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, false, "b"); lpvar lp_b = s.add_named_var(b, false, "b");
lpvar lp_ab = s.add_named_var(ab, false, "ab"); lpvar lp_ab = s.add_named_var(ab, false, "ab");
s_set_column_value(s, lp_a, rational(3)); s_set_column_value_test(s, lp_a, rational(3));
s_set_column_value(s, lp_b, rational(4)); s_set_column_value_test(s, lp_b, rational(4));
rational v = rational(12) + rational (1)/rational(7); rational v = rational(12) + rational (1)/rational(7);
s_set_column_value(s, lp_ab, v); s_set_column_value_test(s, lp_ab, v);
reslimit l; reslimit l;
params_ref p; params_ref p;
solver nla(s); solver nla(s);
@ -838,9 +838,9 @@ void test_tangent_lemma_reg() {
lpvar lp_a = s.add_named_var(a, true, "a"); lpvar lp_a = s.add_named_var(a, true, "a");
lpvar lp_b = s.add_named_var(b, true, "b"); lpvar lp_b = s.add_named_var(b, true, "b");
lpvar lp_ab = s.add_named_var(ab, true, "ab"); lpvar lp_ab = s.add_named_var(ab, true, "ab");
s_set_column_value(s, lp_a, rational(3)); s_set_column_value_test(s, lp_a, rational(3));
s_set_column_value(s, lp_b, rational(4)); s_set_column_value_test(s, lp_b, rational(4));
s_set_column_value(s, lp_ab, rational(11)); s_set_column_value_test(s, lp_ab, rational(11));
reslimit l; reslimit l;
params_ref p; params_ref p;
solver nla(s); solver nla(s);
@ -874,7 +874,7 @@ void test_tangent_lemma_equiv() {
int sign = 1; int sign = 1;
for (unsigned j = 0; j < s.number_of_vars(); j++) { for (unsigned j = 0; j < s.number_of_vars(); j++) {
sign *= -1; sign *= -1;
s_set_column_value(s, j, sign * rational((j + 2) * (j + 2))); s_set_column_value_test(s, j, sign * rational((j + 2) * (j + 2)));
} }
// make k == -a // make k == -a
@ -884,7 +884,7 @@ void test_tangent_lemma_equiv() {
lpvar kj = s.add_term(t.coeffs_as_vector(), -1); lpvar kj = s.add_term(t.coeffs_as_vector(), -1);
s.add_var_bound(kj, llc::LE, rational(0)); s.add_var_bound(kj, llc::LE, rational(0));
s.add_var_bound(kj, llc::GE, rational(0)); s.add_var_bound(kj, llc::GE, rational(0));
s_set_column_value(s, lp_a, - s.get_column_value(lp_k)); s_set_column_value_test(s, lp_a, - s.get_column_value(lp_k));
reslimit l; reslimit l;
params_ref p; params_ref p;
solver nla(s); solver nla(s);
@ -894,7 +894,7 @@ void test_tangent_lemma_equiv() {
vec.push_back(lp_b); vec.push_back(lp_b);
int mon_ab = nla.add_monic(lp_ab, vec.size(), vec.begin()); int mon_ab = nla.add_monic(lp_ab, vec.size(), vec.begin());
s_set_column_value(s, lp_ab, nla.get_core().mon_value_by_vars(mon_ab) + rational(10)); // greater by ten than the correct value s_set_column_value_test(s, lp_ab, nla.get_core().mon_value_by_vars(mon_ab) + rational(10)); // greater by ten than the correct value
vector<lemma> lemma; vector<lemma> lemma;
SASSERT(nla.get_core().test_check(lemma) == l_false); SASSERT(nla.get_core().test_check(lemma) == l_false);