3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 12:28:44 +00:00

Add clean_denominators procedure

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-01-12 15:45:43 -08:00
parent d60f2db116
commit 1d761ea9a5
3 changed files with 373 additions and 28 deletions

View file

@ -2416,13 +2416,32 @@ namespace realclosure {
return new (allocator()) rational_value();
}
rational_value * mk_rational(mpq & v) {
/**
\brief Make a rational and swap its value with v
*/
rational_value * mk_rational_and_swap(mpq & v) {
SASSERT(!qm().is_zero(v));
rational_value * r = mk_rational();
::swap(r->m_value, v);
return r;
}
rational_value * mk_rational(mpq const & v) {
SASSERT(!qm().is_zero(v));
rational_value * r = mk_rational();
qm().set(r->m_value, v);
return r;
}
rational_value * mk_rational(mpz const & v) {
SASSERT(!qm().is_zero(v));
rational_value * r = mk_rational();
qm().set(r->m_value, v);
return r;
}
rational_value * mk_rational(mpbq const & v) {
SASSERT(!bqm().is_zero(v));
scoped_mpq v_q(qm()); // v as a rational
::to_mpq(qm(), v, v_q);
return mk_rational(v_q);
@ -2921,7 +2940,7 @@ namespace realclosure {
for (unsigned i = 1; i < sz; i++) {
mpq i_mpq(i);
value_ref a_i(*this);
a_i = mk_rational(i_mpq);
a_i = mk_rational_and_swap(i_mpq);
mul(a_i, p[i], a_i);
r.push_back(a_i);
}
@ -3086,30 +3105,42 @@ namespace realclosure {
return true;
}
/**
\brief r <- p(b)
*/
void mk_polynomial_value(unsigned n, value * const * p, value * b, value_ref & r) {
SASSERT(n > 0);
if (n == 1 || b == 0) {
r = p[0];
}
else {
SASSERT(n >= 2);
// We compute the result using the Horner Sequence
// ((a_{n-1}*b + a_{n-2})*b + a_{n-3})*b + a_{n-4} ...
// where a_i's are the coefficients of p.
mul(p[n - 1], b, r); // r <- a_{n-1} * b
unsigned i = n - 1;
while (i > 0) {
--i;
if (p[i] != 0)
add(r, p[i], r); // r <- r + a_i
if (i > 0)
mul(r, b, r); // r <- r * b
}
}
}
/**
\brief Evaluate the sign of p(b) by computing a value object.
*/
int expensive_eval_sign_at(unsigned n, value * const * p, mpbq const & b) {
SASSERT(n > 0);
SASSERT(p[n - 1] != 0);
value_ref bv(*this);
bv = mk_rational(b);
// We compute the result using the Horner Sequence
// ((a_{n-1}*bv + a_{n-2})*bv + a_{n-3})*bv + a_{n-4} ...
// where a_i's are the coefficients of p.
value_ref r(*this);
// r <- a_{n-1} * bv
mul(p[n - 1], bv, r);
unsigned i = n - 1;
while (i > 0) {
checkpoint();
--i;
if (p[i] != 0)
add(r, p[i], r); // r <- r + a_i
if (i > 0)
mul(r, bv, r); // r <- r * bv
}
return sign(r);
value_ref _b(*this);
_b = mk_rational(b);
value_ref pb(*this);
mk_polynomial_value(n, p, _b, pb);
return sign(pb);
}
/**
@ -4290,7 +4321,7 @@ namespace realclosure {
if (qm().is_zero(v))
r = 0;
else
r = mk_rational(v);
r = mk_rational_and_swap(v);
}
else {
INC_DEPTH();
@ -4319,7 +4350,7 @@ namespace realclosure {
if (qm().is_zero(v))
r = 0;
else
r = mk_rational(v);
r = mk_rational_and_swap(v);
}
else {
value_ref neg_b(*this);
@ -4353,7 +4384,7 @@ namespace realclosure {
scoped_mpq v(qm());
qm().set(v, to_mpq(a));
qm().neg(v);
r = mk_rational(v);
r = mk_rational_and_swap(v);
}
else {
neg_rf(to_rational_function(a), r);
@ -4495,7 +4526,7 @@ namespace realclosure {
else if (is_nz_rational(a) && is_nz_rational(b)) {
scoped_mpq v(qm());
qm().mul(to_mpq(a), to_mpq(b), v);
r = mk_rational(v);
r = mk_rational_and_swap(v);
}
else {
INC_DEPTH();
@ -4530,7 +4561,7 @@ namespace realclosure {
else if (is_nz_rational(a) && is_nz_rational(b)) {
scoped_mpq v(qm());
qm().div(to_mpq(a), to_mpq(b), v);
r = mk_rational(v);
r = mk_rational_and_swap(v);
}
else {
value_ref inv_b(*this);
@ -4561,7 +4592,7 @@ namespace realclosure {
if (is_nz_rational(a)) {
scoped_mpq v(qm());
qm().inv(to_mpq(a), v);
r = mk_rational(v);
r = mk_rational_and_swap(v);
}
else {
inv_rf(to_rational_function(a), r);
@ -4651,6 +4682,280 @@ namespace realclosure {
return compare(a.m_value, b.m_value);
}
// ---------------------------------
//
// Structural equality
//
// ---------------------------------
/**
\brief Values a and b are said to be "structurally" equal if:
- a and b are 0.
- a and b are rationals and compare(a, b) == 0
- a and b are rational function values p_a(x)/q_a(x) and p_b(y)/q_b(y) where x and y are field extensions, and
* x == y (pointer equality, i.e., they are the same field extension object).
* Every coefficient of p_a is structurally equal to every coefficient of p_b
* Every coefficient of q_a is structurally equal to every coefficient of q_b
Clearly structural equality implies equality, but the reverse is not true.
*/
bool struct_eq(value * a, value * b) const {
if (a == b)
return true;
else if (a == 0 || b == 0)
return false;
else if (is_nz_rational(a) && is_nz_rational(b))
return qm().eq(to_mpq(a), to_mpq(b));
else if (is_nz_rational(a) || is_nz_rational(b))
return false;
else {
SASSERT(is_rational_function(a));
SASSERT(is_rational_function(b));
rational_function_value * rf_a = to_rational_function(a);
rational_function_value * rf_b = to_rational_function(b);
if (rf_a->ext() != rf_b->ext())
return false;
return struct_eq(rf_a->num(), rf_b->num()) && struct_eq(rf_a->den(), rf_b->den());
}
}
/**
Auxiliary method for
bool struct_eq(value * a, value * b)
*/
bool struct_eq(unsigned sz_a, value * const * p_a, unsigned sz_b, value * const * p_b) const {
if (sz_a != sz_b)
return false;
for (unsigned i = 0; i < sz_a; i++) {
if (!struct_eq(p_a[i], p_b[i]))
return false;
}
return true;
}
/**
Auxiliary method for
bool struct_eq(value * a, value * b)
*/
bool struct_eq(polynomial const & p_a, polynomial const & p_b) const {
return struct_eq(p_a.size(), p_a.c_ptr(), p_b.size(), p_b.c_ptr());
}
// ---------------------------------
//
// Clean denominators
//
// ---------------------------------
/**
\brief We say 'a' has "clean" denominators if
- a is 0
- a is a rational_value that is an integer
- a is a rational_function_value of the form p_a(x)/1 where the coefficients of p_a also have clean denominators.
*/
bool has_clean_denominators(value * a) const {
if (a == 0)
return true;
else if (is_nz_rational(a))
return qm().is_int(to_mpq(a));
else {
rational_function_value * rf_a = to_rational_function(a);
return is_rational_one(rf_a->den()) && has_clean_denominators(rf_a->num());
}
}
/**
\brief See comment at has_clean_denominators(value * a)
*/
bool has_clean_denominators(polynomial const & p) const {
unsigned sz = p.size();
for (unsigned i = 0; i < sz; i++) {
if (!has_clean_denominators(p[i]))
return false;
}
return true;
}
/**
\brief "Clean" the denominators of 'a'. That is, return p and q s.t.
a == p/q
and
has_clean_denominators(p) and has_clean_denominators(q)
*/
void clean_denominators_core(value * a, value_ref & p, value_ref & q) {
INC_DEPTH();
TRACE("rcf_clean", tout << "clean_denominators_core [" << m_exec_depth << "]\na: "; display(tout, a, false); tout << "\n";);
p.reset(); q.reset();
if (a == 0) {
p = a;
q = one();
}
else if (is_nz_rational(a)) {
p = mk_rational(to_mpq(a).numerator());
q = mk_rational(to_mpq(a).denominator());
}
else {
rational_function_value * rf_a = to_rational_function(a);
value_ref_buffer p_num(*this), p_den(*this);
value_ref d_num(*this), d_den(*this);
clean_denominators_core(rf_a->num(), p_num, d_num);
clean_denominators_core(rf_a->den(), p_den, d_den);
value_ref x(*this);
x = mk_rational_function_value(rf_a->ext());
mk_polynomial_value(p_num.size(), p_num.c_ptr(), x, p);
mk_polynomial_value(p_den.size(), p_den.c_ptr(), x, q);
if (!struct_eq(d_den, d_num)) {
mul(p, d_den, p);
mul(q, d_num, q);
}
}
}
/**
\brief Clean the denominators of the polynomial p, it returns clean_p and d s.t.
p = clean_p/d
and has_clean_denominators(clean_p) && has_clean_denominators(d)
*/
void clean_denominators_core(polynomial const & p, value_ref_buffer & norm_p, value_ref & d) {
value_ref_buffer nums(*this), dens(*this);
value_ref a_n(*this), a_d(*this);
bool all_one = true;
for (unsigned i = 0; i < p.size(); i++) {
if (p[i]) {
clean_denominators_core(p[i], a_n, a_d);
nums.push_back(a_n);
if (!is_rational_one(a_d))
all_one = false;
dens.push_back(a_d);
}
else {
nums.push_back(0);
dens.push_back(0);
}
}
if (all_one) {
norm_p = nums;
d = one();
}
else {
// Compute lcm of the integer elements in dens.
// This is a little trick to control the coefficient growth.
// We don't compute lcm of the other elements of dens because it is too expensive.
scoped_mpq lcm_z(qm());
bool found_z = false;
SASSERT(nums.size() == p.size());
SASSERT(dens.size() == p.size());
for (unsigned i = 0; i < p.size(); i++) {
if (!dens[i])
continue;
if (is_nz_rational(dens[i])) {
mpq const & _d = to_mpq(dens[i]);
SASSERT(qm().is_int(_d));
if (!found_z) {
found_z = true;
qm().set(lcm_z, _d);
}
else {
qm().lcm(lcm_z, _d, lcm_z);
}
}
}
value_ref lcm(*this);
if (found_z) {
lcm = mk_rational(lcm_z);
}
else {
lcm = one();
}
// Compute the multipliers for nums.
// Compute norm_p and d
//
// We do NOT use GCD to compute the LCM of the denominators of non-rational values.
// However, we detect structurally equivalent denominators.
//
// Thus a/(b+1) + c/(b+1) is converted into a*c/(b+1) instead of (a*(b+1) + c*(b+1))/(b+1)^2
norm_p.reset();
d = lcm;
value_ref_buffer multipliers(*this);
value_ref m(*this);
for (unsigned i = 0; i < p.size(); i++) {
if (!nums[i]) {
norm_p.push_back(0);
}
else {
SASSERT(dens[i]);
bool is_z;
if (!is_nz_rational(dens[i])) {
m = lcm;
is_z = false;
}
else {
scoped_mpq num_z(qm());
qm().div(lcm_z, to_mpq(dens[i]), num_z);
SASSERT(qm().is_int(num_z));
m = mk_rational_and_swap(num_z);
is_z = true;
}
bool found_lt_eq = false;
for (unsigned j = 0; j < p.size(); j++) {
TRACE("rcf_clean_bug", tout << "j: " << j << " "; display(tout, m, false); tout << "\n";);
if (!dens[j])
continue;
if (i != j && !is_nz_rational(dens[j])) {
if (struct_eq(dens[i], dens[j])) {
if (j < i)
found_lt_eq = true;
}
else {
mul(m, dens[j], m);
}
}
}
if (!is_z && !found_lt_eq) {
mul(dens[i], d, d);
}
mul(m, nums[i], m);
norm_p.push_back(m);
}
}
}
SASSERT(norm_p.size() == p.size());
}
void clean_denominators(value * a, value_ref & p, value_ref & q) {
if (has_clean_denominators(a)) {
p = a;
q = one();
}
else {
clean_denominators_core(a, p, q);
}
}
void clean_denominators(polynomial const & p, value_ref_buffer & norm_p, value_ref & d) {
if (has_clean_denominators(p)) {
norm_p.append(p.size(), p.c_ptr());
d = one();
}
else {
clean_denominators_core(p, norm_p, d);
}
}
void clean_denominators(numeral const & a, numeral & p, numeral & q) {
value_ref _p(*this), _q(*this);
clean_denominators(a.m_value, _p, _q);
set(p, _p);
set(q, _q);
}
// ---------------------------------
//
// "Pretty printing"
//
// ---------------------------------
struct collect_algebraic_refs {
char_vector m_visited; // Set of visited algebraic extensions.
ptr_vector<algebraic> m_found; // vector/list of visited algebraic extensions.
@ -4683,11 +4988,20 @@ namespace realclosure {
}
};
static unsigned num_nz_coeffs(polynomial const & p) {
unsigned r = 0;
for (unsigned i = 0; i < p.size(); i++) {
if (p[i])
r++;
}
return r;
}
bool use_parenthesis(value * v) const {
if (is_zero(v) || is_nz_rational(v))
return false;
rational_function_value * rf = to_rational_function(v);
return rf->num().size() > 1 || !is_rational_one(rf->den());
return num_nz_coeffs(rf->num()) > 1 || !is_rational_one(rf->den());
}
template<typename DisplayVar>
@ -5140,6 +5454,10 @@ namespace realclosure {
m_imp->display_interval(out, a);
}
void manager::clean_denominators(numeral const & a, numeral & p, numeral & q) {
save_interval_ctx ctx(this);
m_imp->clean_denominators(a, p, q);
}
};
void pp(realclosure::manager::imp * imp, realclosure::polynomial const & p, realclosure::extension * ext) {
@ -5162,6 +5480,10 @@ void pp(realclosure::manager::imp * imp, realclosure::manager::imp::value_ref_bu
pp(imp, p[i]);
}
void pp(realclosure::manager::imp * imp, realclosure::manager::imp::value_ref const & v) {
pp(imp, v.get());
}
void pp(realclosure::manager::imp * imp, realclosure::mpbqi const & i) {
imp->bqim().display(std::cout, i);
std::cout << std::endl;

View file

@ -263,6 +263,8 @@ namespace realclosure {
void display_interval(std::ostream & out, numeral const & a) const;
void clean_denominators(numeral const & a, numeral & p, numeral & q);
};
class value;

View file

@ -135,15 +135,36 @@ static void tst_lin_indep(unsigned m, unsigned n, int _A[], unsigned ex_sz, unsi
A.set(i, j, _A[i*n + j]);
unsigned_vector r;
r.resize(A.n());
mm.linear_independent_rows(A, r.c_ptr());
scoped_mpz_matrix B(mm);
mm.linear_independent_rows(A, r.c_ptr(), B);
SASSERT(r.size() == ex_sz);
for (unsigned i = 0; i < ex_sz; i++) {
SASSERT(r[i] == ex_r[i]);
}
}
static void tst_denominators() {
unsynch_mpq_manager qm;
rcmanager m(qm);
scoped_rcnumeral a(m);
scoped_rcnumeral t(m);
scoped_rcnumeral eps(m);
m.mk_pi(a);
m.inv(a);
m.mk_infinitesimal("eps", eps);
t = (a - eps*2) / (a*eps + 1);
// t = t + a * 2;
scoped_rcnumeral n(m), d(m);
std::cout << t << "\n";
m.clean_denominators(t, n, d);
std::cout << "---->\n" << n << "\n" << d << "\n";
}
void tst_rcf() {
enable_trace("rcf_clean");
enable_trace("rcf_clean_bug");
tst_denominators();
return;
tst1();
tst2();
{ int A[] = {0, 1, 1, 1, 0, 1, 1, 1, -1}; int c[] = {10, 4, -4}; int b[] = {-2, 4, 6}; tst_solve(3, A, b, c, true); }