mirror of
https://github.com/Z3Prover/z3
synced 2025-04-29 11:55:51 +00:00
add bit-matrix, avoid flattening and/or after bit-blasting, split pdd_grobner into solver/simplifier, add xlin, add smtfd option for incremental mode logic
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
09dbacdf50
commit
1d0572354b
17 changed files with 991 additions and 386 deletions
574
src/math/grobner/pdd_simplifier.cpp
Normal file
574
src/math/grobner/pdd_simplifier.cpp
Normal file
|
@ -0,0 +1,574 @@
|
|||
/*++
|
||||
Copyright (c) 2020 Microsoft Corporation
|
||||
|
||||
|
||||
Abstract:
|
||||
|
||||
simplification routines for pdd polys
|
||||
|
||||
Author:
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
Lev Nachmanson (levnach)
|
||||
|
||||
Notes:
|
||||
|
||||
|
||||
Linear Elimination:
|
||||
- comprises of a simplification pass that puts linear equations in to_processed
|
||||
- so before simplifying with respect to the variable ordering, eliminate linear equalities.
|
||||
|
||||
Extended Linear Simplification (as exploited in Bosphorus AAAI 2019):
|
||||
- multiply each polynomial by one variable from their orbits.
|
||||
- The orbit of a varible are the variables that occur in the same monomial as it in some polynomial.
|
||||
- The extended set of polynomials is fed to a linear Gauss Jordan Eliminator that extracts
|
||||
additional linear equalities.
|
||||
- Bosphorus uses M4RI to perform efficient GJE to scale on large bit-matrices.
|
||||
|
||||
Long distance vanishing polynomials (used by PolyCleaner ICCAD 2019):
|
||||
- identify polynomials p, q, such that p*q = 0
|
||||
- main case is half-adders and full adders (p := x + y, q := x * y) over GF2
|
||||
because (x+y)*x*y = 0 over GF2
|
||||
To work beyond GF2 we would need to rely on simplification with respect to asserted equalities.
|
||||
The method seems rather specific to hardware multipliers so not clear it is useful to
|
||||
generalize.
|
||||
- find monomials that contain pairs of vanishing polynomials, transitively
|
||||
withtout actually inlining.
|
||||
Then color polynomial variables w by p, resp, q if they occur in polynomial equalities
|
||||
w - r = 0, such that all paths in r contain a node colored by p, resp q.
|
||||
polynomial variables that get colored by both p and q can be set to 0.
|
||||
When some variable gets colored, other variables can be colored.
|
||||
- We can walk pdd nodes by level to perform coloring in a linear sweep.
|
||||
PDD nodes that are equal to 0 using some equality are marked as definitions.
|
||||
First walk definitions to search for vanishing polynomial pairs.
|
||||
Given two definition polynomials d1, d2, it must be the case that
|
||||
level(lo(d1)) = level(lo(d1)) for the polynomial lo(d1)*lo(d2) to be vanishing.
|
||||
Then starting from the lowest level examine pdd nodes.
|
||||
Let the current node be called p, check if the pdd node p is used in an equation
|
||||
w - r = 0. In which case, w inherits the labels from r.
|
||||
Otherwise, label the node by the intersection of vanishing polynomials from lo(p) and hi(p).
|
||||
|
||||
Eliminating multiplier variables, but not adders [Kaufmann et al FMCAD 2019 for GF2];
|
||||
- Only apply GB saturation with respect to variables that are part of multipliers.
|
||||
- Perhaps this amounts to figuring out whether a variable is used in an xor or more
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
||||
#include "math/grobner/pdd_simplifier.h"
|
||||
#include "math/simplex/bit_matrix.h"
|
||||
#include "util/uint_set.h"
|
||||
|
||||
namespace dd {
|
||||
|
||||
|
||||
void simplifier::operator()() {
|
||||
try {
|
||||
while (!s.done() &&
|
||||
(simplify_linear_step(true) ||
|
||||
simplify_elim_pure_step() ||
|
||||
simplify_cc_step() ||
|
||||
simplify_leaf_step() ||
|
||||
simplify_linear_step(false) ||
|
||||
/*simplify_elim_dual_step() ||*/
|
||||
simplify_exlin() ||
|
||||
false)) {
|
||||
DEBUG_CODE(s.invariant(););
|
||||
TRACE("dd.solver", s.display(tout););
|
||||
}
|
||||
}
|
||||
catch (pdd_manager::mem_out) {
|
||||
// done reduce
|
||||
DEBUG_CODE(s.invariant(););
|
||||
}
|
||||
}
|
||||
|
||||
struct simplifier::compare_top_var {
|
||||
bool operator()(equation* a, equation* b) const {
|
||||
return a->poly().var() < b->poly().var();
|
||||
}
|
||||
};
|
||||
|
||||
bool simplifier::simplify_linear_step(bool binary) {
|
||||
TRACE("dd.solver", tout << "binary " << binary << "\n";);
|
||||
IF_VERBOSE(2, verbose_stream() << "binary " << binary << "\n");
|
||||
equation_vector linear;
|
||||
for (equation* e : s.m_to_simplify) {
|
||||
pdd p = e->poly();
|
||||
if (binary) {
|
||||
if (p.is_binary()) linear.push_back(e);
|
||||
}
|
||||
else if (p.is_linear()) {
|
||||
linear.push_back(e);
|
||||
}
|
||||
}
|
||||
return simplify_linear_step(linear);
|
||||
}
|
||||
|
||||
/**
|
||||
\brief simplify linear equations by using top variable as solution.
|
||||
The linear equation is moved to set of solved equations.
|
||||
*/
|
||||
bool simplifier::simplify_linear_step(equation_vector& linear) {
|
||||
if (linear.empty()) return false;
|
||||
use_list_t use_list = get_use_list();
|
||||
compare_top_var ctv;
|
||||
std::stable_sort(linear.begin(), linear.end(), ctv);
|
||||
equation_vector trivial;
|
||||
unsigned j = 0;
|
||||
bool has_conflict = false;
|
||||
for (equation* src : linear) {
|
||||
if (has_conflict) {
|
||||
break;
|
||||
}
|
||||
unsigned v = src->poly().var();
|
||||
equation_vector const& uses = use_list[v];
|
||||
TRACE("dd.solver",
|
||||
s.display(tout << "uses of: ", *src) << "\n";
|
||||
for (equation* e : uses) {
|
||||
s.display(tout, *e) << "\n";
|
||||
});
|
||||
bool changed_leading_term;
|
||||
bool all_reduced = true;
|
||||
for (equation* dst : uses) {
|
||||
if (src == dst || s.is_trivial(*dst)) {
|
||||
continue;
|
||||
}
|
||||
pdd q = dst->poly();
|
||||
if (!src->poly().is_binary() && !q.is_linear()) {
|
||||
all_reduced = false;
|
||||
continue;
|
||||
}
|
||||
remove_from_use(dst, use_list, v);
|
||||
s.simplify_using(*dst, *src, changed_leading_term);
|
||||
if (s.is_trivial(*dst)) {
|
||||
trivial.push_back(dst);
|
||||
}
|
||||
else if (s.is_conflict(dst)) {
|
||||
s.pop_equation(dst);
|
||||
s.set_conflict(dst);
|
||||
has_conflict = true;
|
||||
}
|
||||
else if (changed_leading_term) {
|
||||
s.pop_equation(dst);
|
||||
s.push_equation(solver::to_simplify, dst);
|
||||
}
|
||||
// v has been eliminated.
|
||||
SASSERT(!dst->poly().free_vars().contains(v));
|
||||
add_to_use(dst, use_list);
|
||||
}
|
||||
if (all_reduced) {
|
||||
linear[j++] = src;
|
||||
}
|
||||
}
|
||||
if (!has_conflict) {
|
||||
linear.shrink(j);
|
||||
for (equation* src : linear) {
|
||||
s.pop_equation(src);
|
||||
s.push_equation(solver::solved, src);
|
||||
}
|
||||
}
|
||||
for (equation* e : trivial) {
|
||||
s.del_equation(e);
|
||||
}
|
||||
DEBUG_CODE(s.invariant(););
|
||||
return j > 0 || has_conflict;
|
||||
}
|
||||
|
||||
/**
|
||||
\brief simplify using congruences
|
||||
replace pair px + q and ry + q by
|
||||
px + q, px - ry
|
||||
since px = ry
|
||||
*/
|
||||
bool simplifier::simplify_cc_step() {
|
||||
TRACE("dd.solver", tout << "cc\n";);
|
||||
IF_VERBOSE(2, verbose_stream() << "cc\n");
|
||||
u_map<equation*> los;
|
||||
bool reduced = false;
|
||||
unsigned j = 0;
|
||||
for (equation* eq1 : s.m_to_simplify) {
|
||||
SASSERT(eq1->state() == solver::to_simplify);
|
||||
pdd p = eq1->poly();
|
||||
auto* e = los.insert_if_not_there2(p.lo().index(), eq1);
|
||||
equation* eq2 = e->get_data().m_value;
|
||||
pdd q = eq2->poly();
|
||||
if (eq2 != eq1 && (p.hi().is_val() || q.hi().is_val()) && !p.lo().is_val()) {
|
||||
*eq1 = p - eq2->poly();
|
||||
*eq1 = s.m_dep_manager.mk_join(eq1->dep(), eq2->dep());
|
||||
reduced = true;
|
||||
if (s.is_trivial(*eq1)) {
|
||||
s.retire(eq1);
|
||||
continue;
|
||||
}
|
||||
else if (s.check_conflict(*eq1)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
s.m_to_simplify[j] = eq1;
|
||||
eq1->set_index(j++);
|
||||
}
|
||||
s.m_to_simplify.shrink(j);
|
||||
return reduced;
|
||||
}
|
||||
|
||||
/**
|
||||
\brief remove ax+b from p if x occurs as a leaf in p and a is a constant.
|
||||
*/
|
||||
bool simplifier::simplify_leaf_step() {
|
||||
TRACE("dd.solver", tout << "leaf\n";);
|
||||
IF_VERBOSE(2, verbose_stream() << "leaf\n");
|
||||
use_list_t use_list = get_use_list();
|
||||
equation_vector leaves;
|
||||
for (unsigned i = 0; i < s.m_to_simplify.size(); ++i) {
|
||||
equation* e = s.m_to_simplify[i];
|
||||
pdd p = e->poly();
|
||||
if (!p.hi().is_val()) {
|
||||
continue;
|
||||
}
|
||||
leaves.reset();
|
||||
for (equation* e2 : use_list[p.var()]) {
|
||||
if (e != e2 && e2->poly().var_is_leaf(p.var())) {
|
||||
leaves.push_back(e2);
|
||||
}
|
||||
}
|
||||
for (equation* e2 : leaves) {
|
||||
bool changed_leading_term;
|
||||
remove_from_use(e2, use_list);
|
||||
s.simplify_using(*e2, *e, changed_leading_term);
|
||||
add_to_use(e2, use_list);
|
||||
if (s.is_trivial(*e2)) {
|
||||
s.pop_equation(e2);
|
||||
s.retire(e2);
|
||||
}
|
||||
else if (e2->poly().is_val()) {
|
||||
s.pop_equation(e2);
|
||||
s.set_conflict(*e2);
|
||||
return true;
|
||||
}
|
||||
else if (changed_leading_term) {
|
||||
s.pop_equation(e2);
|
||||
s.push_equation(solver::to_simplify, e2);
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
\brief treat equations as processed if top variable occurs only once.
|
||||
*/
|
||||
bool simplifier::simplify_elim_pure_step() {
|
||||
TRACE("dd.solver", tout << "pure\n";);
|
||||
IF_VERBOSE(2, verbose_stream() << "pure\n");
|
||||
use_list_t use_list = get_use_list();
|
||||
unsigned j = 0;
|
||||
for (equation* e : s.m_to_simplify) {
|
||||
pdd p = e->poly();
|
||||
if (!p.is_val() && p.hi().is_val() && use_list[p.var()].size() == 1) {
|
||||
s.push_equation(solver::solved, e);
|
||||
}
|
||||
else {
|
||||
s.m_to_simplify[j] = e;
|
||||
e->set_index(j++);
|
||||
}
|
||||
}
|
||||
if (j != s.m_to_simplify.size()) {
|
||||
s.m_to_simplify.shrink(j);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
\brief
|
||||
reduce equations where top variable occurs only twice and linear in one of the occurrences.
|
||||
*/
|
||||
bool simplifier::simplify_elim_dual_step() {
|
||||
use_list_t use_list = get_use_list();
|
||||
unsigned j = 0;
|
||||
bool reduced = false;
|
||||
for (unsigned i = 0; i < s.m_to_simplify.size(); ++i) {
|
||||
equation* e = s.m_to_simplify[i];
|
||||
pdd p = e->poly();
|
||||
// check that e is linear in top variable.
|
||||
if (e->state() != solver::to_simplify) {
|
||||
reduced = true;
|
||||
}
|
||||
else if (!s.done() && !s.is_trivial(*e) && p.hi().is_val() && use_list[p.var()].size() == 2) {
|
||||
for (equation* e2 : use_list[p.var()]) {
|
||||
if (e2 == e) continue;
|
||||
bool changed_leading_term;
|
||||
|
||||
remove_from_use(e2, use_list);
|
||||
s.simplify_using(*e2, *e, changed_leading_term);
|
||||
if (s.is_conflict(e2)) {
|
||||
s.pop_equation(e2);
|
||||
s.set_conflict(e2);
|
||||
}
|
||||
// when e2 is trivial, leading term is changed
|
||||
SASSERT(!s.is_trivial(*e2) || changed_leading_term);
|
||||
if (changed_leading_term) {
|
||||
s.pop_equation(e2);
|
||||
s.push_equation(solver::to_simplify, e2);
|
||||
}
|
||||
add_to_use(e2, use_list);
|
||||
break;
|
||||
}
|
||||
reduced = true;
|
||||
s.push_equation(solver::solved, e);
|
||||
}
|
||||
else {
|
||||
s.m_to_simplify[j] = e;
|
||||
e->set_index(j++);
|
||||
}
|
||||
}
|
||||
if (reduced) {
|
||||
// clean up elements in s.m_to_simplify
|
||||
// they may have moved.
|
||||
s.m_to_simplify.shrink(j);
|
||||
j = 0;
|
||||
for (equation* e : s.m_to_simplify) {
|
||||
if (s.is_trivial(*e)) {
|
||||
s.retire(e);
|
||||
}
|
||||
else if (e->state() == solver::to_simplify) {
|
||||
s.m_to_simplify[j] = e;
|
||||
e->set_index(j++);
|
||||
}
|
||||
}
|
||||
s.m_to_simplify.shrink(j);
|
||||
return true;
|
||||
}
|
||||
else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
void simplifier::add_to_use(equation* e, use_list_t& use_list) {
|
||||
unsigned_vector const& fv = e->poly().free_vars();
|
||||
for (unsigned v : fv) {
|
||||
use_list.reserve(v + 1);
|
||||
use_list[v].push_back(e);
|
||||
}
|
||||
}
|
||||
|
||||
void simplifier::remove_from_use(equation* e, use_list_t& use_list) {
|
||||
unsigned_vector const& fv = e->poly().free_vars();
|
||||
for (unsigned v : fv) {
|
||||
use_list.reserve(v + 1);
|
||||
use_list[v].erase(e);
|
||||
}
|
||||
}
|
||||
|
||||
void simplifier::remove_from_use(equation* e, use_list_t& use_list, unsigned except_v) {
|
||||
unsigned_vector const& fv = e->poly().free_vars();
|
||||
for (unsigned v : fv) {
|
||||
if (v != except_v) {
|
||||
use_list.reserve(v + 1);
|
||||
use_list[v].erase(e);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
simplifier::use_list_t simplifier::get_use_list() {
|
||||
use_list_t use_list;
|
||||
for (equation * e : s.m_to_simplify) {
|
||||
add_to_use(e, use_list);
|
||||
}
|
||||
for (equation * e : s.m_processed) {
|
||||
add_to_use(e, use_list);
|
||||
}
|
||||
return use_list;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
\brief use Gauss elimination to extract linear equalities.
|
||||
So far just for GF(2) semantics.
|
||||
*/
|
||||
|
||||
bool simplifier::simplify_exlin() {
|
||||
if (s.m.get_semantics() != pdd_manager::mod2_e ||
|
||||
!s.m_config.m_enable_exlin) {
|
||||
return false;
|
||||
}
|
||||
vector<pdd> eqs, simp_eqs;
|
||||
for (auto* e : s.m_to_simplify) if (!e->dep()) eqs.push_back(e->poly());
|
||||
for (auto* e : s.m_processed) if (!e->dep()) eqs.push_back(e->poly());
|
||||
exlin_augment(eqs);
|
||||
simplify_exlin(eqs, simp_eqs);
|
||||
for (pdd const& p : simp_eqs) {
|
||||
s.add(p);
|
||||
}
|
||||
return !simp_eqs.empty() && simplify_linear_step(false);
|
||||
}
|
||||
|
||||
/**
|
||||
augment set of equations by multiplying with selected variables.
|
||||
Uses orbits to prune which variables are multiplied.
|
||||
TBD: could also prune added polynomials based on a maximal degree.
|
||||
*/
|
||||
void simplifier::exlin_augment(vector<pdd>& eqs) {
|
||||
unsigned nv = s.m.num_vars();
|
||||
vector<uint_set> orbits(nv);
|
||||
random_gen rand(s.m_config.m_random_seed);
|
||||
unsigned modest_num_eqs = std::min(eqs.size(), 500u);
|
||||
unsigned max_xlin_eqs = modest_num_eqs*modest_num_eqs + eqs.size();
|
||||
for (pdd p : eqs) {
|
||||
auto const& fv = p.free_vars();
|
||||
for (unsigned i = fv.size(); i-- > 0; ) {
|
||||
for (unsigned j = i; j-- > 0; ) {
|
||||
orbits[fv[i]].insert(fv[j]);
|
||||
orbits[fv[j]].insert(fv[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
TRACE("dd.solver", tout << "augment " << nv << "\n";
|
||||
for (auto const& o : orbits) tout << o.num_elems() << "\n";
|
||||
);
|
||||
vector<pdd> n_eqs;
|
||||
unsigned start = rand();
|
||||
for (unsigned _v = 0; _v < nv; ++_v) {
|
||||
unsigned v = (_v + start) % nv;
|
||||
auto const& orbitv = orbits[v];
|
||||
if (orbitv.empty()) continue;
|
||||
pdd pv = s.m.mk_var(v);
|
||||
for (pdd p : eqs) {
|
||||
for (unsigned w : p.free_vars()) {
|
||||
if (orbitv.contains(w)) {
|
||||
n_eqs.push_back(pv * p);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (n_eqs.size() > max_xlin_eqs) {
|
||||
goto end_of_new_eqs;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
start = rand();
|
||||
for (unsigned _v = 0; _v < nv; ++_v) {
|
||||
unsigned v = (_v + start) % nv;
|
||||
auto const& orbitv = orbits[v];
|
||||
if (orbitv.empty()) continue;
|
||||
pdd pv = s.m.mk_var(v);
|
||||
for (unsigned w : orbitv) {
|
||||
if (v > w) continue;
|
||||
pdd pw = s.m.mk_var(w);
|
||||
for (pdd p : eqs) {
|
||||
if (n_eqs.size() > max_xlin_eqs) {
|
||||
goto end_of_new_eqs;
|
||||
}
|
||||
for (unsigned u : p.free_vars()) {
|
||||
if (orbits[w].contains(u) || orbits[v].contains(u)) {
|
||||
n_eqs.push_back(pw * pv * p);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
end_of_new_eqs:
|
||||
s.m_config.m_random_seed = rand();
|
||||
eqs.append(n_eqs);
|
||||
TRACE("dd.solver", for (pdd const& p : eqs) tout << p << "\n";);
|
||||
}
|
||||
|
||||
void simplifier::simplify_exlin(vector<pdd> const& eqs, vector<pdd>& simp_eqs) {
|
||||
|
||||
// create variables for each non-constant monomial.
|
||||
u_map<unsigned> mon2idx;
|
||||
vector<pdd> idx2mon;
|
||||
|
||||
// insert monomials of degree > 1
|
||||
for (pdd const& p : eqs) {
|
||||
for (auto const& m : p) {
|
||||
if (m.vars.size() <= 1) continue;
|
||||
pdd r = s.m.mk_val(m.coeff);
|
||||
for (unsigned i = m.vars.size(); i-- > 0; )
|
||||
r *= s.m.mk_var(m.vars[i]);
|
||||
if (!mon2idx.contains(r.index())) {
|
||||
mon2idx.insert(r.index(), idx2mon.size());
|
||||
idx2mon.push_back(r);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// insert variables last.
|
||||
unsigned nv = s.m.num_vars();
|
||||
for (unsigned v = 0; v < nv; ++v) {
|
||||
pdd r = s.m.mk_var(v);
|
||||
mon2idx.insert(r.index(), idx2mon.size());
|
||||
idx2mon.push_back(r);
|
||||
}
|
||||
|
||||
bit_matrix bm;
|
||||
unsigned const_idx = idx2mon.size();
|
||||
bm.reset(const_idx + 1);
|
||||
|
||||
// populate rows
|
||||
for (pdd const& p : eqs) {
|
||||
if (p.is_zero()) {
|
||||
continue;
|
||||
}
|
||||
auto row = bm.add_row();
|
||||
for (auto const& m : p) {
|
||||
SASSERT(m.coeff.is_one());
|
||||
if (m.vars.empty()) {
|
||||
row.set(const_idx);
|
||||
continue;
|
||||
}
|
||||
pdd r = s.m.one();
|
||||
for (unsigned i = m.vars.size(); i-- > 0; )
|
||||
r *= s.m.mk_var(m.vars[i]);
|
||||
unsigned v = mon2idx[r.index()];
|
||||
row.set(v);
|
||||
}
|
||||
}
|
||||
|
||||
TRACE("dd.solver", tout << bm << "\n";);
|
||||
|
||||
bm.solve();
|
||||
|
||||
TRACE("dd.solver", tout << bm << "\n";);
|
||||
|
||||
for (auto const& r : bm) {
|
||||
bool is_linear = true;
|
||||
for (unsigned c : r) {
|
||||
SASSERT(r[c]);
|
||||
if (c == const_idx) {
|
||||
break;
|
||||
}
|
||||
pdd const& p = idx2mon[c];
|
||||
if (!p.is_unary()) {
|
||||
is_linear = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (is_linear) {
|
||||
pdd p = s.m.zero();
|
||||
for (unsigned c : r) {
|
||||
if (c == const_idx) {
|
||||
p += s.m.one();
|
||||
}
|
||||
else {
|
||||
p += idx2mon[c];
|
||||
}
|
||||
}
|
||||
if (!p.is_zero()) {
|
||||
TRACE("dd.solver", tout << "new linear: " << p << "\n";);
|
||||
simp_eqs.push_back(p);
|
||||
}
|
||||
}
|
||||
|
||||
// could also consider singleton monomials as Bosphorus does
|
||||
// Singleton monomials are of the form v*w*u*v == 0
|
||||
// Generally want to deal with negations too
|
||||
// v*(w+1)*u will have shared pdd under w,
|
||||
// e.g, test every variable in p whether it has hi() == lo().
|
||||
// maybe easier to read out of a pdd than the expanded form.
|
||||
}
|
||||
}
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue