mirror of
https://github.com/Z3Prover/z3
synced 2025-04-23 00:55:31 +00:00
new_eq_handler improvements in theory_str, WIP
This commit is contained in:
parent
f555074e27
commit
1c518be61d
2 changed files with 133 additions and 42 deletions
|
@ -33,8 +33,8 @@ theory_str::theory_str(ast_manager & m):
|
|||
opt_EagerStringConstantLengthAssertions(true),
|
||||
opt_VerifyFinalCheckProgress(true),
|
||||
opt_LCMUnrollStep(2),
|
||||
opt_NoQuickReturn_Concat_IntegerTheory(true),
|
||||
opt_DisableIntegerTheoryIntegration(true),
|
||||
opt_NoQuickReturn_Concat_IntegerTheory(false),
|
||||
opt_DisableIntegerTheoryIntegration(false),
|
||||
/* Internal setup */
|
||||
search_started(false),
|
||||
m_autil(m),
|
||||
|
@ -1428,7 +1428,57 @@ void theory_str::reset_eh() {
|
|||
* Then add an assertion: (y2 == (Concat ce m2)) AND ("str3" == (Concat abc x2)) -> (y2 != "str3")
|
||||
*/
|
||||
bool theory_str::new_eq_check(expr * lhs, expr * rhs) {
|
||||
// TODO this involves messing around with enodes and equivalence classes
|
||||
context & ctx = get_context();
|
||||
ast_manager & m = get_manager();
|
||||
|
||||
// Previously we did the check between LHS and RHS equivalence classes.
|
||||
// However these have since been merged.
|
||||
// We start by asserting that the EQCs, in fact, really are merged.
|
||||
if (!in_same_eqc(lhs, rhs)) {
|
||||
TRACE("t_str", tout << "BUG: lhs and rhs not in same eqc in new_eq_eh(), loss of invariant!" << std::endl;);
|
||||
UNREACHABLE();
|
||||
}
|
||||
|
||||
check_concat_len_in_eqc(lhs);
|
||||
check_concat_len_in_eqc(rhs);
|
||||
|
||||
// Now we iterate over all pairs of terms in the (shared) eqc
|
||||
// and check whether we can show that any pair of distinct terms
|
||||
// cannot possibly be equal.
|
||||
// If that's the case, we assert an axiom to that effect and stop.
|
||||
|
||||
enode * eqc_root = ctx.get_enode(lhs)->get_root();
|
||||
enode * eqc_iterator1 = eqc_root;
|
||||
do {
|
||||
enode * eqc_iterator2 = eqc_iterator1;
|
||||
do {
|
||||
if (eqc_iterator1 == eqc_iterator2) {
|
||||
continue;
|
||||
}
|
||||
// pull terms out of the enodes
|
||||
app * eqc_nn1 = eqc_iterator1->get_owner();
|
||||
app * eqc_nn2 = eqc_iterator2->get_owner();
|
||||
TRACE("t_str_detail", tout << "checking whether " << mk_pp(eqc_nn1, m) << " and " << mk_pp(eqc_nn2, m) << " can be equal" << std::endl;);
|
||||
if (!can_two_nodes_eq(eqc_nn1, eqc_nn2)) {
|
||||
TRACE("t_str", tout << "inconsistency detected: " << mk_pp(eqc_nn1, m) << " cannot be equal to " << mk_pp(eqc_nn2, m) << std::endl;);
|
||||
expr_ref to_assert(m.mk_not(ctx.mk_eq_atom(eqc_nn1, eqc_nn2)), m);
|
||||
assert_axiom(to_assert);
|
||||
return false;
|
||||
}
|
||||
if (!check_length_consistency(eqc_nn1, eqc_nn2)) {
|
||||
TRACE("t_str", tout << "inconsistency detected: " << mk_pp(eqc_nn1, m) << " and " << mk_pp(eqc_nn2, m) << " have inconsistent lengths" << std::endl;);
|
||||
return false;
|
||||
}
|
||||
eqc_iterator2 = eqc_iterator2->get_next();
|
||||
} while (eqc_iterator2 != eqc_root);
|
||||
|
||||
eqc_iterator1 = eqc_iterator1->get_next();
|
||||
} while (eqc_iterator1 != eqc_root);
|
||||
|
||||
// TODO containPairBoolMap
|
||||
// TODO regexInBoolMap
|
||||
|
||||
// okay, all checks here passed
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -2681,12 +2731,17 @@ void theory_str::process_concat_eq_type2(expr * concatAst1, expr * concatAst2) {
|
|||
std::map<std::pair<expr*,expr*>, std::map<int, expr*> >::iterator entry1 = varForBreakConcat.find(key1);
|
||||
std::map<std::pair<expr*,expr*>, std::map<int, expr*> >::iterator entry2 = varForBreakConcat.find(key2);
|
||||
|
||||
// prevent checking scope for the XOR term, as it's always in the same scope as the split var
|
||||
// TODO probably make this change everywhere else in process_concat_eq*,
|
||||
// and also make sure this is correct.
|
||||
|
||||
bool entry1InScope;
|
||||
if (entry1 == varForBreakConcat.end()) {
|
||||
entry1InScope = false;
|
||||
} else {
|
||||
if (internal_variable_set.find((entry1->second)[0]) == internal_variable_set.end()
|
||||
|| internal_variable_set.find((entry1->second)[1]) == internal_variable_set.end()) {
|
||||
/*|| internal_variable_set.find((entry1->second)[1]) == internal_variable_set.end()*/
|
||||
) {
|
||||
entry1InScope = false;
|
||||
} else {
|
||||
entry1InScope = true;
|
||||
|
@ -2698,7 +2753,8 @@ void theory_str::process_concat_eq_type2(expr * concatAst1, expr * concatAst2) {
|
|||
entry2InScope = false;
|
||||
} else {
|
||||
if (internal_variable_set.find((entry2->second)[0]) == internal_variable_set.end()
|
||||
|| internal_variable_set.find((entry2->second)[1]) == internal_variable_set.end()) {
|
||||
/*|| internal_variable_set.find((entry2->second)[1]) == internal_variable_set.end()*/
|
||||
) {
|
||||
entry2InScope = false;
|
||||
} else {
|
||||
entry2InScope = true;
|
||||
|
@ -3954,48 +4010,58 @@ bool theory_str::in_same_eqc(expr * n1, expr * n2) {
|
|||
return n1Node->get_root() == n2Node->get_root();
|
||||
}
|
||||
|
||||
/*
|
||||
bool canTwoNodesEq(Z3_theory t, Z3_ast n1, Z3_ast n2) {
|
||||
Z3_ast n1_curr = n1;
|
||||
Z3_ast n2_curr = n2;
|
||||
|
||||
// case 0: n1_curr is const string, n2_curr is const string
|
||||
if (isConstStr(t, n1_curr) && isConstStr(t, n2_curr)) {
|
||||
if (n1_curr != n2_curr) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// case 1: n1_curr is concat, n2_curr is const string
|
||||
else if (isConcatFunc(t, n1_curr) && isConstStr(t, n2_curr)) {
|
||||
std::string n2_curr_str = getConstStrValue(t, n2_curr);
|
||||
if (canConcatEqStr(t, n1_curr, n2_curr_str) != 1) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// case 2: n2_curr is concat, n1_curr is const string
|
||||
else if (isConcatFunc(t, n2_curr) && isConstStr(t, n1_curr)) {
|
||||
std::string n1_curr_str = getConstStrValue(t, n1_curr);
|
||||
if (canConcatEqStr(t, n2_curr, n1_curr_str) != 1) {
|
||||
return false;
|
||||
}
|
||||
} else if (isConcatFunc(t, n1_curr) && isConcatFunc(t, n2_curr)) {
|
||||
if (canConcatEqConcat(t, n1_curr, n2_curr) != 1) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
*/
|
||||
|
||||
bool theory_str::can_concat_eq_str(expr * concat, std::string str) {
|
||||
// TODO
|
||||
return true;
|
||||
/*
|
||||
int strLen = str.length();
|
||||
if (isConcatFunc(t, concat)) {
|
||||
std::vector<Z3_ast> args;
|
||||
getNodesInConcat(t, concat, args);
|
||||
Z3_ast ml_node = args[0];
|
||||
Z3_ast mr_node = args[args.size() - 1];
|
||||
|
||||
if (isConstStr(t, ml_node)) {
|
||||
std::string ml_str = getConstStrValue(t, ml_node);
|
||||
int ml_len = ml_str.length();
|
||||
if (ml_len > strLen)
|
||||
return 0;
|
||||
int cLen = ml_len;
|
||||
if (ml_str != str.substr(0, cLen))
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (isConstStr(t, mr_node)) {
|
||||
std::string mr_str = getConstStrValue(t, mr_node);
|
||||
int mr_len = mr_str.length();
|
||||
if (mr_len > strLen)
|
||||
return 0;
|
||||
int cLen = mr_len;
|
||||
if (mr_str != str.substr(strLen - cLen, cLen))
|
||||
return 0;
|
||||
}
|
||||
|
||||
int sumLen = 0;
|
||||
for (unsigned int i = 0; i < args.size(); i++) {
|
||||
Z3_ast oneArg = args[i];
|
||||
if (isConstStr(t, oneArg)) {
|
||||
std::string arg_str = getConstStrValue(t, oneArg);
|
||||
if (str.find(arg_str) == std::string::npos) {
|
||||
return 0;
|
||||
}
|
||||
sumLen += getConstStrValue(t, oneArg).length();
|
||||
}
|
||||
}
|
||||
if (sumLen > strLen)
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
*/
|
||||
// TODO NEXT
|
||||
NOT_IMPLEMENTED_YET(); return true;
|
||||
}
|
||||
|
||||
bool theory_str::can_concat_eq_concat(expr * concat1, expr * concat2) {
|
||||
// TODO
|
||||
return true;
|
||||
NOT_IMPLEMENTED_YET(); return true;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -4041,6 +4107,27 @@ bool theory_str::can_two_nodes_eq(expr * n1, expr * n2) {
|
|||
return true;
|
||||
}
|
||||
|
||||
bool theory_str::check_length_consistency(expr * n1, expr * n2) {
|
||||
// TODO NEXT
|
||||
NOT_IMPLEMENTED_YET(); return true;
|
||||
}
|
||||
|
||||
void theory_str::check_concat_len_in_eqc(expr * concat) {
|
||||
context & ctx = get_context();
|
||||
ast_manager & m = get_manager();
|
||||
|
||||
enode * eqc_base = ctx.get_enode(concat);
|
||||
enode * eqc_it = eqc_base;
|
||||
do {
|
||||
app * eqc_n = eqc_it->get_owner();
|
||||
if (is_concat(eqc_n)) {
|
||||
rational unused;
|
||||
infer_len_concat(eqc_n, unused);
|
||||
}
|
||||
eqc_it = eqc_it->get_next();
|
||||
} while (eqc_it != eqc_base);
|
||||
}
|
||||
|
||||
/*
|
||||
* strArgmt::solve_concat_eq_str()
|
||||
* Solve concatenations of the form:
|
||||
|
@ -4499,6 +4586,8 @@ void theory_str::handle_equality(expr * lhs, expr * rhs) {
|
|||
// As a result, simplify_concat_equality() is never getting called,
|
||||
// and if it were called, it would probably get called with the same element on both sides.
|
||||
|
||||
|
||||
// TODO improve these checks with an all-pairs match over LHS and RHS wrt. other concats
|
||||
bool hasCommon = false;
|
||||
if (eqc_lhs_concat.size() != 0 && eqc_rhs_concat.size() != 0) {
|
||||
std::set<expr*>::iterator itor1 = eqc_lhs_concat.begin();
|
||||
|
|
|
@ -298,6 +298,8 @@ namespace smt {
|
|||
bool can_two_nodes_eq(expr * n1, expr * n2);
|
||||
bool can_concat_eq_str(expr * concat, std::string str);
|
||||
bool can_concat_eq_concat(expr * concat1, expr * concat2);
|
||||
void check_concat_len_in_eqc(expr * concat);
|
||||
bool check_length_consistency(expr * n1, expr * n2);
|
||||
|
||||
void get_nodes_in_concat(expr * node, ptr_vector<expr> & nodeList);
|
||||
expr * simplify_concat(expr * node);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue