3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-14 21:08:46 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2015-12-24 03:30:02 -08:00
parent 2a7f2ab7f8
commit 1bbf7813b0
3 changed files with 250 additions and 39 deletions

View file

@ -27,13 +27,42 @@ Revision History:
#include "uint_set.h"
template<class T>
class default_value_manager {
public:
void inc_ref(T* t) {}
void dec_ref(T* t) {}
};
template<class T, class M = default_value_manager<T> >
class automaton {
public:
class move {
M& m;
T* m_t;
unsigned m_src;
unsigned m_dst;
public:
move(unsigned s, unsigned d, T* t = 0): m_t(t), m_src(s), m_dst(d) {}
move(M& m, unsigned s, unsigned d, T* t = 0): m(m), m_t(t), m_src(s), m_dst(d) {
if (t) m.inc_ref(t);
}
~move() {
if (m_t) m.dec_ref(m_t);
}
move(move const& other): m(other.m), m_t(other.m_t), m_src(other.m_src), m_dst(other.m_dst) {
if (m_t) m.inc_ref(m_t);
}
move& operator=(move const& other) {
SASSERT(&m == &other.m);
T* t = other.m_t;
if (t) m.inc_ref(t);
if (m_t) m.dec_ref(m_t);
m_t = t;
m_src = other.m_src;
m_dst = other.m_dst;
return *this;
}
unsigned dst() const { return m_dst; }
unsigned src() const { return m_src; }
@ -41,11 +70,11 @@ class automaton {
bool is_epsilon() const { return m_t == 0; }
};
typedef svector<move> moves;
svector<moves> m_delta;
svector<moves> m_delta_inv;
typedef vector<move> moves;
private:
M& m;
vector<moves> m_delta;
vector<moves> m_delta_inv;
unsigned m_init;
uint_set m_final_set;
unsigned_vector m_final_states;
@ -57,11 +86,11 @@ class automaton {
mutable uint_set m_visited;
mutable unsigned_vector m_todo;
public:
// The empty automaton:
automaton():
automaton(M& m):
m(m),
m_init(0),
m_is_epsilon_free(true),
m_is_deterministic(true)
@ -72,7 +101,7 @@ public:
// create an automaton from initial state, final states, and moves
automaton(unsigned init, unsigned_vector const& final, moves const& mvs) {
automaton(M& m, unsigned init, unsigned_vector const& final, moves const& mvs): m(m) {
m_is_epsilon_free = true;
m_is_deterministic = true;
m_init = init;
@ -95,33 +124,35 @@ public:
}
// create an automaton that accepts a sequence.
automaton(ptr_vector<T> const& seq):
automaton(M& m, ptr_vector<T> const& seq):
m(m),
m_init(0),
m_is_epsilon_free(true),
m_is_deterministic(true) {
m_delta.resize(seq.size()+1, moves());
m_delta_inv.resize(seq.size()+1, moves());
for (unsigned i = 0; i < seq.size(); ++i) {
m_delta[i].push_back(move(i, i + 1, seq[i]));
m_delta[i + 1].push_back(move(i, i + 1, seq[i]));
m_delta[i].push_back(move(m, i, i + 1, seq[i]));
m_delta[i + 1].push_back(move(m, i, i + 1, seq[i]));
}
m_final_states.push_back(seq.size());
m_final_set.insert(seq.size());
}
// The automaton with a single state that is also final.
automaton(T* t):
// The automaton that accepts t
automaton(M& m, T* t):
m(m),
m_init(0) {
unsigned s = 0;
m_delta.resize(s+1, moves());
m_delta_inv.resize(s+1, moves());
m_final_set.insert(s);
m_final_states.push_back(s);
m_delta[s].push_back(move(s, s, t));
m_delta_inv[s].push_back(move(s, s, t));
m_delta.resize(2, moves());
m_delta_inv.resize(2, moves());
m_final_set.insert(1);
m_final_states.push_back(1);
m_delta[0].push_back(move(m, 0, 1, t));
m_delta_inv[1].push_back(move(m, 0, 1, t));
}
automaton(automaton const& other):
m(other.m),
m_delta(other.m_delta),
m_delta_inv(other.m_delta_inv),
m_init(other.m_init),
@ -132,47 +163,78 @@ public:
{}
// create the automaton that accepts the empty string only.
static automaton mk_epsilon() {
static automaton* mk_epsilon(M& m) {
moves mvs;
unsigned_vector final;
final.push_back(0);
return automaton(0, final, mvs);
return alloc(automaton, m, 0, final, mvs);
}
// create the automaton with a single state on condition t.
static automaton mk_loop(T* t) {
static automaton* mk_loop(M& m, T* t) {
moves mvs;
unsigned_vector final;
final.push_back(0);
mvs.push_back(move(0, 0, t));
return automaton(0, final, mvs);
mvs.push_back(move(m, 0, 0, t));
return alloc(automaton, m, 0, final, mvs);
}
// create the sum of disjoint automata
static automaton mk_union(automaton const& a, automaton const& b) {
static automaton* mk_union(automaton const& a, automaton const& b) {
SASSERT(&a.m == &b.m);
M& m = a.m;
moves mvs;
unsigned_vector final;
unsigned offset1 = 1;
unsigned offset2 = a.num_states() + 1;
mvs.push_back(move(0, a.init() + offset1, 0));
mvs.push_back(move(0, b.init() + offset2, 0));
mvs.push_back(move(m, 0, a.init() + offset1, 0));
mvs.push_back(move(m, 0, b.init() + offset2, 0));
append_moves(offset1, a, mvs);
append_moves(offset2, b, mvs);
append_final(offset1, a, final);
append_final(offset2, b, final);
return automaton(0, final, mvs);
return alloc(automaton, m, 0, final, mvs);
}
static automaton mk_reverse(automaton const& a) {
// concatenate accepting languages
static automaton* mk_concat(automaton const& a, automaton const& b) {
SASSERT(&a.m == &b.m);
M& m = a.m;
moves mvs;
unsigned_vector final;
unsigned init = 0;
if (a.has_single_final_sink() && b.initial_state_is_source() && b.init() == 0) {
unsigned offset2 = a.num_states();
init = a.init();
append_moves(0, a, mvs);
append_moves(offset2, b, mvs);
append_final(offset2, b, final);
}
else {
unsigned offset1 = 1;
unsigned offset2 = a.num_states() + offset1;
mvs.push_back(move(m, 0, a.init() + offset1));
append_moves(offset1, a, mvs);
for (unsigned i = 0; i < a.m_final_states.size(); ++i) {
mvs.push_back(move(m, a.m_final_states[i], b.init()));
}
append_moves(offset2, b, mvs);
append_final(offset2, b, final);
}
return alloc(automaton, m, init, final, mvs);
}
static automaton* mk_reverse(automaton const& a) {
M& m = a.m;
if (a.is_empty()) {
return automaton();
return alloc(automaton, m);
}
moves mvs;
for (unsigned i = 0; i < a.m_delta.size(); ++i) {
moves const& mvs1 = a.m_delta[i];
for (unsigned j = 0; j < mvs1.size(); ++j) {
move const& mv = mvs1[j];
mvs.push_back(move(mv.dst(), mv.src(), mv.t()));
mvs.push_back(move(m, mv.dst(), mv.src(), mv.t()));
}
}
unsigned_vector final;
@ -184,10 +246,37 @@ public:
else {
init = a.num_states();
for (unsigned i = 0; i < a.m_final_states.size(); ++i) {
mvs.push_back(move(init, a.m_final_states[i]));
mvs.push_back(move(m, init, a.m_final_states[i]));
}
}
return automaton(init, final, mvs);
return alloc(automaton, m, init, final, mvs);
}
void add_init_to_final() {
if (!m_final_set.contains(m_init)) {
m_final_set.insert(m_init);
m_final_states.push_back(m_init);
}
}
void add_final_to_init_moves() {
for (unsigned i = 0; i < m_final_states.size(); ++i) {
unsigned state = m_final_states[i];
bool found = false;
moves const& mvs = m_delta[state];
for (unsigned j = 0; found && j < mvs.size(); ++j) {
found = (mvs[j].dst() == m_init) && mvs[j].is_epsilon();
}
if (!found) {
m_delta[state].push_back(move(m, state, m_init));
m_delta_inv[m_init].push_back(move(m, state, m_init));
}
}
}
// remove states that only have epsilon transitions.
void compress() {
// TBD
}
bool is_sequence(unsigned& length) const {
@ -252,8 +341,29 @@ public:
void get_moves_to(unsigned state, moves& mvs) {
get_moves(state, m_delta_inv, mvs);
}
template<class D>
std::ostream& display(std::ostream& out, D& displayer) const {
out << "init: " << init() << "\n";
out << "final: ";
for (unsigned i = 0; i < m_final_states.size(); ++i) out << m_final_states[i] << " ";
out << "\n";
for (unsigned i = 0; i < m_delta.size(); ++i) {
moves const& mvs = m_delta[i];
for (unsigned j = 0; j < mvs.size(); ++j) {
move const& mv = mvs[j];
out << i << " -> " << mv.dst() << " ";
if (mv.t()) {
out << "if ";
displayer.display(out, mv.t());
}
out << "\n";
}
}
return out;
}
private:
void get_moves(unsigned state, svector<moves> const& delta, moves& mvs) const {
void get_moves(unsigned state, vector<moves> const& delta, moves& mvs) const {
unsigned_vector states;
get_epsilon_closure(state, delta, states);
for (unsigned i = 0; i < states.size(); ++i) {
@ -267,7 +377,7 @@ private:
}
}
void get_epsilon_closure(unsigned state, svector<moves> const& delta, unsigned_vector& states) const {
void get_epsilon_closure(unsigned state, vector<moves> const& delta, unsigned_vector& states) const {
m_todo.push_back(state);
m_visited.insert(state);
while (!m_todo.empty()) {
@ -292,7 +402,7 @@ private:
moves const& mvs1 = a.m_delta[i];
for (unsigned j = 0; j < mvs1.size(); ++j) {
move const& mv = mvs1[j];
mvs.push_back(move(mv.src() + offset, mv.dst() + offset, mv.t()));
mvs.push_back(move(a.m, mv.src() + offset, mv.dst() + offset, mv.t()));
}
}
}

View file

@ -26,6 +26,81 @@ Revision History:
using namespace smt;
re2automaton::re2automaton(ast_manager& m): m(m), u(m) {}
eautomaton* re2automaton::re2aut(expr* e) {
SASSERT(u.is_re(e));
expr* e1, *e2;
scoped_ptr<eautomaton> a, b;
if (u.re.is_to_re(e, e1)) {
return seq2aut(e1);
}
else if (u.re.is_concat(e, e1, e2) && (a = re2aut(e1)) && (b = re2aut(e2))) {
return eautomaton::mk_concat(*a, *b);
}
else if (u.re.is_union(e, e1, e2) && (a = re2aut(e1)) && (b = re2aut(e2))) {
return eautomaton::mk_union(*a, *b);
}
else if (u.re.is_star(e, e1) && (a = re2aut(e1))) {
a->add_final_to_init_moves();
a->add_init_to_final();
return a.detach();
}
else if (u.re.is_plus(e, e1) && (a = re2aut(e1))) {
a->add_final_to_init_moves();
return a.detach();
}
else if (u.re.is_opt(e, e1) && (a = re2aut(e1))) {
a->add_init_to_final();
return a.detach();
}
else if (u.re.is_range(e)) {
}
else if (u.re.is_loop(e)) {
}
#if 0
else if (u.re.is_intersect(e, e1, e2)) {
}
else if (u.re.is_empty(e)) {
}
#endif
return 0;
}
eautomaton* re2automaton::seq2aut(expr* e) {
SASSERT(u.is_seq(e));
zstring s;
expr* e1, *e2;
scoped_ptr<eautomaton> a, b;
if (u.str.is_concat(e, e1, e2) && (a = seq2aut(e1)) && (b = seq2aut(e2))) {
return eautomaton::mk_concat(*a, *b);
}
else if (u.str.is_unit(e, e1)) {
return alloc(eautomaton, m, e1);
}
else if (u.str.is_empty(e)) {
return eautomaton::mk_epsilon(m);
}
else if (u.str.is_string(e, s)) {
unsigned init = 0;
eautomaton::moves mvs;
unsigned_vector final;
final.push_back(s.length());
for (unsigned k = 0; k < s.length(); ++k) {
// reference count?
mvs.push_back(eautomaton::move(m, k, k+1, u.str.mk_char(s, k)));
}
return alloc(eautomaton, m, init, final, mvs);
}
return 0;
}
void theory_seq::solution_map::update(expr* e, expr* r, enode_pair_dependency* d) {
m_cache.reset();
std::pair<expr*, enode_pair_dependency*> value;
@ -1333,6 +1408,14 @@ void theory_seq::propagate_eq(bool_var v, expr* e1, expr* e2) {
ctx.assign_eq(n1, n2, eq_justification(js));
}
struct display_expr {
ast_manager& m;
display_expr(ast_manager& m): m(m) {}
std::ostream& display(std::ostream& out, expr* e) const {
return out << mk_pp(e, m);
}
};
void theory_seq::assign_eh(bool_var v, bool is_true) {
context & ctx = get_context();
expr* e = ctx.bool_var2expr(v);
@ -1355,10 +1438,16 @@ void theory_seq::assign_eh(bool_var v, bool is_true) {
f = m_util.str.mk_concat(m_util.str.mk_concat(f1, e2), f2);
propagate_eq(v, f, e1);
}
else if (m_util.str.is_in_re(e)) {
else if (m_util.str.is_in_re(e, e1, e2)) {
TRACE("seq", tout << "in re: " << mk_pp(e, m) << "\n";);
m_trail_stack.push(push_back_vector<theory_seq, expr_ref_vector>(m_in_re));
m_in_re.push_back(e);
scoped_ptr<eautomaton> a = re2automaton(m)(e2);
if (a) {
display_expr disp(m);
TRACE("seq", a->display(tout, disp););
}
}
else {
UNREACHABLE();

View file

@ -25,9 +25,21 @@ Revision History:
#include "th_rewriter.h"
#include "ast_trail.h"
#include "scoped_vector.h"
#include "automaton.h"
namespace smt {
typedef automaton<expr, ast_manager> eautomaton;
class re2automaton {
ast_manager& m;
seq_util u;
eautomaton* re2aut(expr* e);
eautomaton* seq2aut(expr* e);
public:
re2automaton(ast_manager& m);
eautomaton* operator()(expr* e) { return re2aut(e); }
};
class theory_seq : public theory {
typedef scoped_dependency_manager<enode_pair> enode_pair_dependency_manager;
typedef enode_pair_dependency_manager::dependency enode_pair_dependency;