mirror of
https://github.com/Z3Prover/z3
synced 2026-02-18 22:54:21 +00:00
Add missing solver API functions to Go bindings
- Add Units() - get unit clauses learned by solver - Add NonUnits() - get non-unit clauses - Add Trail() - get decision trail - Add TrailLevels() - get trail decision levels - Add CongruenceRoot() - get congruence class representative - Add CongruenceNext() - get next element in congruence class - Add CongruenceExplain() - explain why two terms are congruent - Add test example demonstrating new APIs Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
This commit is contained in:
parent
e479c6690f
commit
1bae5a847c
2 changed files with 175 additions and 0 deletions
|
|
@ -195,6 +195,94 @@ func (s *Solver) Interrupt() {
|
|||
C.Z3_solver_interrupt(s.ctx.ptr, s.ptr)
|
||||
}
|
||||
|
||||
// Units returns the unit clauses (literals) learned by the solver.
|
||||
// Unit clauses are assertions that have been simplified to single literals.
|
||||
// This is useful for debugging and understanding solver behavior.
|
||||
func (s *Solver) Units() []*Expr {
|
||||
vec := C.Z3_solver_get_units(s.ctx.ptr, s.ptr)
|
||||
return astVectorToExprs(s.ctx, vec)
|
||||
}
|
||||
|
||||
// NonUnits returns the non-unit clauses in the solver's current state.
|
||||
// These are atomic formulas that are not unit clauses.
|
||||
// This is useful for debugging and understanding solver behavior.
|
||||
func (s *Solver) NonUnits() []*Expr {
|
||||
vec := C.Z3_solver_get_non_units(s.ctx.ptr, s.ptr)
|
||||
return astVectorToExprs(s.ctx, vec)
|
||||
}
|
||||
|
||||
// Trail returns the decision trail of the solver.
|
||||
// The trail contains the sequence of literals assigned during search.
|
||||
// This is useful for understanding the solver's decision history.
|
||||
func (s *Solver) Trail() []*Expr {
|
||||
vec := C.Z3_solver_get_trail(s.ctx.ptr, s.ptr)
|
||||
return astVectorToExprs(s.ctx, vec)
|
||||
}
|
||||
|
||||
// TrailLevels returns the decision levels for each literal in the trail.
|
||||
// The returned slice has the same length as the trail, where each element
|
||||
// indicates the decision level at which the corresponding trail literal was assigned.
|
||||
// This is useful for understanding the structure of the search tree.
|
||||
func (s *Solver) TrailLevels() []uint {
|
||||
trail := s.Trail()
|
||||
n := len(trail)
|
||||
if n == 0 {
|
||||
return []uint{}
|
||||
}
|
||||
|
||||
// Create C arrays for the literals and levels
|
||||
literals := make([]C.Z3_ast, n)
|
||||
for i, expr := range trail {
|
||||
literals[i] = expr.ptr
|
||||
}
|
||||
levels := make([]C.uint, n)
|
||||
|
||||
// Create a temporary ast_vector from the trail literals
|
||||
vec := C.Z3_mk_ast_vector(s.ctx.ptr)
|
||||
C.Z3_ast_vector_inc_ref(s.ctx.ptr, vec)
|
||||
for _, lit := range literals {
|
||||
C.Z3_ast_vector_push(s.ctx.ptr, vec, lit)
|
||||
}
|
||||
|
||||
// Get the levels
|
||||
C.Z3_solver_get_levels(s.ctx.ptr, s.ptr, vec, C.uint(n), &levels[0])
|
||||
C.Z3_ast_vector_dec_ref(s.ctx.ptr, vec)
|
||||
|
||||
// Convert to Go slice
|
||||
result := make([]uint, n)
|
||||
for i := 0; i < n; i++ {
|
||||
result[i] = uint(levels[i])
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
// CongruenceRoot returns the congruence class representative of the given expression.
|
||||
// This returns the root element in the congruence closure for the term.
|
||||
// The function primarily works for SimpleSolver. Terms and variables that are
|
||||
// eliminated during pre-processing are not visible to the congruence closure.
|
||||
func (s *Solver) CongruenceRoot(expr *Expr) *Expr {
|
||||
ast := C.Z3_solver_congruence_root(s.ctx.ptr, s.ptr, expr.ptr)
|
||||
return newExpr(s.ctx, ast)
|
||||
}
|
||||
|
||||
// CongruenceNext returns the next element in the congruence class of the given expression.
|
||||
// This allows iteration through all elements in a congruence class.
|
||||
// The function primarily works for SimpleSolver. Terms and variables that are
|
||||
// eliminated during pre-processing are not visible to the congruence closure.
|
||||
func (s *Solver) CongruenceNext(expr *Expr) *Expr {
|
||||
ast := C.Z3_solver_congruence_next(s.ctx.ptr, s.ptr, expr.ptr)
|
||||
return newExpr(s.ctx, ast)
|
||||
}
|
||||
|
||||
// CongruenceExplain returns an explanation for why two expressions are congruent.
|
||||
// The result is an expression that justifies the congruence between a and b.
|
||||
// The function primarily works for SimpleSolver. Terms and variables that are
|
||||
// eliminated during pre-processing are not visible to the congruence closure.
|
||||
func (s *Solver) CongruenceExplain(a, b *Expr) *Expr {
|
||||
ast := C.Z3_solver_congruence_explain(s.ctx.ptr, s.ptr, a.ptr, b.ptr)
|
||||
return newExpr(s.ctx, ast)
|
||||
}
|
||||
|
||||
// Model represents a Z3 model (satisfying assignment).
|
||||
type Model struct {
|
||||
ctx *Context
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue