mirror of
https://github.com/Z3Prover/z3
synced 2026-02-18 22:54:21 +00:00
Add missing solver API functions to Go bindings
- Add Units() - get unit clauses learned by solver - Add NonUnits() - get non-unit clauses - Add Trail() - get decision trail - Add TrailLevels() - get trail decision levels - Add CongruenceRoot() - get congruence class representative - Add CongruenceNext() - get next element in congruence class - Add CongruenceExplain() - explain why two terms are congruent - Add test example demonstrating new APIs Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
This commit is contained in:
parent
e479c6690f
commit
1bae5a847c
2 changed files with 175 additions and 0 deletions
87
examples/go/test_new_apis.go
Normal file
87
examples/go/test_new_apis.go
Normal file
|
|
@ -0,0 +1,87 @@
|
|||
package main
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"github.com/Z3Prover/z3/src/api/go"
|
||||
)
|
||||
|
||||
func main() {
|
||||
// Create a new Z3 context
|
||||
ctx := z3.NewContext()
|
||||
fmt.Println("Z3 Go Bindings - New APIs Test")
|
||||
fmt.Println("================================")
|
||||
|
||||
// Test diagnostic APIs
|
||||
fmt.Println("\nTest 1: Solver Diagnostic APIs")
|
||||
solver := ctx.NewSolver()
|
||||
|
||||
// Create some simple constraints
|
||||
x := ctx.MkIntConst("x")
|
||||
y := ctx.MkIntConst("y")
|
||||
zero := ctx.MkInt(0, ctx.MkIntSort())
|
||||
ten := ctx.MkInt(10, ctx.MkIntSort())
|
||||
|
||||
solver.Assert(ctx.MkGt(x, zero))
|
||||
solver.Assert(ctx.MkLt(x, ten))
|
||||
solver.Assert(ctx.MkEq(ctx.MkAdd(x, y), ten))
|
||||
|
||||
// Check satisfiability
|
||||
status := solver.Check()
|
||||
fmt.Println("Status:", status.String())
|
||||
|
||||
if status == z3.Satisfiable {
|
||||
// Test Units() - get unit clauses
|
||||
units := solver.Units()
|
||||
fmt.Printf("Units: %d clauses\n", len(units))
|
||||
for i, unit := range units {
|
||||
fmt.Printf(" Unit %d: %s\n", i, unit.String())
|
||||
}
|
||||
|
||||
// Test NonUnits() - get non-unit clauses
|
||||
nonUnits := solver.NonUnits()
|
||||
fmt.Printf("NonUnits: %d clauses\n", len(nonUnits))
|
||||
for i, nu := range nonUnits {
|
||||
fmt.Printf(" NonUnit %d: %s\n", i, nu.String())
|
||||
}
|
||||
|
||||
// Note: Trail() and TrailLevels() only work with SimpleSolver
|
||||
// For default solvers created with NewSolver(), these may not be available
|
||||
fmt.Println("Note: Trail() and TrailLevels() are available primarily for SimpleSolver")
|
||||
}
|
||||
|
||||
// Test congruence closure APIs
|
||||
fmt.Println("\nTest 2: Congruence Closure APIs")
|
||||
solver2 := ctx.NewSolver()
|
||||
|
||||
// Create expressions for congruence testing
|
||||
a := ctx.MkIntConst("a")
|
||||
b := ctx.MkIntConst("b")
|
||||
c := ctx.MkIntConst("c")
|
||||
|
||||
// Assert a = b and b = c (so a should be congruent to c)
|
||||
solver2.Assert(ctx.MkEq(a, b))
|
||||
solver2.Assert(ctx.MkEq(b, c))
|
||||
|
||||
status = solver2.Check()
|
||||
fmt.Println("Status:", status.String())
|
||||
|
||||
if status == z3.Satisfiable {
|
||||
// Test CongruenceRoot() - get congruence class representative
|
||||
rootA := solver2.CongruenceRoot(a)
|
||||
rootB := solver2.CongruenceRoot(b)
|
||||
rootC := solver2.CongruenceRoot(c)
|
||||
fmt.Printf("CongruenceRoot(a): %s\n", rootA.String())
|
||||
fmt.Printf("CongruenceRoot(b): %s\n", rootB.String())
|
||||
fmt.Printf("CongruenceRoot(c): %s\n", rootC.String())
|
||||
|
||||
// Test CongruenceNext() - get next element in congruence class
|
||||
nextA := solver2.CongruenceNext(a)
|
||||
fmt.Printf("CongruenceNext(a): %s\n", nextA.String())
|
||||
|
||||
// Test CongruenceExplain() - explain why two terms are congruent
|
||||
explain := solver2.CongruenceExplain(a, c)
|
||||
fmt.Printf("CongruenceExplain(a, c): %s\n", explain.String())
|
||||
}
|
||||
|
||||
fmt.Println("\nAll new API tests completed successfully!")
|
||||
}
|
||||
|
|
@ -195,6 +195,94 @@ func (s *Solver) Interrupt() {
|
|||
C.Z3_solver_interrupt(s.ctx.ptr, s.ptr)
|
||||
}
|
||||
|
||||
// Units returns the unit clauses (literals) learned by the solver.
|
||||
// Unit clauses are assertions that have been simplified to single literals.
|
||||
// This is useful for debugging and understanding solver behavior.
|
||||
func (s *Solver) Units() []*Expr {
|
||||
vec := C.Z3_solver_get_units(s.ctx.ptr, s.ptr)
|
||||
return astVectorToExprs(s.ctx, vec)
|
||||
}
|
||||
|
||||
// NonUnits returns the non-unit clauses in the solver's current state.
|
||||
// These are atomic formulas that are not unit clauses.
|
||||
// This is useful for debugging and understanding solver behavior.
|
||||
func (s *Solver) NonUnits() []*Expr {
|
||||
vec := C.Z3_solver_get_non_units(s.ctx.ptr, s.ptr)
|
||||
return astVectorToExprs(s.ctx, vec)
|
||||
}
|
||||
|
||||
// Trail returns the decision trail of the solver.
|
||||
// The trail contains the sequence of literals assigned during search.
|
||||
// This is useful for understanding the solver's decision history.
|
||||
func (s *Solver) Trail() []*Expr {
|
||||
vec := C.Z3_solver_get_trail(s.ctx.ptr, s.ptr)
|
||||
return astVectorToExprs(s.ctx, vec)
|
||||
}
|
||||
|
||||
// TrailLevels returns the decision levels for each literal in the trail.
|
||||
// The returned slice has the same length as the trail, where each element
|
||||
// indicates the decision level at which the corresponding trail literal was assigned.
|
||||
// This is useful for understanding the structure of the search tree.
|
||||
func (s *Solver) TrailLevels() []uint {
|
||||
trail := s.Trail()
|
||||
n := len(trail)
|
||||
if n == 0 {
|
||||
return []uint{}
|
||||
}
|
||||
|
||||
// Create C arrays for the literals and levels
|
||||
literals := make([]C.Z3_ast, n)
|
||||
for i, expr := range trail {
|
||||
literals[i] = expr.ptr
|
||||
}
|
||||
levels := make([]C.uint, n)
|
||||
|
||||
// Create a temporary ast_vector from the trail literals
|
||||
vec := C.Z3_mk_ast_vector(s.ctx.ptr)
|
||||
C.Z3_ast_vector_inc_ref(s.ctx.ptr, vec)
|
||||
for _, lit := range literals {
|
||||
C.Z3_ast_vector_push(s.ctx.ptr, vec, lit)
|
||||
}
|
||||
|
||||
// Get the levels
|
||||
C.Z3_solver_get_levels(s.ctx.ptr, s.ptr, vec, C.uint(n), &levels[0])
|
||||
C.Z3_ast_vector_dec_ref(s.ctx.ptr, vec)
|
||||
|
||||
// Convert to Go slice
|
||||
result := make([]uint, n)
|
||||
for i := 0; i < n; i++ {
|
||||
result[i] = uint(levels[i])
|
||||
}
|
||||
return result
|
||||
}
|
||||
|
||||
// CongruenceRoot returns the congruence class representative of the given expression.
|
||||
// This returns the root element in the congruence closure for the term.
|
||||
// The function primarily works for SimpleSolver. Terms and variables that are
|
||||
// eliminated during pre-processing are not visible to the congruence closure.
|
||||
func (s *Solver) CongruenceRoot(expr *Expr) *Expr {
|
||||
ast := C.Z3_solver_congruence_root(s.ctx.ptr, s.ptr, expr.ptr)
|
||||
return newExpr(s.ctx, ast)
|
||||
}
|
||||
|
||||
// CongruenceNext returns the next element in the congruence class of the given expression.
|
||||
// This allows iteration through all elements in a congruence class.
|
||||
// The function primarily works for SimpleSolver. Terms and variables that are
|
||||
// eliminated during pre-processing are not visible to the congruence closure.
|
||||
func (s *Solver) CongruenceNext(expr *Expr) *Expr {
|
||||
ast := C.Z3_solver_congruence_next(s.ctx.ptr, s.ptr, expr.ptr)
|
||||
return newExpr(s.ctx, ast)
|
||||
}
|
||||
|
||||
// CongruenceExplain returns an explanation for why two expressions are congruent.
|
||||
// The result is an expression that justifies the congruence between a and b.
|
||||
// The function primarily works for SimpleSolver. Terms and variables that are
|
||||
// eliminated during pre-processing are not visible to the congruence closure.
|
||||
func (s *Solver) CongruenceExplain(a, b *Expr) *Expr {
|
||||
ast := C.Z3_solver_congruence_explain(s.ctx.ptr, s.ptr, a.ptr, b.ptr)
|
||||
return newExpr(s.ctx, ast)
|
||||
}
|
||||
|
||||
// Model represents a Z3 model (satisfying assignment).
|
||||
type Model struct {
|
||||
ctx *Context
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue