3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2026-02-18 22:54:21 +00:00

Add missing solver API functions to Go bindings

- Add Units() - get unit clauses learned by solver
- Add NonUnits() - get non-unit clauses
- Add Trail() - get decision trail
- Add TrailLevels() - get trail decision levels
- Add CongruenceRoot() - get congruence class representative
- Add CongruenceNext() - get next element in congruence class
- Add CongruenceExplain() - explain why two terms are congruent
- Add test example demonstrating new APIs

Co-authored-by: NikolajBjorner <3085284+NikolajBjorner@users.noreply.github.com>
This commit is contained in:
copilot-swe-agent[bot] 2026-02-17 16:38:39 +00:00
parent e479c6690f
commit 1bae5a847c
2 changed files with 175 additions and 0 deletions

View file

@ -0,0 +1,87 @@
package main
import (
"fmt"
"github.com/Z3Prover/z3/src/api/go"
)
func main() {
// Create a new Z3 context
ctx := z3.NewContext()
fmt.Println("Z3 Go Bindings - New APIs Test")
fmt.Println("================================")
// Test diagnostic APIs
fmt.Println("\nTest 1: Solver Diagnostic APIs")
solver := ctx.NewSolver()
// Create some simple constraints
x := ctx.MkIntConst("x")
y := ctx.MkIntConst("y")
zero := ctx.MkInt(0, ctx.MkIntSort())
ten := ctx.MkInt(10, ctx.MkIntSort())
solver.Assert(ctx.MkGt(x, zero))
solver.Assert(ctx.MkLt(x, ten))
solver.Assert(ctx.MkEq(ctx.MkAdd(x, y), ten))
// Check satisfiability
status := solver.Check()
fmt.Println("Status:", status.String())
if status == z3.Satisfiable {
// Test Units() - get unit clauses
units := solver.Units()
fmt.Printf("Units: %d clauses\n", len(units))
for i, unit := range units {
fmt.Printf(" Unit %d: %s\n", i, unit.String())
}
// Test NonUnits() - get non-unit clauses
nonUnits := solver.NonUnits()
fmt.Printf("NonUnits: %d clauses\n", len(nonUnits))
for i, nu := range nonUnits {
fmt.Printf(" NonUnit %d: %s\n", i, nu.String())
}
// Note: Trail() and TrailLevels() only work with SimpleSolver
// For default solvers created with NewSolver(), these may not be available
fmt.Println("Note: Trail() and TrailLevels() are available primarily for SimpleSolver")
}
// Test congruence closure APIs
fmt.Println("\nTest 2: Congruence Closure APIs")
solver2 := ctx.NewSolver()
// Create expressions for congruence testing
a := ctx.MkIntConst("a")
b := ctx.MkIntConst("b")
c := ctx.MkIntConst("c")
// Assert a = b and b = c (so a should be congruent to c)
solver2.Assert(ctx.MkEq(a, b))
solver2.Assert(ctx.MkEq(b, c))
status = solver2.Check()
fmt.Println("Status:", status.String())
if status == z3.Satisfiable {
// Test CongruenceRoot() - get congruence class representative
rootA := solver2.CongruenceRoot(a)
rootB := solver2.CongruenceRoot(b)
rootC := solver2.CongruenceRoot(c)
fmt.Printf("CongruenceRoot(a): %s\n", rootA.String())
fmt.Printf("CongruenceRoot(b): %s\n", rootB.String())
fmt.Printf("CongruenceRoot(c): %s\n", rootC.String())
// Test CongruenceNext() - get next element in congruence class
nextA := solver2.CongruenceNext(a)
fmt.Printf("CongruenceNext(a): %s\n", nextA.String())
// Test CongruenceExplain() - explain why two terms are congruent
explain := solver2.CongruenceExplain(a, c)
fmt.Printf("CongruenceExplain(a, c): %s\n", explain.String())
}
fmt.Println("\nAll new API tests completed successfully!")
}

View file

@ -195,6 +195,94 @@ func (s *Solver) Interrupt() {
C.Z3_solver_interrupt(s.ctx.ptr, s.ptr)
}
// Units returns the unit clauses (literals) learned by the solver.
// Unit clauses are assertions that have been simplified to single literals.
// This is useful for debugging and understanding solver behavior.
func (s *Solver) Units() []*Expr {
vec := C.Z3_solver_get_units(s.ctx.ptr, s.ptr)
return astVectorToExprs(s.ctx, vec)
}
// NonUnits returns the non-unit clauses in the solver's current state.
// These are atomic formulas that are not unit clauses.
// This is useful for debugging and understanding solver behavior.
func (s *Solver) NonUnits() []*Expr {
vec := C.Z3_solver_get_non_units(s.ctx.ptr, s.ptr)
return astVectorToExprs(s.ctx, vec)
}
// Trail returns the decision trail of the solver.
// The trail contains the sequence of literals assigned during search.
// This is useful for understanding the solver's decision history.
func (s *Solver) Trail() []*Expr {
vec := C.Z3_solver_get_trail(s.ctx.ptr, s.ptr)
return astVectorToExprs(s.ctx, vec)
}
// TrailLevels returns the decision levels for each literal in the trail.
// The returned slice has the same length as the trail, where each element
// indicates the decision level at which the corresponding trail literal was assigned.
// This is useful for understanding the structure of the search tree.
func (s *Solver) TrailLevels() []uint {
trail := s.Trail()
n := len(trail)
if n == 0 {
return []uint{}
}
// Create C arrays for the literals and levels
literals := make([]C.Z3_ast, n)
for i, expr := range trail {
literals[i] = expr.ptr
}
levels := make([]C.uint, n)
// Create a temporary ast_vector from the trail literals
vec := C.Z3_mk_ast_vector(s.ctx.ptr)
C.Z3_ast_vector_inc_ref(s.ctx.ptr, vec)
for _, lit := range literals {
C.Z3_ast_vector_push(s.ctx.ptr, vec, lit)
}
// Get the levels
C.Z3_solver_get_levels(s.ctx.ptr, s.ptr, vec, C.uint(n), &levels[0])
C.Z3_ast_vector_dec_ref(s.ctx.ptr, vec)
// Convert to Go slice
result := make([]uint, n)
for i := 0; i < n; i++ {
result[i] = uint(levels[i])
}
return result
}
// CongruenceRoot returns the congruence class representative of the given expression.
// This returns the root element in the congruence closure for the term.
// The function primarily works for SimpleSolver. Terms and variables that are
// eliminated during pre-processing are not visible to the congruence closure.
func (s *Solver) CongruenceRoot(expr *Expr) *Expr {
ast := C.Z3_solver_congruence_root(s.ctx.ptr, s.ptr, expr.ptr)
return newExpr(s.ctx, ast)
}
// CongruenceNext returns the next element in the congruence class of the given expression.
// This allows iteration through all elements in a congruence class.
// The function primarily works for SimpleSolver. Terms and variables that are
// eliminated during pre-processing are not visible to the congruence closure.
func (s *Solver) CongruenceNext(expr *Expr) *Expr {
ast := C.Z3_solver_congruence_next(s.ctx.ptr, s.ptr, expr.ptr)
return newExpr(s.ctx, ast)
}
// CongruenceExplain returns an explanation for why two expressions are congruent.
// The result is an expression that justifies the congruence between a and b.
// The function primarily works for SimpleSolver. Terms and variables that are
// eliminated during pre-processing are not visible to the congruence closure.
func (s *Solver) CongruenceExplain(a, b *Expr) *Expr {
ast := C.Z3_solver_congruence_explain(s.ctx.ptr, s.ptr, a.ptr, b.ptr)
return newExpr(s.ctx, ast)
}
// Model represents a Z3 model (satisfying assignment).
type Model struct {
ctx *Context