3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-28 05:58:55 +00:00

spacer: fixes lim_num_generalizer

Must check that newly constructed generalization blocks
the proof obligation.

Was only checking that generalization is entailed by the transition system!
This commit is contained in:
Arie Gurfinkel 2019-09-11 21:53:13 +02:00 committed by Nikolaj Bjorner
parent 63840806d8
commit 1b83c677ea
2 changed files with 44 additions and 12 deletions

View file

@ -20,6 +20,7 @@
#include "ast/rewriter/rewriter.h"
#include "ast/rewriter/rewriter_def.h"
#include "muz/spacer/spacer_generalizers.h"
#include "smt/smt_solver.h"
namespace spacer {
@ -74,7 +75,7 @@ struct limit_denominator_rewriter_cfg : public default_rewriter_cfg {
q2 = tj * q1 + q0;
p2 = tj * p1 + p0;
if (q2 >= m_limit) {
num = p2/q2;
num = p2 / q2;
return true;
}
rem = n - tj * d;
@ -104,11 +105,11 @@ struct limit_denominator_rewriter_cfg : public default_rewriter_cfg {
};
} // namespace
limit_num_generalizer::limit_num_generalizer(context &ctx,
unsigned failure_limit)
unsigned failure_limit)
: lemma_generalizer(ctx), m_failure_limit(failure_limit) {}
bool limit_num_generalizer::limit_denominators(expr_ref_vector &lits,
rational &limit) {
rational &limit) {
ast_manager &m = m_ctx.get_ast_manager();
limit_denominator_rewriter_cfg rw_cfg(m, limit);
rewriter_tpl<limit_denominator_rewriter_cfg> rw(m, false, rw_cfg);
@ -135,6 +136,10 @@ void limit_num_generalizer::operator()(lemma_ref &lemma) {
expr_ref_vector cube(m);
// create a solver to check whether updated cube is in a generalization
ref<solver> sol = mk_smt_solver(m, params_ref::get_empty(), symbol::null);
SASSERT(lemma->has_pob());
sol->assert_expr(lemma->get_pob()->post());
unsigned weakness = lemma->weakness();
rational limit(100);
for (unsigned num_failures = 0; num_failures < m_failure_limit;
@ -143,8 +148,33 @@ void limit_num_generalizer::operator()(lemma_ref &lemma) {
cube.append(lemma->get_cube());
// try to limit denominators
if (!limit_denominators(cube, limit)) return;
// check that the result is inductive
if (pt.check_inductive(lemma->level(), cube, uses_level, weakness)) {
bool failed = false;
// check that pob->post() ==> cube
for (auto *lit : cube) {
solver::scoped_push _p_(*sol);
expr_ref nlit(m);
nlit = m.mk_not(lit);
sol->assert_expr(nlit);
lbool res = sol->check_sat(0, nullptr);
if (res == l_false) {
// good
} else {
failed = true;
TRACE("spacer.limnum", tout << "Failed to generalize: "
<< lemma->get_cube()
<< "\ninto\n"
<< cube << "\n";);
break;
}
}
// check that !cube & F & Tr ==> !cube'
if (!failed && pt.check_inductive(lemma->level(), cube, uses_level, weakness)) {
TRACE("spacer",
tout << "Reduced fractions from:\n"
<< lemma->get_cube() << "\n\nto\n"
<< cube << "\n";);
lemma->update_cube(lemma->get_pob(), cube);
lemma->set_level(uses_level);
// done