mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 16:45:31 +00:00
debug emons
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
ef6fd1cf8e
commit
1ab3957eea
19 changed files with 203 additions and 196 deletions
|
@ -132,7 +132,8 @@ namespace nla {
|
|||
return m_use_lists[v].m_head;
|
||||
}
|
||||
|
||||
signed_vars const* emonomials::find_canonical(svector<lpvar> const& vars) const {
|
||||
smon const* emonomials::find_canonical(svector<lpvar> const& vars) const {
|
||||
SASSERT(m_ve.is_root(vars));
|
||||
// find a unique key for dummy monomial
|
||||
lpvar v = m_var2index.size();
|
||||
for (unsigned i = 0; i < m_var2index.size(); ++i) {
|
||||
|
@ -143,10 +144,10 @@ namespace nla {
|
|||
}
|
||||
unsigned idx = m_monomials.size();
|
||||
m_monomials.push_back(monomial(v, vars.size(), vars.c_ptr()));
|
||||
m_canonized.push_back(signed_vars_ts(v, idx));
|
||||
m_canonized.push_back(smon_ts(v, idx));
|
||||
m_var2index.setx(v, idx, UINT_MAX);
|
||||
do_canonize(m_monomials[idx]);
|
||||
signed_vars const* result = nullptr;
|
||||
smon const* result = nullptr;
|
||||
lpvar w;
|
||||
if (m_cg_table.find(v, w)) {
|
||||
SASSERT(w != v);
|
||||
|
@ -179,7 +180,7 @@ namespace nla {
|
|||
}
|
||||
|
||||
void emonomials::remove_cg(unsigned idx, monomial const& m) {
|
||||
signed_vars_ts& sv = m_canonized[idx];
|
||||
smon_ts& sv = m_canonized[idx];
|
||||
unsigned next = sv.m_next;
|
||||
unsigned prev = sv.m_prev;
|
||||
|
||||
|
@ -203,7 +204,7 @@ namespace nla {
|
|||
/**
|
||||
\brief insert canonized monomials using v into a congruence table.
|
||||
Prior to insertion, the monomials are canonized according to the current
|
||||
variable equivalences. The canonized monomials (signed_vars) are considered
|
||||
variable equivalences. The canonized monomials (smon) are considered
|
||||
in the same equivalence class if they have the same set of representative
|
||||
variables. Their signs may differ.
|
||||
*/
|
||||
|
@ -258,13 +259,13 @@ namespace nla {
|
|||
\brief insert a new monomial.
|
||||
|
||||
Assume that the variables are canonical, that is, not equal in current
|
||||
context so another variable. The monomial is inserted into a congruence
|
||||
context to another variable. The monomial is inserted into a congruence
|
||||
class of equal up-to var_eqs monomials.
|
||||
*/
|
||||
void emonomials::add(lpvar v, unsigned sz, lpvar const* vs) {
|
||||
unsigned idx = m_monomials.size();
|
||||
m_monomials.push_back(monomial(v, sz, vs));
|
||||
m_canonized.push_back(signed_vars_ts(v, idx));
|
||||
m_canonized.push_back(smon_ts(v, idx));
|
||||
lpvar last_var = UINT_MAX;
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
lpvar w = vs[i];
|
||||
|
@ -282,7 +283,7 @@ namespace nla {
|
|||
|
||||
void emonomials::do_canonize(monomial const& mon) const {
|
||||
unsigned index = m_var2index[mon.var()];
|
||||
signed_vars& svs = m_canonized[index];
|
||||
smon& svs = m_canonized[index];
|
||||
svs.reset();
|
||||
for (lpvar v : mon) {
|
||||
svs.push_var(m_ve.find(v));
|
||||
|
@ -292,8 +293,8 @@ namespace nla {
|
|||
|
||||
bool emonomials::canonize_divides(monomial const& m1, monomial const& m2) const {
|
||||
if (m1.size() > m2.size()) return false;
|
||||
signed_vars const& s1 = canonize(m1);
|
||||
signed_vars const& s2 = canonize(m2);
|
||||
smon const& s1 = canonize(m1);
|
||||
smon const& s2 = canonize(m2);
|
||||
unsigned sz1 = s1.size(), sz2 = s2.size();
|
||||
unsigned i = 0, j = 0;
|
||||
while (true) {
|
||||
|
|
|
@ -31,12 +31,12 @@ namespace nla {
|
|||
\brief class used to summarize the coefficients to a monomial after
|
||||
canonization with respect to current equalities.
|
||||
*/
|
||||
class signed_vars {
|
||||
class smon {
|
||||
lpvar m_var; // variable representing original monomial
|
||||
svector<lpvar> m_vars;
|
||||
bool m_sign;
|
||||
public:
|
||||
signed_vars(lpvar v) : m_var(v), m_sign(false) {}
|
||||
smon(lpvar v) : m_var(v), m_sign(false) {}
|
||||
lpvar var() const { return m_var; }
|
||||
svector<lpvar> const& vars() const { return m_vars; }
|
||||
svector<lp::var_index>::const_iterator begin() const { return vars().begin(); }
|
||||
|
@ -58,7 +58,7 @@ namespace nla {
|
|||
}
|
||||
};
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, signed_vars const& m) { return m.display(out); }
|
||||
inline std::ostream& operator<<(std::ostream& out, smon const& m) { return m.display(out); }
|
||||
|
||||
|
||||
class emonomials : public var_eqs_merge_handler {
|
||||
|
@ -86,9 +86,9 @@ namespace nla {
|
|||
/**
|
||||
\brief private fields used by emonomials for maintaining state of canonized monomials.
|
||||
*/
|
||||
class signed_vars_ts : public signed_vars {
|
||||
class smon_ts : public smon {
|
||||
public:
|
||||
signed_vars_ts(lpvar v, unsigned idx): signed_vars(v), m_next(idx), m_prev(idx), m_visited(0) {}
|
||||
smon_ts(lpvar v, unsigned idx): smon(v), m_next(idx), m_prev(idx), m_visited(0) {}
|
||||
unsigned m_next; // next congruent node.
|
||||
unsigned m_prev; // previous congruent node
|
||||
mutable unsigned m_visited;
|
||||
|
@ -120,7 +120,7 @@ namespace nla {
|
|||
unsigned_vector m_lim; // backtracking point
|
||||
mutable unsigned m_visited; // timestamp of visited monomials during pf_iterator
|
||||
region m_region; // region for allocating linked lists
|
||||
mutable vector<signed_vars_ts> m_canonized; // canonized versions of signed variables
|
||||
mutable vector<smon_ts> m_canonized; // canonized versions of signed variables
|
||||
mutable svector<head_tail> m_use_lists; // use list of monomials where variables occur.
|
||||
hash_canonical m_cg_hash;
|
||||
eq_canonical m_cg_eq;
|
||||
|
@ -189,14 +189,14 @@ namespace nla {
|
|||
/**
|
||||
\brief retrieve canonized monomial corresponding to variable v from definition v := vs
|
||||
*/
|
||||
signed_vars const& var2canonical(lpvar v) const { return canonize(var2monomial(v)); }
|
||||
smon const& var2canonical(lpvar v) const { return canonize(var2monomial(v)); }
|
||||
|
||||
class canonical {
|
||||
emonomials& m;
|
||||
public:
|
||||
canonical(emonomials& m): m(m) {}
|
||||
signed_vars const& operator[](lpvar v) const { return m.var2canonical(v); }
|
||||
signed_vars const& operator[](monomial const& mon) const { return m.var2canonical(mon.var()); }
|
||||
smon const& operator[](lpvar v) const { return m.var2canonical(v); }
|
||||
smon const& operator[](monomial const& mon) const { return m.var2canonical(mon.var()); }
|
||||
};
|
||||
|
||||
canonical canonical;
|
||||
|
@ -205,13 +205,13 @@ namespace nla {
|
|||
\brief obtain a canonized signed monomial
|
||||
corresponding to current equivalence class.
|
||||
*/
|
||||
signed_vars const& canonize(monomial const& m) const { return m_canonized[m_var2index[m.var()]]; }
|
||||
smon const& canonize(monomial const& m) const { return m_canonized[m_var2index[m.var()]]; }
|
||||
|
||||
/**
|
||||
\brief obtain the representative canonized monomial up to sign.
|
||||
*/
|
||||
//signed_vars const& rep(signed_vars const& sv) const { return m_canonized[m_var2index[m_cg_table[sv.var()]]]; }
|
||||
signed_vars const& rep(signed_vars const& sv) const {
|
||||
//smon const& rep(smon const& sv) const { return m_canonized[m_var2index[m_cg_table[sv.var()]]]; }
|
||||
smon const& rep(smon const& sv) const {
|
||||
unsigned j = -1;
|
||||
m_cg_table.find(sv.var(), j);
|
||||
return m_canonized[m_var2index[j]];
|
||||
|
@ -220,7 +220,7 @@ namespace nla {
|
|||
/**
|
||||
\brief the original sign is defined as a sign of the equivalence class representative.
|
||||
*/
|
||||
rational orig_sign(signed_vars const& sv) const { return rep(sv).rsign(); }
|
||||
rational orig_sign(smon const& sv) const { return rep(sv).rsign(); }
|
||||
|
||||
/**
|
||||
\brief determine if m1 divides m2 over the canonization obtained from merged variables.
|
||||
|
@ -301,7 +301,7 @@ namespace nla {
|
|||
factors_of get_factors_of(monomial const& m) const { inc_visited(); return factors_of(*this, m); }
|
||||
factors_of get_factors_of(lpvar v) const { inc_visited(); return factors_of(*this, v); }
|
||||
|
||||
signed_vars const* find_canonical(svector<lpvar> const& vars) const;
|
||||
smon const* find_canonical(svector<lpvar> const& vars) const;
|
||||
|
||||
/**
|
||||
\brief iterator over sign equivalent monomials.
|
||||
|
@ -350,7 +350,7 @@ namespace nla {
|
|||
|
||||
sign_equiv_monomials enum_sign_equiv_monomials(monomial const& m) { return sign_equiv_monomials(*this, m); }
|
||||
sign_equiv_monomials enum_sign_equiv_monomials(lpvar v) { return enum_sign_equiv_monomials((*this)[v]); }
|
||||
sign_equiv_monomials enum_sign_equiv_monomials(signed_vars const& sv) { return enum_sign_equiv_monomials(sv.var()); }
|
||||
sign_equiv_monomials enum_sign_equiv_monomials(smon const& sv) { return enum_sign_equiv_monomials(sv.var()); }
|
||||
|
||||
/**
|
||||
\brief display state of emonomials
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
#include "util/lp/nla_core.h"
|
||||
namespace nla {
|
||||
|
||||
factorization_factory_imp::factorization_factory_imp(const signed_vars& rm, const core& s) :
|
||||
factorization_factory_imp::factorization_factory_imp(const smon& rm, const core& s) :
|
||||
factorization_factory(rm.vars(), &s.m_emons[rm.var()]),
|
||||
m_core(s), m_mon(s.m_emons[rm.var()]), m_rm(rm) { }
|
||||
|
||||
|
|
|
@ -21,14 +21,14 @@
|
|||
#include "util/lp/factorization.h"
|
||||
namespace nla {
|
||||
class core;
|
||||
class signed_vars;
|
||||
class smon;
|
||||
|
||||
struct factorization_factory_imp: factorization_factory {
|
||||
const core& m_core;
|
||||
const monomial & m_mon;
|
||||
const signed_vars& m_rm;
|
||||
const smon& m_rm;
|
||||
|
||||
factorization_factory_imp(const signed_vars& rm, const core& s);
|
||||
factorization_factory_imp(const smon& rm, const core& s);
|
||||
bool find_rm_monomial_of_vars(const svector<lpvar>& vars, unsigned & i) const;
|
||||
const monomial* find_monomial_of_vars(const svector<lpvar>& vars) const;
|
||||
};
|
||||
|
|
|
@ -246,6 +246,7 @@ public:
|
|||
|
||||
void clear();
|
||||
lar_solver();
|
||||
|
||||
void set_track_pivoted_rows(bool v);
|
||||
|
||||
bool get_track_pivoted_rows() const;
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Nikolaj Bjorner
|
||||
Lev Nachmanson
|
||||
Lev Nachmanson
|
||||
|
||||
*/
|
||||
#pragma once
|
||||
|
@ -10,33 +10,33 @@
|
|||
#include "util/lp/lar_solver.h"
|
||||
|
||||
namespace nla {
|
||||
/*
|
||||
* represents definition m_v = v1*v2*...*vn,
|
||||
* where m_vs = [v1, v2, .., vn]
|
||||
*/
|
||||
class monomial {
|
||||
// fields
|
||||
lp::var_index m_v;
|
||||
svector<lp::var_index> m_vs;
|
||||
public:
|
||||
// constructors
|
||||
monomial(lp::var_index v, unsigned sz, lp::var_index const* vs):
|
||||
m_v(v), m_vs(sz, vs) {
|
||||
std::sort(m_vs.begin(), m_vs.end());
|
||||
}
|
||||
monomial(lp::var_index v, const svector<lp::var_index> &vs):
|
||||
m_v(v), m_vs(vs) {
|
||||
std::sort(m_vs.begin(), m_vs.end());
|
||||
}
|
||||
monomial() {}
|
||||
/*
|
||||
* represents definition m_v = v1*v2*...*vn,
|
||||
* where m_vs = [v1, v2, .., vn]
|
||||
*/
|
||||
class monomial {
|
||||
// fields
|
||||
lp::var_index m_v;
|
||||
svector<lp::var_index> m_vs;
|
||||
public:
|
||||
// constructors
|
||||
monomial(lp::var_index v, unsigned sz, lp::var_index const* vs):
|
||||
m_v(v), m_vs(sz, vs) {
|
||||
std::sort(m_vs.begin(), m_vs.end());
|
||||
}
|
||||
monomial(lp::var_index v, const svector<lp::var_index> &vs):
|
||||
m_v(v), m_vs(vs) {
|
||||
std::sort(m_vs.begin(), m_vs.end());
|
||||
}
|
||||
monomial() {}
|
||||
|
||||
unsigned var() const { return m_v; }
|
||||
unsigned size() const { return m_vs.size(); }
|
||||
unsigned operator[](unsigned idx) const { return m_vs[idx]; }
|
||||
svector<lp::var_index>::const_iterator begin() const { return m_vs.begin(); }
|
||||
svector<lp::var_index>::const_iterator end() const { return m_vs.end(); }
|
||||
const svector<lp::var_index>& vars() const { return m_vs; }
|
||||
bool empty() const { return m_vs.empty(); }
|
||||
unsigned var() const { return m_v; }
|
||||
unsigned size() const { return m_vs.size(); }
|
||||
unsigned operator[](unsigned idx) const { return m_vs[idx]; }
|
||||
svector<lp::var_index>::const_iterator begin() const { return m_vs.begin(); }
|
||||
svector<lp::var_index>::const_iterator end() const { return m_vs.end(); }
|
||||
const svector<lp::var_index>& vars() const { return m_vs; }
|
||||
bool empty() const { return m_vs.empty(); }
|
||||
|
||||
std::ostream& display(std::ostream& out) const {
|
||||
out << "v" << var() << " := ";
|
||||
|
@ -48,16 +48,17 @@ namespace nla {
|
|||
};
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, monomial const& m) {
|
||||
SASSERT(false);
|
||||
return m.display(out);
|
||||
}
|
||||
|
||||
typedef std::unordered_map<lp::var_index, rational> variable_map_type;
|
||||
|
||||
bool check_assignment(monomial const& m, variable_map_type & vars);
|
||||
bool check_assignment(monomial const& m, variable_map_type & vars);
|
||||
|
||||
bool check_assignments(const vector<monomial> & monomimials,
|
||||
const lp::lar_solver& s,
|
||||
variable_map_type & vars);
|
||||
bool check_assignments(const vector<monomial> & monomimials,
|
||||
const lp::lar_solver& s,
|
||||
variable_map_type & vars);
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -122,11 +122,11 @@ bool basics::basic_sign_lemma_on_mon(lpvar v, std::unordered_set<unsigned> & exp
|
|||
}
|
||||
|
||||
const monomial& m_v = c().m_emons[v];
|
||||
signed_vars const& sv_v = c().m_emons.canonical[v];
|
||||
TRACE("nla_solver_details", tout << "mon = " << m_v;);
|
||||
smon const& sv_v = c().m_emons.canonical[v];
|
||||
TRACE("nla_solver_details", tout << "mon = " << pp_mon(c(), m_v););
|
||||
|
||||
for (auto const& m_w : c().m_emons.enum_sign_equiv_monomials(v)) {
|
||||
signed_vars const& sv_w = c().m_emons.canonical[m_w];
|
||||
smon const& sv_w = c().m_emons.canonical[m_w];
|
||||
if (m_v.var() != m_w.var() && basic_sign_lemma_on_two_monomials(m_v, m_w, sv_v.rsign() * sv_w.rsign()) && done())
|
||||
return true;
|
||||
}
|
||||
|
@ -222,7 +222,7 @@ void basics::negate_strict_sign(lpvar j) {
|
|||
|
||||
// here we use the fact
|
||||
// xy = 0 -> x = 0 or y = 0
|
||||
bool basics::basic_lemma_for_mon_zero(const signed_vars& rm, const factorization& f) {
|
||||
bool basics::basic_lemma_for_mon_zero(const smon& rm, const factorization& f) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
return true;
|
||||
#if 0
|
||||
|
@ -251,7 +251,7 @@ bool basics::basic_lemma(bool derived) {
|
|||
unsigned sz = rm_ref.size();
|
||||
for (unsigned j = 0; j < sz; ++j) {
|
||||
lpvar v = rm_ref[(j + start) % rm_ref.size()];
|
||||
const signed_vars& r = c().m_emons.canonical[v];
|
||||
const smon& r = c().m_emons.canonical[v];
|
||||
SASSERT (!c().check_monomial(c().m_emons[v]));
|
||||
basic_lemma_for_mon(r, derived);
|
||||
}
|
||||
|
@ -261,13 +261,13 @@ bool basics::basic_lemma(bool derived) {
|
|||
// Use basic multiplication properties to create a lemma
|
||||
// for the given monomial.
|
||||
// "derived" means derived from constraints - the alternative is model based
|
||||
void basics::basic_lemma_for_mon(const signed_vars& rm, bool derived) {
|
||||
void basics::basic_lemma_for_mon(const smon& rm, bool derived) {
|
||||
if (derived)
|
||||
basic_lemma_for_mon_derived(rm);
|
||||
else
|
||||
basic_lemma_for_mon_model_based(rm);
|
||||
}
|
||||
bool basics::basic_lemma_for_mon_derived(const signed_vars& rm) {
|
||||
bool basics::basic_lemma_for_mon_derived(const smon& rm) {
|
||||
if (c().var_is_fixed_to_zero(var(rm))) {
|
||||
for (auto factorization : factorization_factory_imp(rm, c())) {
|
||||
if (factorization.is_empty())
|
||||
|
@ -293,7 +293,7 @@ bool basics::basic_lemma_for_mon_derived(const signed_vars& rm) {
|
|||
return false;
|
||||
}
|
||||
// x = 0 or y = 0 -> xy = 0
|
||||
bool basics::basic_lemma_for_mon_non_zero_derived(const signed_vars& rm, const factorization& f) {
|
||||
bool basics::basic_lemma_for_mon_non_zero_derived(const smon& rm, const factorization& f) {
|
||||
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
if (! c().var_is_separated_from_zero(var(rm)))
|
||||
return false;
|
||||
|
@ -317,7 +317,7 @@ bool basics::basic_lemma_for_mon_non_zero_derived(const signed_vars& rm, const f
|
|||
}
|
||||
// use the fact that
|
||||
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
||||
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_derived(const signed_vars& rm, const factorization& f) {
|
||||
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_derived(const smon& rm, const factorization& f) {
|
||||
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
|
||||
lpvar mon_var = c().m_emons[rm.var()].var();
|
||||
|
@ -377,7 +377,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_derived(const signed
|
|||
}
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const signed_vars& rm, const factorization& f) {
|
||||
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const smon& rm, const factorization& f) {
|
||||
return false;
|
||||
rational sign = c().m_emons.orig_sign(rm);
|
||||
lpvar not_one = -1;
|
||||
|
@ -424,7 +424,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const
|
|||
return true;
|
||||
}
|
||||
|
||||
bool basics::basic_lemma_for_mon_neutral_derived(const signed_vars& rm, const factorization& factorization) {
|
||||
bool basics::basic_lemma_for_mon_neutral_derived(const smon& rm, const factorization& factorization) {
|
||||
return
|
||||
basic_lemma_for_mon_neutral_monomial_to_factor_derived(rm, factorization) ||
|
||||
basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(rm, factorization);
|
||||
|
@ -432,7 +432,7 @@ bool basics::basic_lemma_for_mon_neutral_derived(const signed_vars& rm, const fa
|
|||
}
|
||||
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
void basics::proportion_lemma_model_based(const signed_vars& rm, const factorization& factorization) {
|
||||
void basics::proportion_lemma_model_based(const smon& rm, const factorization& factorization) {
|
||||
rational rmv = abs(vvr(rm));
|
||||
if (rmv.is_zero()) {
|
||||
SASSERT(c().has_zero_factor(factorization));
|
||||
|
@ -448,7 +448,7 @@ void basics::proportion_lemma_model_based(const signed_vars& rm, const factoriza
|
|||
}
|
||||
}
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
bool basics::proportion_lemma_derived(const signed_vars& rm, const factorization& factorization) {
|
||||
bool basics::proportion_lemma_derived(const smon& rm, const factorization& factorization) {
|
||||
return false;
|
||||
rational rmv = abs(vvr(rm));
|
||||
if (rmv.is_zero()) {
|
||||
|
@ -489,7 +489,7 @@ void basics::generate_pl_on_mon(const monomial& m, unsigned factor_index) {
|
|||
|
||||
// none of the factors is zero and the product is not zero
|
||||
// -> |fc[factor_index]| <= |rm|
|
||||
void basics::generate_pl(const signed_vars& rm, const factorization& fc, int factor_index) {
|
||||
void basics::generate_pl(const smon& rm, const factorization& fc, int factor_index) {
|
||||
TRACE("nla_solver", tout << "factor_index = " << factor_index << ", rm = ";
|
||||
tout << rm;
|
||||
tout << "fc = "; c().print_factorization(fc, tout);
|
||||
|
@ -523,7 +523,7 @@ void basics::generate_pl(const signed_vars& rm, const factorization& fc, int fac
|
|||
TRACE("nla_solver", c().print_lemma(tout); );
|
||||
}
|
||||
// here we use the fact xy = 0 -> x = 0 or y = 0
|
||||
void basics::basic_lemma_for_mon_zero_model_based(const signed_vars& rm, const factorization& f) {
|
||||
void basics::basic_lemma_for_mon_zero_model_based(const smon& rm, const factorization& f) {
|
||||
TRACE("nla_solver", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
SASSERT(vvr(rm).is_zero()&& ! c().rm_check(rm));
|
||||
add_empty_lemma();
|
||||
|
@ -544,7 +544,7 @@ void basics::basic_lemma_for_mon_zero_model_based(const signed_vars& rm, const f
|
|||
TRACE("nla_solver", c().print_lemma(tout););
|
||||
}
|
||||
|
||||
void basics::basic_lemma_for_mon_model_based(const signed_vars& rm) {
|
||||
void basics::basic_lemma_for_mon_model_based(const smon& rm) {
|
||||
TRACE("nla_solver_bl", tout << "rm = " << rm;);
|
||||
if (vvr(rm).is_zero()) {
|
||||
for (auto factorization : factorization_factory_imp(rm, c())) {
|
||||
|
@ -664,7 +664,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm
|
|||
|
||||
// use the fact that
|
||||
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
||||
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const signed_vars& rm, const factorization& f) {
|
||||
bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const smon& rm, const factorization& f) {
|
||||
TRACE("nla_solver_bl", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
|
||||
lpvar mon_var = c().m_emons[rm.var()].var();
|
||||
|
@ -722,7 +722,7 @@ bool basics::basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const si
|
|||
return true;
|
||||
}
|
||||
|
||||
void basics::basic_lemma_for_mon_neutral_model_based(const signed_vars& rm, const factorization& f) {
|
||||
void basics::basic_lemma_for_mon_neutral_model_based(const smon& rm, const factorization& f) {
|
||||
if (f.is_mon()) {
|
||||
basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(*f.mon());
|
||||
basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm(*f.mon());
|
||||
|
@ -734,7 +734,7 @@ void basics::basic_lemma_for_mon_neutral_model_based(const signed_vars& rm, cons
|
|||
}
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const signed_vars& rm, const factorization& f) {
|
||||
bool basics::basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const smon& rm, const factorization& f) {
|
||||
rational sign = c().m_emons.orig_sign(rm);
|
||||
TRACE("nla_solver_bl", tout << "f = "; c().print_factorization(f, tout); tout << ", sign = " << sign << '\n'; );
|
||||
lpvar not_one = -1;
|
||||
|
@ -815,7 +815,7 @@ void basics::basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f)
|
|||
}
|
||||
|
||||
// x = 0 or y = 0 -> xy = 0
|
||||
void basics::basic_lemma_for_mon_non_zero_model_based(const signed_vars& rm, const factorization& f) {
|
||||
void basics::basic_lemma_for_mon_non_zero_model_based(const smon& rm, const factorization& f) {
|
||||
TRACE("nla_solver_bl", c().trace_print_monomial_and_factorization(rm, f, tout););
|
||||
if (f.is_mon())
|
||||
basic_lemma_for_mon_non_zero_model_based_mf(f);
|
||||
|
|
|
@ -40,47 +40,47 @@ struct basics: common {
|
|||
-ab = a(-b)
|
||||
*/
|
||||
bool basic_sign_lemma(bool derived);
|
||||
bool basic_lemma_for_mon_zero(const signed_vars& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_zero(const smon& rm, const factorization& f);
|
||||
|
||||
void basic_lemma_for_mon_zero_model_based(const signed_vars& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_zero_model_based(const smon& rm, const factorization& f);
|
||||
|
||||
void basic_lemma_for_mon_non_zero_model_based(const signed_vars& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_non_zero_model_based(const smon& rm, const factorization& f);
|
||||
// x = 0 or y = 0 -> xy = 0
|
||||
void basic_lemma_for_mon_non_zero_model_based_rm(const signed_vars& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_non_zero_model_based_rm(const smon& rm, const factorization& f);
|
||||
|
||||
void basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f);
|
||||
// x = 0 or y = 0 -> xy = 0
|
||||
bool basic_lemma_for_mon_non_zero_derived(const signed_vars& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_non_zero_derived(const smon& rm, const factorization& f);
|
||||
|
||||
// use the fact that
|
||||
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const signed_vars& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based(const smon& rm, const factorization& f);
|
||||
// use the fact that
|
||||
// |xabc| = |x| and x != 0 -> |a| = |b| = |c| = 1
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_model_based_fm(const monomial& m);
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_derived(const signed_vars& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_neutral_monomial_to_factor_derived(const smon& rm, const factorization& f);
|
||||
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const signed_vars& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based(const smon& rm, const factorization& f);
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_model_based_fm(const monomial& m);
|
||||
// use the fact
|
||||
// 1 * 1 ... * 1 * x * 1 ... * 1 = x
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const signed_vars& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_neutral_model_based(const signed_vars& rm, const factorization& f);
|
||||
bool basic_lemma_for_mon_neutral_from_factors_to_monomial_derived(const smon& rm, const factorization& f);
|
||||
void basic_lemma_for_mon_neutral_model_based(const smon& rm, const factorization& f);
|
||||
|
||||
bool basic_lemma_for_mon_neutral_derived(const signed_vars& rm, const factorization& factorization);
|
||||
bool basic_lemma_for_mon_neutral_derived(const smon& rm, const factorization& factorization);
|
||||
|
||||
void basic_lemma_for_mon_model_based(const signed_vars& rm);
|
||||
void basic_lemma_for_mon_model_based(const smon& rm);
|
||||
|
||||
bool basic_lemma_for_mon_derived(const signed_vars& rm);
|
||||
bool basic_lemma_for_mon_derived(const smon& rm);
|
||||
|
||||
// Use basic multiplication properties to create a lemma
|
||||
// for the given monomial.
|
||||
// "derived" means derived from constraints - the alternative is model based
|
||||
void basic_lemma_for_mon(const signed_vars& rm, bool derived);
|
||||
void basic_lemma_for_mon(const smon& rm, bool derived);
|
||||
// use basic multiplication properties to create a lemma
|
||||
bool basic_lemma(bool derived);
|
||||
void generate_sign_lemma(const monomial& m, const monomial& n, const rational& sign);
|
||||
|
@ -94,14 +94,14 @@ struct basics: common {
|
|||
void add_fixed_zero_lemma(const monomial& m, lpvar j);
|
||||
void negate_strict_sign(lpvar j);
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
void proportion_lemma_model_based(const signed_vars& rm, const factorization& factorization);
|
||||
void proportion_lemma_model_based(const smon& rm, const factorization& factorization);
|
||||
// x != 0 or y = 0 => |xy| >= |y|
|
||||
bool proportion_lemma_derived(const signed_vars& rm, const factorization& factorization);
|
||||
bool proportion_lemma_derived(const smon& rm, const factorization& factorization);
|
||||
// if there are no zero factors then |m| >= |m[factor_index]|
|
||||
void generate_pl_on_mon(const monomial& m, unsigned factor_index);
|
||||
|
||||
// none of the factors is zero and the product is not zero
|
||||
// -> |fc[factor_index]| <= |rm|
|
||||
void generate_pl(const signed_vars& rm, const factorization& fc, int factor_index);
|
||||
void generate_pl(const smon& rm, const factorization& fc, int factor_index);
|
||||
};
|
||||
}
|
||||
|
|
|
@ -28,24 +28,25 @@ template <typename T> void common::explain(const T& t) {
|
|||
}
|
||||
template void common::explain<monomial>(const monomial& t);
|
||||
template void common::explain<factor>(const factor& t);
|
||||
template void common::explain<signed_vars>(const signed_vars& t);
|
||||
template void common::explain<smon>(const smon& t);
|
||||
template void common::explain<factorization>(const factorization& t);
|
||||
|
||||
void common::explain(lpvar j) { c().explain(j, c().current_expl()); }
|
||||
|
||||
template <typename T> rational common::vvr(T const& t) const { return c().vvr(t); }
|
||||
template rational common::vvr<monomial>(monomial const& t) const;
|
||||
template rational common::vvr<signed_vars>(signed_vars const& t) const;
|
||||
template rational common::vvr<smon>(smon const& t) const;
|
||||
template rational common::vvr<factor>(factor const& t) const;
|
||||
rational common::vvr(lpvar t) const { return c().vvr(t); }
|
||||
template <typename T> lpvar common::var(T const& t) const { return c().var(t); }
|
||||
template lpvar common::var<factor>(factor const& t) const;
|
||||
template lpvar common::var<signed_vars>(signed_vars const& t) const;
|
||||
template lpvar common::var<smon>(smon const& t) const;
|
||||
void common::add_empty_lemma() { c().add_empty_lemma(); }
|
||||
template <typename T> rational common::canonize_sign(const T& t) const {
|
||||
return c().canonize_sign(t);
|
||||
}
|
||||
template rational common::canonize_sign<signed_vars>(const signed_vars& t) const;
|
||||
|
||||
template rational common::canonize_sign<smon>(const smon& t) const;
|
||||
template rational common::canonize_sign<factor>(const factor& t) const;
|
||||
rational common::canonize_sign(lpvar j) const {
|
||||
return c().canonize_sign_of_var(j);
|
||||
|
@ -99,17 +100,17 @@ std::ostream& common::print_product(const T & m, std::ostream& out) const {
|
|||
template
|
||||
std::ostream& common::print_product<monomial>(const monomial & m, std::ostream& out) const;
|
||||
|
||||
template std::ostream& common::print_product<signed_vars>(const signed_vars & m, std::ostream& out) const;
|
||||
template std::ostream& common::print_product<smon>(const smon & m, std::ostream& out) const;
|
||||
|
||||
|
||||
std::ostream& common::print_monomial(const monomial & m, std::ostream& out) const {
|
||||
return c().print_monomial(m, out);
|
||||
}
|
||||
|
||||
//std::ostream& common::print_rooted_monomial(const signed_vars& rm, std::ostream& out) const {
|
||||
//std::ostream& common::print_rooted_monomial(const smon& rm, std::ostream& out) const {
|
||||
// return c().print_rooted_monomial(rm, out);
|
||||
//}
|
||||
//std::ostream& common::print_rooted_monomial_with_vars(const signed_vars& rm, std::ostream& out) const {
|
||||
//std::ostream& common::print_rooted_monomial_with_vars(const smon& rm, std::ostream& out) const {
|
||||
// return c().print_rooted_monomial_with_vars(rm, out);
|
||||
//}
|
||||
std::ostream& common::print_factor(const factor & f, std::ostream& out) const {
|
||||
|
|
|
@ -84,8 +84,8 @@ struct common {
|
|||
std::ostream& print_var(lpvar, std::ostream& out) const;
|
||||
|
||||
std::ostream& print_monomial(const monomial & m, std::ostream& out) const;
|
||||
std::ostream& print_rooted_monomial(const signed_vars &, std::ostream& out) const;
|
||||
std::ostream& print_rooted_monomial_with_vars(const signed_vars&, std::ostream& out) const;
|
||||
std::ostream& print_rooted_monomial(const smon &, std::ostream& out) const;
|
||||
std::ostream& print_rooted_monomial_with_vars(const smon&, std::ostream& out) const;
|
||||
bool check_monomial(const monomial&) const;
|
||||
unsigned random();
|
||||
};
|
||||
|
|
|
@ -97,13 +97,10 @@ rational core::canonize_sign_of_var(lpvar j) const {
|
|||
return m_evars.find(j).rsign();
|
||||
}
|
||||
|
||||
rational core::canonize_sign(const signed_vars& m) const {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
return rational::one();
|
||||
rational core::canonize_sign(const smon& m) const {
|
||||
return m.rsign();
|
||||
}
|
||||
|
||||
|
||||
// returns the monomial index
|
||||
void core::add(lpvar v, unsigned sz, lpvar const* vs) {
|
||||
m_emons.add(v, sz, vs);
|
||||
}
|
||||
|
@ -139,7 +136,7 @@ void core::explain(const monomial& m, lp::explanation& exp) const {
|
|||
explain(j, exp);
|
||||
}
|
||||
|
||||
void core::explain(const signed_vars& rm, lp::explanation& exp) const {
|
||||
void core::explain(const smon& rm, lp::explanation& exp) const {
|
||||
explain(m_emons[rm.var()], exp);
|
||||
}
|
||||
|
||||
|
@ -165,7 +162,7 @@ std::ostream& core::print_product(const T & m, std::ostream& out) const {
|
|||
return out;
|
||||
}
|
||||
template std::ostream& core::print_product<monomial>(const monomial & m, std::ostream& out) const;
|
||||
template std::ostream& core::print_product<signed_vars>(const signed_vars & m, std::ostream& out) const;
|
||||
template std::ostream& core::print_product<smon>(const smon & m, std::ostream& out) const;
|
||||
|
||||
std::ostream & core::print_factor(const factor& f, std::ostream& out) const {
|
||||
if (f.is_var()) {
|
||||
|
@ -781,12 +778,12 @@ std::ostream & core::print_factorization(const factorization& f, std::ostream& o
|
|||
|
||||
bool core:: find_rm_monomial_of_vars(const svector<lpvar>& vars, unsigned & i) const {
|
||||
SASSERT(vars_are_roots(vars));
|
||||
signed_vars const* sv = m_emons.find_canonical(vars);
|
||||
smon const* sv = m_emons.find_canonical(vars);
|
||||
return sv && (i = sv->var(), true);
|
||||
}
|
||||
|
||||
const monomial* core::find_monomial_of_vars(const svector<lpvar>& vars) const {
|
||||
signed_vars const* sv = m_emons.find_canonical(vars);
|
||||
smon const* sv = m_emons.find_canonical(vars);
|
||||
return sv ? &m_emons[sv->var()] : nullptr;
|
||||
}
|
||||
|
||||
|
@ -809,7 +806,7 @@ void core::explain_separation_from_zero(lpvar j) {
|
|||
explain_existing_upper_bound(j);
|
||||
}
|
||||
|
||||
int core::get_derived_sign(const signed_vars& rm, const factorization& f) const {
|
||||
int core::get_derived_sign(const smon& rm, const factorization& f) const {
|
||||
rational sign = rm.rsign(); // this is the flip sign of the variable var(rm)
|
||||
SASSERT(!sign.is_zero());
|
||||
for (const factor& fc: f) {
|
||||
|
@ -821,7 +818,7 @@ int core::get_derived_sign(const signed_vars& rm, const factorization& f) const
|
|||
}
|
||||
return nla::rat_sign(sign);
|
||||
}
|
||||
void core::trace_print_monomial_and_factorization(const signed_vars& rm, const factorization& f, std::ostream& out) const {
|
||||
void core::trace_print_monomial_and_factorization(const smon& rm, const factorization& f, std::ostream& out) const {
|
||||
out << "rooted vars: ";
|
||||
print_product(rm.vars(), out);
|
||||
out << "\n";
|
||||
|
@ -1410,7 +1407,7 @@ void core::print_monomial_stats(const monomial& m, std::ostream& out) {
|
|||
if (abs(vvr(mc.vars()[i])) == rational(1)) {
|
||||
auto vv = mc.vars();
|
||||
vv.erase(vv.begin()+i);
|
||||
signed_vars const* sv = m_emons.find_canonical(vv);
|
||||
smon const* sv = m_emons.find_canonical(vv);
|
||||
if (!sv) {
|
||||
out << "nf length" << vv.size() << "\n"; ;
|
||||
}
|
||||
|
@ -1439,7 +1436,7 @@ void core::init_to_refine() {
|
|||
|
||||
TRACE("nla_solver",
|
||||
tout << m_to_refine.size() << " mons to refine:\n";
|
||||
for (lpvar v : m_to_refine) tout << m_emons[v] << "\n";);
|
||||
for (lpvar v : m_to_refine) tout << pp_mon(*this, m_emons[v]) << "\n";);
|
||||
}
|
||||
|
||||
std::unordered_set<lpvar> core::collect_vars(const lemma& l) const {
|
||||
|
@ -1465,7 +1462,7 @@ std::unordered_set<lpvar> core::collect_vars(const lemma& l) const {
|
|||
return vars;
|
||||
}
|
||||
|
||||
bool core::divide(const signed_vars& bc, const factor& c, factor & b) const {
|
||||
bool core::divide(const smon& bc, const factor& c, factor & b) const {
|
||||
svector<lpvar> c_vars = sorted_vars(c);
|
||||
TRACE("nla_solver_div",
|
||||
tout << "c_vars = ";
|
||||
|
@ -1482,7 +1479,7 @@ bool core::divide(const signed_vars& bc, const factor& c, factor & b) const {
|
|||
b = factor(b_vars[0], factor_type::VAR);
|
||||
return true;
|
||||
}
|
||||
signed_vars const* sv = m_emons.find_canonical(b_vars);
|
||||
smon const* sv = m_emons.find_canonical(b_vars);
|
||||
if (!sv) {
|
||||
TRACE("nla_solver_div", tout << "not in rooted";);
|
||||
return false;
|
||||
|
@ -1532,10 +1529,10 @@ void core::print_specific_lemma(const lemma& l, std::ostream& out) const {
|
|||
}
|
||||
|
||||
|
||||
void core::trace_print_ol(const signed_vars& ac,
|
||||
void core::trace_print_ol(const smon& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const signed_vars& bc,
|
||||
const smon& bc,
|
||||
const factor& b,
|
||||
std::ostream& out) {
|
||||
out << "ac = " << ac << "\n";
|
||||
|
@ -1584,7 +1581,7 @@ std::unordered_map<unsigned, unsigned_vector> core::get_rm_by_arity() {
|
|||
|
||||
|
||||
|
||||
bool core::rm_check(const signed_vars& rm) const {
|
||||
bool core::rm_check(const smon& rm) const {
|
||||
return check_monomial(m_emons[rm.var()]);
|
||||
}
|
||||
|
||||
|
@ -1642,7 +1639,7 @@ void core::add_abs_bound(lpvar v, llc cmp, rational const& bound) {
|
|||
*/
|
||||
|
||||
|
||||
bool core::find_bfc_to_refine_on_rmonomial(const signed_vars& rm, bfc & bf) {
|
||||
bool core::find_bfc_to_refine_on_rmonomial(const smon& rm, bfc & bf) {
|
||||
for (auto factorization : factorization_factory_imp(rm, *this)) {
|
||||
if (factorization.size() == 2) {
|
||||
auto a = factorization[0];
|
||||
|
@ -1656,7 +1653,7 @@ bool core::find_bfc_to_refine_on_rmonomial(const signed_vars& rm, bfc & bf) {
|
|||
return false;
|
||||
}
|
||||
|
||||
bool core::find_bfc_to_refine(bfc& bf, lpvar &j, rational& sign, const signed_vars*& rm_found){
|
||||
bool core::find_bfc_to_refine(bfc& bf, lpvar &j, rational& sign, const smon*& rm_found){
|
||||
rm_found = nullptr;
|
||||
for (unsigned i: m_to_refine) {
|
||||
const auto& rm = m_emons.canonical[i];
|
||||
|
@ -1975,7 +1972,6 @@ lbool core::test_check(
|
|||
return check(l);
|
||||
}
|
||||
template rational core::product_value<monomial>(const monomial & m) const;
|
||||
|
||||
} // end of nla
|
||||
|
||||
|
||||
|
|
|
@ -102,9 +102,9 @@ public:
|
|||
|
||||
lp::impq vv(lpvar j) const { return m_lar_solver.get_column_value(j); }
|
||||
|
||||
lpvar var(signed_vars const& sv) const { return sv.var(); }
|
||||
lpvar var(smon const& sv) const { return sv.var(); }
|
||||
|
||||
rational vvr(const signed_vars& rm) const { return vvr(m_emons[rm.var()]); } // NB: removed multiplication with sign.
|
||||
rational vvr(const smon& rm) const { return rm.rsign()*vvr(m_emons[rm.var()]); }
|
||||
|
||||
rational vvr(const factor& f) const { return f.is_var()? vvr(f.var()) : vvr(m_emons[f.var()]); }
|
||||
|
||||
|
@ -112,7 +112,7 @@ public:
|
|||
|
||||
svector<lpvar> sorted_vars(const factor& f) const;
|
||||
bool done() const;
|
||||
|
||||
|
||||
void add_empty_lemma();
|
||||
// the value of the factor is equal to the value of the variable multiplied
|
||||
// by the canonize_sign
|
||||
|
@ -120,12 +120,12 @@ public:
|
|||
|
||||
rational canonize_sign_of_var(lpvar j) const;
|
||||
|
||||
// the value of the rooted monomias is equal to the value of the variable multiplied
|
||||
// the value of the rooted monomias is equal to the value of the m.var() variable multiplied
|
||||
// by the canonize_sign
|
||||
rational canonize_sign(const signed_vars& m) const;
|
||||
rational canonize_sign(const smon& m) const;
|
||||
|
||||
|
||||
void deregister_monomial_from_signed_varsomials (const monomial & m, unsigned i);
|
||||
void deregister_monomial_from_smonomials (const monomial & m, unsigned i);
|
||||
|
||||
void deregister_monomial_from_tables(const monomial & m, unsigned i);
|
||||
|
||||
|
@ -142,7 +142,7 @@ public:
|
|||
bool check_monomial(const monomial& m) const;
|
||||
|
||||
void explain(const monomial& m, lp::explanation& exp) const;
|
||||
void explain(const signed_vars& rm, lp::explanation& exp) const;
|
||||
void explain(const smon& rm, lp::explanation& exp) const;
|
||||
void explain(const factor& f, lp::explanation& exp) const;
|
||||
void explain(lpvar j, lp::explanation& exp) const;
|
||||
void explain_existing_lower_bound(lpvar j);
|
||||
|
@ -169,7 +169,7 @@ public:
|
|||
std::ostream& print_explanation(const lp::explanation& exp, std::ostream& out) const;
|
||||
template <typename T>
|
||||
void trace_print_rms(const T& p, std::ostream& out);
|
||||
void trace_print_monomial_and_factorization(const signed_vars& rm, const factorization& f, std::ostream& out) const;
|
||||
void trace_print_monomial_and_factorization(const smon& rm, const factorization& f, std::ostream& out) const;
|
||||
void print_monomial_stats(const monomial& m, std::ostream& out);
|
||||
void print_stats(std::ostream& out);
|
||||
std::ostream& print_lemma(std::ostream& out) const;
|
||||
|
@ -177,10 +177,10 @@ public:
|
|||
void print_specific_lemma(const lemma& l, std::ostream& out) const;
|
||||
|
||||
|
||||
void trace_print_ol(const signed_vars& ac,
|
||||
void trace_print_ol(const smon& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const signed_vars& bc,
|
||||
const smon& bc,
|
||||
const factor& b,
|
||||
std::ostream& out);
|
||||
|
||||
|
@ -243,7 +243,7 @@ public:
|
|||
const monomial* find_monomial_of_vars(const svector<lpvar>& vars) const;
|
||||
|
||||
|
||||
int get_derived_sign(const signed_vars& rm, const factorization& f) const;
|
||||
int get_derived_sign(const smon& rm, const factorization& f) const;
|
||||
|
||||
|
||||
bool var_has_positive_lower_bound(lpvar j) const;
|
||||
|
@ -312,7 +312,7 @@ public:
|
|||
|
||||
void init_to_refine();
|
||||
|
||||
bool divide(const signed_vars& bc, const factor& c, factor & b) const;
|
||||
bool divide(const smon& bc, const factor& c, factor & b) const;
|
||||
|
||||
void negate_factor_equality(const factor& c, const factor& d);
|
||||
|
||||
|
@ -320,15 +320,15 @@ public:
|
|||
|
||||
std::unordered_set<lpvar> collect_vars(const lemma& l) const;
|
||||
|
||||
bool rm_check(const signed_vars&) const;
|
||||
bool rm_check(const smon&) const;
|
||||
std::unordered_map<unsigned, unsigned_vector> get_rm_by_arity();
|
||||
|
||||
void add_abs_bound(lpvar v, llc cmp);
|
||||
void add_abs_bound(lpvar v, llc cmp, rational const& bound);
|
||||
|
||||
bool find_bfc_to_refine_on_rmonomial(const signed_vars& rm, bfc & bf);
|
||||
bool find_bfc_to_refine_on_rmonomial(const smon& rm, bfc & bf);
|
||||
|
||||
bool find_bfc_to_refine(bfc& bf, lpvar &j, rational& sign, const signed_vars*& rm_found);
|
||||
bool find_bfc_to_refine(bfc& bf, lpvar &j, rational& sign, const smon*& rm_found);
|
||||
void generate_simple_sign_lemma(const rational& sign, const monomial& m);
|
||||
|
||||
void negate_relation(unsigned j, const rational& a);
|
||||
|
|
|
@ -33,13 +33,13 @@ void monotone::print_monotone_array(const vector<std::pair<std::vector<rational>
|
|||
}
|
||||
out << "}";
|
||||
}
|
||||
bool monotone::monotonicity_lemma_on_lex_sorted_rm_upper(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const signed_vars& rm) {
|
||||
bool monotone::monotonicity_lemma_on_lex_sorted_rm_upper(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const smon& rm) {
|
||||
const rational v = abs(vvr(rm));
|
||||
const auto& key = lex_sorted[i].first;
|
||||
TRACE("nla_solver", tout << "rm = " << rm << "i = " << i << std::endl;);
|
||||
for (unsigned k = i + 1; k < lex_sorted.size(); k++) {
|
||||
const auto& p = lex_sorted[k];
|
||||
const signed_vars& rmk = c().m_emons.canonical[p.second];
|
||||
const smon& rmk = c().m_emons.canonical[p.second];
|
||||
const rational vk = abs(vvr(rmk));
|
||||
TRACE("nla_solver", tout << "rmk = " << rmk << "\n";
|
||||
tout << "vk = " << vk << std::endl;);
|
||||
|
@ -61,14 +61,14 @@ bool monotone::monotonicity_lemma_on_lex_sorted_rm_upper(const vector<std::pair<
|
|||
return false;
|
||||
}
|
||||
|
||||
bool monotone::monotonicity_lemma_on_lex_sorted_rm_lower(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const signed_vars& rm) {
|
||||
bool monotone::monotonicity_lemma_on_lex_sorted_rm_lower(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const smon& rm) {
|
||||
const rational v = abs(vvr(rm));
|
||||
const auto& key = lex_sorted[i].first;
|
||||
TRACE("nla_solver", tout << "rm = " << rm << "i = " << i << std::endl;);
|
||||
|
||||
for (unsigned k = i; k-- > 0;) {
|
||||
const auto& p = lex_sorted[k];
|
||||
const signed_vars& rmk = c().m_emons.canonical[p.second];
|
||||
const smon& rmk = c().m_emons.canonical[p.second];
|
||||
const rational vk = abs(vvr(rmk));
|
||||
TRACE("nla_solver", tout << "rmk = " << rmk << "\n";
|
||||
tout << "vk = " << vk << std::endl;);
|
||||
|
@ -92,14 +92,14 @@ bool monotone::monotonicity_lemma_on_lex_sorted_rm_lower(const vector<std::pair<
|
|||
return false;
|
||||
}
|
||||
|
||||
bool monotone::monotonicity_lemma_on_lex_sorted_rm(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const signed_vars& rm) {
|
||||
bool monotone::monotonicity_lemma_on_lex_sorted_rm(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const smon& rm) {
|
||||
return monotonicity_lemma_on_lex_sorted_rm_upper(lex_sorted, i, rm)
|
||||
|| monotonicity_lemma_on_lex_sorted_rm_lower(lex_sorted, i, rm);
|
||||
}
|
||||
bool monotone::monotonicity_lemma_on_lex_sorted(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted) {
|
||||
for (unsigned i = 0; i < lex_sorted.size(); i++) {
|
||||
unsigned rmi = lex_sorted[i].second;
|
||||
const signed_vars& rm = c().m_emons.canonical[rmi];
|
||||
const smon& rm = c().m_emons.canonical[rmi];
|
||||
TRACE("nla_solver", tout << rm << "\n, rm_check = " << c().rm_check(rm); tout << std::endl;);
|
||||
if ((!c().rm_check(rm)) && monotonicity_lemma_on_lex_sorted_rm(lex_sorted, i, rm))
|
||||
return true;
|
||||
|
@ -107,7 +107,7 @@ bool monotone::monotonicity_lemma_on_lex_sorted(const vector<std::pair<std::vect
|
|||
return false;
|
||||
}
|
||||
|
||||
vector<std::pair<rational, lpvar>> monotone::get_sorted_key_with_vars(const signed_vars& a) const {
|
||||
vector<std::pair<rational, lpvar>> monotone::get_sorted_key_with_vars(const smon& a) const {
|
||||
vector<std::pair<rational, lpvar>> r;
|
||||
for (lpvar j : a.vars()) {
|
||||
r.push_back(std::make_pair(abs(vvr(j)), j));
|
||||
|
@ -137,8 +137,8 @@ void monotone::negate_abs_a_le_abs_b(lpvar a, lpvar b, bool strict) {
|
|||
}
|
||||
|
||||
// strict version
|
||||
void monotone::generate_monl_strict(const signed_vars& a,
|
||||
const signed_vars& b,
|
||||
void monotone::generate_monl_strict(const smon& a,
|
||||
const smon& b,
|
||||
unsigned strict) {
|
||||
add_empty_lemma();
|
||||
auto akey = get_sorted_key_with_vars(a);
|
||||
|
@ -159,8 +159,8 @@ void monotone::generate_monl_strict(const signed_vars& a,
|
|||
}
|
||||
|
||||
void monotone::assert_abs_val_a_le_abs_var_b(
|
||||
const signed_vars& a,
|
||||
const signed_vars& b,
|
||||
const smon& a,
|
||||
const smon& b,
|
||||
bool strict) {
|
||||
lpvar aj = var(a);
|
||||
lpvar bj = var(b);
|
||||
|
@ -188,8 +188,8 @@ void monotone::negate_abs_a_lt_abs_b(lpvar a, lpvar b) {
|
|||
|
||||
|
||||
// not a strict version
|
||||
void monotone::generate_monl(const signed_vars& a,
|
||||
const signed_vars& b) {
|
||||
void monotone::generate_monl(const smon& a,
|
||||
const smon& b) {
|
||||
TRACE("nla_solver",
|
||||
tout << "a = " << a << "\n:";
|
||||
tout << "b = " << b << "\n:";);
|
||||
|
@ -206,7 +206,7 @@ void monotone::generate_monl(const signed_vars& a,
|
|||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
|
||||
std::vector<rational> monotone::get_sorted_key(const signed_vars& rm) const {
|
||||
std::vector<rational> monotone::get_sorted_key(const smon& rm) const {
|
||||
std::vector<rational> r;
|
||||
for (unsigned j : rm.vars()) {
|
||||
r.push_back(abs(vvr(j)));
|
||||
|
|
|
@ -24,21 +24,21 @@ struct monotone: common {
|
|||
monotone(core *core);
|
||||
void print_monotone_array(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted,
|
||||
std::ostream& out) const;
|
||||
bool monotonicity_lemma_on_lex_sorted_rm_upper(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const signed_vars& rm);
|
||||
bool monotonicity_lemma_on_lex_sorted_rm_lower(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const signed_vars& rm);
|
||||
bool monotonicity_lemma_on_lex_sorted_rm(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const signed_vars& rm);
|
||||
bool monotonicity_lemma_on_lex_sorted_rm_upper(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const smon& rm);
|
||||
bool monotonicity_lemma_on_lex_sorted_rm_lower(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const smon& rm);
|
||||
bool monotonicity_lemma_on_lex_sorted_rm(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted, unsigned i, const smon& rm);
|
||||
bool monotonicity_lemma_on_lex_sorted(const vector<std::pair<std::vector<rational>, unsigned>>& lex_sorted);
|
||||
bool monotonicity_lemma_on_rms_of_same_arity(const unsigned_vector& rms);
|
||||
void monotonicity_lemma();
|
||||
void monotonicity_lemma(monomial const& m);
|
||||
void monotonicity_lemma_gt(const monomial& m, const rational& prod_val);
|
||||
void monotonicity_lemma_lt(const monomial& m, const rational& prod_val);
|
||||
void generate_monl_strict(const signed_vars& a, const signed_vars& b, unsigned strict);
|
||||
void generate_monl(const signed_vars& a, const signed_vars& b);
|
||||
std::vector<rational> get_sorted_key(const signed_vars& rm) const;
|
||||
vector<std::pair<rational, lpvar>> get_sorted_key_with_vars(const signed_vars& a) const;
|
||||
void generate_monl_strict(const smon& a, const smon& b, unsigned strict);
|
||||
void generate_monl(const smon& a, const smon& b);
|
||||
std::vector<rational> get_sorted_key(const smon& rm) const;
|
||||
vector<std::pair<rational, lpvar>> get_sorted_key_with_vars(const smon& a) const;
|
||||
void negate_abs_a_le_abs_b(lpvar a, lpvar b, bool strict);
|
||||
void negate_abs_a_lt_abs_b(lpvar a, lpvar b);
|
||||
void assert_abs_val_a_le_abs_var_b(const signed_vars& a, const signed_vars& b, bool strict);
|
||||
void assert_abs_val_a_le_abs_var_b(const smon& a, const smon& b, bool strict);
|
||||
};
|
||||
}
|
||||
|
|
|
@ -29,10 +29,10 @@ namespace nla {
|
|||
// a >< b && c < 0 => ac <> bc
|
||||
// ac[k] plays the role of c
|
||||
|
||||
bool order::order_lemma_on_ac_and_bc(const signed_vars& rm_ac,
|
||||
bool order::order_lemma_on_ac_and_bc(const smon& rm_ac,
|
||||
const factorization& ac_f,
|
||||
unsigned k,
|
||||
const signed_vars& rm_bd) {
|
||||
const smon& rm_bd) {
|
||||
TRACE("nla_solver",
|
||||
tout << "rm_ac = " << rm_ac << "\n";
|
||||
tout << "rm_bd = " << rm_bd << "\n";
|
||||
|
@ -44,7 +44,7 @@ bool order::order_lemma_on_ac_and_bc(const signed_vars& rm_ac,
|
|||
order_lemma_on_ac_and_bc_and_factors(rm_ac, ac_f[(k + 1) % 2], ac_f[k], rm_bd, b);
|
||||
}
|
||||
|
||||
bool order::order_lemma_on_ac_explore(const signed_vars& rm, const factorization& ac, unsigned k) {
|
||||
bool order::order_lemma_on_ac_explore(const smon& rm, const factorization& ac, unsigned k) {
|
||||
const factor c = ac[k];
|
||||
TRACE("nla_solver", tout << "c = "; _().print_factor_with_vars(c, tout); );
|
||||
if (c.is_var()) {
|
||||
|
@ -65,7 +65,7 @@ bool order::order_lemma_on_ac_explore(const signed_vars& rm, const factorization
|
|||
return false;
|
||||
}
|
||||
|
||||
void order::order_lemma_on_factorization(const signed_vars& rm, const factorization& ab) {
|
||||
void order::order_lemma_on_factorization(const smon& rm, const factorization& ab) {
|
||||
const monomial& m = _().m_emons[rm.var()];
|
||||
TRACE("nla_solver", tout << "orig_sign = " << _().m_emons.orig_sign(rm) << "\n";);
|
||||
rational sign = _().m_emons.orig_sign(rm);
|
||||
|
@ -90,11 +90,11 @@ void order::order_lemma_on_factorization(const signed_vars& rm, const factorizat
|
|||
}
|
||||
// |c_sign| = 1, and c*c_sign > 0
|
||||
// ac > bc => ac/|c| > bc/|c| => a*c_sign > b*c_sign
|
||||
void order::generate_ol(const signed_vars& ac,
|
||||
void order::generate_ol(const smon& ac,
|
||||
const factor& a,
|
||||
int c_sign,
|
||||
const factor& c,
|
||||
const signed_vars& bc,
|
||||
const smon& bc,
|
||||
const factor& b,
|
||||
llc ab_cmp) {
|
||||
add_empty_lemma();
|
||||
|
@ -114,7 +114,7 @@ void order::generate_mon_ol(const monomial& ac,
|
|||
lpvar a,
|
||||
const rational& c_sign,
|
||||
lpvar c,
|
||||
const signed_vars& bd,
|
||||
const smon& bd,
|
||||
const factor& b,
|
||||
const rational& d_sign,
|
||||
lpvar d,
|
||||
|
@ -142,15 +142,15 @@ void order::order_lemma() {
|
|||
unsigned start = random();
|
||||
unsigned sz = rm_ref.size();
|
||||
for (unsigned i = sz; i-- > 0 && !done(); ) {
|
||||
const signed_vars& rm = c().m_emons.canonical[rm_ref[(i + start) % sz]];
|
||||
const smon& rm = c().m_emons.canonical[rm_ref[(i + start) % sz]];
|
||||
order_lemma_on_rmonomial(rm);
|
||||
}
|
||||
}
|
||||
|
||||
bool order::order_lemma_on_ac_and_bc_and_factors(const signed_vars& ac,
|
||||
bool order::order_lemma_on_ac_and_bc_and_factors(const smon& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const signed_vars& bc,
|
||||
const smon& bc,
|
||||
const factor& b) {
|
||||
auto cv = vvr(c);
|
||||
int c_sign = nla::rat_sign(cv);
|
||||
|
@ -232,10 +232,10 @@ void order::order_lemma_on_ab(const monomial& m, const rational& sign, lpvar a,
|
|||
order_lemma_on_ab_lt(m, sign, a, b);
|
||||
}
|
||||
// a > b && c > 0 => ac > bc
|
||||
void order::order_lemma_on_rmonomial(const signed_vars& rm) {
|
||||
void order::order_lemma_on_rmonomial(const smon& rm) {
|
||||
TRACE("nla_solver_details",
|
||||
tout << "rm = "; print_product(rm, tout);
|
||||
tout << ", orig = " << c().m_emons[rm.var()] << "\n";
|
||||
tout << ", orig = " << pp_mon(c(), c().m_emons[rm.var()]);
|
||||
);
|
||||
for (auto ac : factorization_factory_imp(rm, c())) {
|
||||
if (ac.size() != 2)
|
||||
|
@ -267,7 +267,7 @@ void order::order_lemma_on_binomial_sign(const monomial& ac, lpvar x, lpvar y, i
|
|||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
void order::order_lemma_on_factor_binomial_rm(const monomial& ac, unsigned k, const monomial& bd) {
|
||||
signed_vars const& rm_bd = _().m_emons.canonical[bd];
|
||||
smon const& rm_bd = _().m_emons.canonical[bd];
|
||||
factor d(_().m_evars.find(ac[k]).var(), factor_type::VAR);
|
||||
factor b;
|
||||
if (_().divide(rm_bd, d, b)) {
|
||||
|
@ -275,7 +275,7 @@ void order::order_lemma_on_factor_binomial_rm(const monomial& ac, unsigned k, co
|
|||
}
|
||||
}
|
||||
|
||||
void order::order_lemma_on_binomial_ac_bd(const monomial& ac, unsigned k, const signed_vars& bd, const factor& b, lpvar d) {
|
||||
void order::order_lemma_on_binomial_ac_bd(const monomial& ac, unsigned k, const smon& bd, const factor& b, lpvar d) {
|
||||
TRACE("nla_solver", tout << "ac=" << pp_mon(c(), ac);
|
||||
tout << "\nrm=" << bd;
|
||||
print_factor(b, tout << ", b="); print_var(d, tout << ", d=") << "\n";);
|
||||
|
|
|
@ -29,23 +29,23 @@ struct order: common {
|
|||
const core& _() const { return *m_core; }
|
||||
//constructor
|
||||
order(core *c) : common(c) {}
|
||||
bool order_lemma_on_ac_and_bc_and_factors(const signed_vars& ac,
|
||||
bool order_lemma_on_ac_and_bc_and_factors(const smon& ac,
|
||||
const factor& a,
|
||||
const factor& c,
|
||||
const signed_vars& bc,
|
||||
const smon& bc,
|
||||
const factor& b);
|
||||
|
||||
// a >< b && c > 0 => ac >< bc
|
||||
// a >< b && c < 0 => ac <> bc
|
||||
// ac[k] plays the role of c
|
||||
bool order_lemma_on_ac_and_bc(const signed_vars& rm_ac,
|
||||
bool order_lemma_on_ac_and_bc(const smon& rm_ac,
|
||||
const factorization& ac_f,
|
||||
unsigned k,
|
||||
const signed_vars& rm_bd);
|
||||
const smon& rm_bd);
|
||||
|
||||
bool order_lemma_on_ac_explore(const signed_vars& rm, const factorization& ac, unsigned k);
|
||||
bool order_lemma_on_ac_explore(const smon& rm, const factorization& ac, unsigned k);
|
||||
|
||||
void order_lemma_on_factorization(const signed_vars& rm, const factorization& ab);
|
||||
void order_lemma_on_factorization(const smon& rm, const factorization& ab);
|
||||
|
||||
/**
|
||||
\brief Add lemma:
|
||||
|
@ -63,19 +63,19 @@ struct order: common {
|
|||
void order_lemma_on_ab(const monomial& m, const rational& sign, lpvar a, lpvar b, bool gt);
|
||||
void order_lemma_on_factor_binomial_explore(const monomial& m, unsigned k);
|
||||
void order_lemma_on_factor_binomial_rm(const monomial& ac, unsigned k, const monomial& bd);
|
||||
void order_lemma_on_binomial_ac_bd(const monomial& ac, unsigned k, const signed_vars& bd, const factor& b, lpvar d);
|
||||
void order_lemma_on_binomial_ac_bd(const monomial& ac, unsigned k, const smon& bd, const factor& b, lpvar d);
|
||||
void order_lemma_on_binomial_k(const monomial& m, lpvar k, bool gt);
|
||||
void order_lemma_on_binomial_sign(const monomial& ac, lpvar x, lpvar y, int sign);
|
||||
void order_lemma_on_binomial(const monomial& ac);
|
||||
void order_lemma_on_rmonomial(const signed_vars& rm);
|
||||
void order_lemma_on_rmonomial(const smon& rm);
|
||||
void order_lemma();
|
||||
// |c_sign| = 1, and c*c_sign > 0
|
||||
// ac > bc => ac/|c| > bc/|c| => a*c_sign > b*c_sign
|
||||
void generate_ol(const signed_vars& ac,
|
||||
void generate_ol(const smon& ac,
|
||||
const factor& a,
|
||||
int c_sign,
|
||||
const factor& c,
|
||||
const signed_vars& bc,
|
||||
const smon& bc,
|
||||
const factor& b,
|
||||
llc ab_cmp);
|
||||
|
||||
|
@ -83,7 +83,7 @@ struct order: common {
|
|||
lpvar a,
|
||||
const rational& c_sign,
|
||||
lpvar c,
|
||||
const signed_vars& bd,
|
||||
const smon& bd,
|
||||
const factor& b,
|
||||
const rational& d_sign,
|
||||
lpvar d,
|
||||
|
|
|
@ -33,7 +33,7 @@ std::ostream& tangents::print_tangent_domain(const point &a, const point &b, std
|
|||
out << "("; print_point(a, out); out << ", "; print_point(b, out); out << ")";
|
||||
return out;
|
||||
}
|
||||
void tangents::generate_simple_tangent_lemma(const signed_vars* rm) {
|
||||
void tangents::generate_simple_tangent_lemma(const smon* rm) {
|
||||
if (rm->size() != 2)
|
||||
return;
|
||||
TRACE("nla_solver", tout << "rm:" << *rm << std::endl;);
|
||||
|
@ -73,7 +73,7 @@ void tangents::tangent_lemma() {
|
|||
bfc bf;
|
||||
lpvar j;
|
||||
rational sign;
|
||||
const signed_vars* rm = nullptr;
|
||||
const smon* rm = nullptr;
|
||||
|
||||
if (c().find_bfc_to_refine(bf, j, sign, rm)) {
|
||||
tangent_lemma_bf(bf, j, sign, rm);
|
||||
|
@ -84,7 +84,7 @@ void tangents::tangent_lemma() {
|
|||
}
|
||||
}
|
||||
|
||||
void tangents::generate_explanations_of_tang_lemma(const signed_vars& rm, const bfc& bf, lp::explanation& exp) {
|
||||
void tangents::generate_explanations_of_tang_lemma(const smon& rm, const bfc& bf, lp::explanation& exp) {
|
||||
// here we repeat the same explanation for each lemma
|
||||
c().explain(rm, exp);
|
||||
c().explain(bf.m_x, exp);
|
||||
|
@ -112,7 +112,7 @@ void tangents::generate_tang_plane(const rational & a, const rational& b, const
|
|||
t.add_coeff_var( j_sign, j);
|
||||
c().mk_ineq(t, sbelow? llc::GT : llc::LT, - a*b);
|
||||
}
|
||||
void tangents::tangent_lemma_bf(const bfc& bf, lpvar j, const rational& sign, const signed_vars* rm){
|
||||
void tangents::tangent_lemma_bf(const bfc& bf, lpvar j, const rational& sign, const smon* rm){
|
||||
point a, b;
|
||||
point xy (vvr(bf.m_x), vvr(bf.m_y));
|
||||
rational correct_mult_val = xy.x * xy.y;
|
||||
|
|
|
@ -47,13 +47,13 @@ struct tangents: common {
|
|||
|
||||
tangents(core *core);
|
||||
|
||||
void generate_simple_tangent_lemma(const signed_vars* rm);
|
||||
void generate_simple_tangent_lemma(const smon* rm);
|
||||
|
||||
void tangent_lemma();
|
||||
|
||||
void generate_explanations_of_tang_lemma(const signed_vars& rm, const bfc& bf, lp::explanation& exp);
|
||||
void generate_explanations_of_tang_lemma(const smon& rm, const bfc& bf, lp::explanation& exp);
|
||||
|
||||
void tangent_lemma_bf(const bfc& bf, lpvar j, const rational& sign, const signed_vars* rm);
|
||||
void tangent_lemma_bf(const bfc& bf, lpvar j, const rational& sign, const smon* rm);
|
||||
void generate_tang_plane(const rational & a, const rational& b, const factor& x, const factor& y, bool below, lpvar j, const rational& j_sign);
|
||||
|
||||
void generate_two_tang_lines(const bfc & bf, const point& xy, const rational& sign, lpvar j);
|
||||
|
|
|
@ -123,6 +123,13 @@ public:
|
|||
signed_var sv = find(signed_var(j, false));
|
||||
return sv.var() == j;
|
||||
}
|
||||
inline bool is_root(svector<lpvar> v) const {
|
||||
for (lpvar j : v)
|
||||
if (! is_root(j))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool vars_are_equiv(lpvar j, lpvar k) const {
|
||||
signed_var sj = find(signed_var(j, false));
|
||||
signed_var sk = find(signed_var(k, false));
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue