3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-15 13:28:47 +00:00

work on horner's heuristic

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2019-06-29 11:41:48 -07:00
parent 8670e09269
commit 1a7a537834
7 changed files with 183 additions and 46 deletions

View file

@ -22,19 +22,25 @@
#include "math/lp/nla_core.h"
namespace nla {
typedef nla_expr<rational> nex;
horner::horner(core * c) : common(c) {}
template <typename T>
bool horner::row_is_interesting(const T&) const {
return true;
bool horner::row_is_interesting(const T& row) const {
for (const auto& p : row) {
if (c().m_to_refine.contains(p.var()))
return true;
}
return false;
}
template <typename T>
void horner::lemma_on_row(const T& row) {
if (!row_is_interesting(row))
return;
SASSERT(false);
nex e = create_expr_from_row(row);
intervals::interval inter = interval_of_expr(e);
check_interval_for_conflict(inter);
}
void horner::horner_lemmas() {
@ -53,4 +59,105 @@ void horner::horner_lemmas() {
SASSERT(false);
}
nex horner::nexvar(lpvar j) const {
if (!c().is_monomial_var(j))
return nex::var(j);
const monomial& m = c().emons()[j];
nex e(expr_type::MUL);
for (lpvar k : m.vars()) {
e.add_child(nex::var(k));
}
return e;
}
void process_var_occurences(lpvar j, std::unordered_set<lpvar>& seen, std::unordered_map<lpvar, unsigned>& occurences) {
if (seen.find(j) != seen.end()) return;
seen.insert(j);
auto it = occurences.find(j);
if (it == occurences.end())
occurences[j] = 1;
else
it->second ++;
}
void process_mul_occurences(const nex& e, std::unordered_set<lpvar>& seen, std::unordered_map<lpvar, unsigned>& occurences) {
SASSERT(e.type() == expr_type::MUL);
for (const auto & ce : e.children()) {
if (ce.type() == expr_type::SCALAR) {
} else if (ce.type() == expr_type::VAR) {
process_var_occurences(ce.var(), seen, occurences);
} else if (ce.type() == expr_type::MUL){
process_mul_occurences(ce, seen, occurences);
} else {
SASSERT(false); // unexpected type
}
}
}
// j -> the number of expressions j appears in
void horner::get_occurences_map(const nla_expr<rational>& e, std::unordered_map<lpvar, unsigned>& occurences) const {
SASSERT(e.type() == expr_type::SUM);
for (const auto & ce : e.children()) {
std::unordered_set<lpvar> seen;
if (ce.type() == expr_type::MUL) {
for (const auto & cce : ce.children()) {
if (cce.type() == expr_type::SCALAR) {
} else if (cce.type() == expr_type::VAR) {
process_var_occurences(cce.var(), seen, occurences);
} else if (cce.type() == expr_type::MUL) {
process_mul_occurences(cce, seen, occurences);
} else {
TRACE("nla_cn", tout << "e = " << e << "\nce = " << ce << std::endl <<
"ce type = " << ce.type() << std::endl;);
SASSERT(false); // unexpected type
}
}
} else if (ce.type() == expr_type::VAR) {
process_var_occurences(ce.var(), seen, occurences);
} else {
SASSERT(false);
}
}
}
nex horner::cross_nested_of_sum(const nla_expr<rational>& e) const {
SASSERT(e.type() == expr_type::SUM);
std::unordered_map<lpvar, unsigned> occurences;
get_occurences_map(e, occurences);
TRACE("nla_cn",
tout << "e = " << e << "\noccurences ";
for (auto p : occurences){
tout << "(v"<<p.first << ", "<< p.second<<")";
}
tout << std::endl;);
SASSERT(false);
}
template <typename T> nex horner::create_expr_from_row(const T& row) {
nex e;
if (row.size() > 1) {
e.type() = expr_type::SUM;
for (const auto &p : row) {
e.add_child(nex::mul(p.coeff(), nexvar(p.var())));
}
return cross_nested_of_sum(e);
}
if (row.size() == 1) {
const auto &p = *row.begin();
return nex::mul(p.coeff(), nexvar(p.var()));
}
SASSERT(false);
}
intervals::interval horner::interval_of_expr(const nex& e) {
SASSERT(false);
}
void horner::check_interval_for_conflict(const intervals::interval&) {
SASSERT(false);
}
}

View file

@ -20,6 +20,8 @@
#pragma once
#include "math/lp/nla_common.h"
#include "math/lp/nla_intervals.h"
#include "math/lp/nla_expr.h"
namespace nla {
class core;
@ -33,6 +35,12 @@ public:
void lemma_on_row(const T&);
template <typename T>
bool row_is_interesting(const T&) const;
private:
template <typename T> nla_expr<rational> create_expr_from_row(const T&);
intervals::interval interval_of_expr(const nla_expr<rational>& e);
void check_interval_for_conflict(const intervals::interval&);
nla_expr<rational> nexvar(lpvar j) const;
nla_expr<rational> cross_nested_of_sum(const nla_expr<rational>&) const;
void get_occurences_map(const nla_expr<rational>& e, std::unordered_map<unsigned, lpvar>& ) const;
}; // end of horner
}

View file

@ -54,6 +54,8 @@ public:
m_data[j] = -1;
}
int operator[](unsigned j) const { return m_index[j]; }
void resize(unsigned size) {
m_data.resize(size, -1);
}
@ -61,7 +63,7 @@ public:
void increase_size_by_one() {
resize(m_data.size() + 1);
}
unsigned data_size() const { return m_data.size(); }
unsigned size() const { return m_index.size();}
bool is_empty() const { return size() == 0; }
@ -76,6 +78,7 @@ public:
}
out << std::endl;
}
const int * begin() const { return m_index.begin(); }
const int * end() const { return m_index.end(); }
};
}

View file

@ -149,8 +149,8 @@ bool basics::basic_sign_lemma(bool derived) {
return basic_sign_lemma_model_based();
std::unordered_set<unsigned> explored;
for (lpvar i : c().m_to_refine){
if (basic_sign_lemma_on_mon(i, explored))
for (lpvar j : c().m_to_refine){
if (basic_sign_lemma_on_mon(j, explored))
return true;
}
return false;

View file

@ -831,37 +831,6 @@ void core::collect_equivs() {
}
}
void core::collect_equivs_of_fixed_vars() {
std::unordered_map<rational, svector<lpvar> > abs_map;
for (lpvar j = 0; j < m_lar_solver.number_of_vars(); j++) {
if (!var_is_fixed(j))
continue;
rational v = abs(val(j));
auto it = abs_map.find(v);
if (it == abs_map.end()) {
abs_map[v] = svector<lpvar>();
abs_map[v].push_back(j);
} else {
it->second.push_back(j);
}
}
for (auto p : abs_map) {
svector<lpvar>& v = p.second;
lpvar head = v[0];
auto c0 = m_lar_solver.get_column_upper_bound_witness(head);
auto c1 = m_lar_solver.get_column_lower_bound_witness(head);
for (unsigned k = 1; k < v.size(); k++) {
auto c2 = m_lar_solver.get_column_upper_bound_witness(v[k]);
auto c3 = m_lar_solver.get_column_lower_bound_witness(v[k]);
if (val(head) == val(v[k])) {
m_evars.merge_plus(head, v[k], eq_justification({c0, c1, c2, c3}));
} else {
SASSERT(val(head) == -val(v[k]));
m_evars.merge_minus(head, v[k], eq_justification({c0, c1, c2, c3}));
}
}
}
}
// returns true iff the term is in a form +-x-+y.
// the sign is true iff the term is x+y, -x-y.
@ -975,11 +944,12 @@ void core::init_search() {
void core::init_to_refine() {
TRACE("nla_solver", tout << "emons:" << pp_emons(*this, m_emons););
m_to_refine.clear();
m_to_refine.resize(m_lar_solver.number_of_vars());
unsigned r = random(), sz = m_emons.number_of_monomials();
for (unsigned k = 0; k < sz; k++) {
auto const & m = *(m_emons.begin() + (k + r)% sz);
if (!check_monomial(m))
m_to_refine.push_back(m.var());
m_to_refine.insert(m.var());
}
TRACE("nla_solver",
@ -1333,7 +1303,7 @@ lbool core::check(vector<lemma>& l_vec) {
}
init_to_refine();
if (m_to_refine.empty()) {
if (m_to_refine.is_empty()) {
return l_true;
}
init_search();

View file

@ -82,7 +82,7 @@ public:
var_eqs<emonomials> m_evars;
lp::lar_solver& m_lar_solver;
vector<lemma> * m_lemma_vec;
svector<lpvar> m_to_refine;
lp::int_set m_to_refine;
tangents m_tangents;
basics m_basics;
order m_order;
@ -291,8 +291,6 @@ public:
// we look for octagon constraints here, with a left part +-x +- y
void collect_equivs();
void collect_equivs_of_fixed_vars();
bool is_octagon_term(const lp::lar_term& t, bool & sign, lpvar& i, lpvar &j) const;
void add_equivalence_maybe(const lp::lar_term *t, lpci c0, lpci c1);

View file

@ -19,15 +19,45 @@ Revision History:
#pragma once
#include "math/lp/nla_defs.h"
namespace nla {
enum class expr_type { SUM, MUL, VAR, SCALAR };
enum class expr_type { SUM, MUL, VAR, SCALAR, UNDEF };
inline std::ostream & operator<<(std::ostream& out, expr_type t) {
switch (t) {
case expr_type::SUM:
out << "SUM";
break;
case expr_type::MUL:
out << "MUL";
break;
case expr_type::VAR:
out << "VAR";
break;
case expr_type::SCALAR:
out << "SCALAR";
break;
case expr_type::UNDEF:
out << "UNDEF";
break;
default:
out << "NN";
break;
}
return out;
}
// This class is needed in horner calculation with intervals
template <typename T>
class nla_expr {
// todo: use union
expr_type m_type;
lpvar m_j;
T m_v; // for the scalar
vector<nla_expr> m_children;
public:
lpvar var() const { SASSERT(m_type == expr_type::VAR); return m_j; }
expr_type type() const { return m_type; }
expr_type& type() { return m_type; }
const vector<nla_expr>& children() const { return m_children; }
vector<nla_expr>& children() { return m_children; }
std::string str() const { std::stringstream ss; ss << *this; return ss.str(); }
std::ostream & print_sum(std::ostream& out) const {
bool first = true;
@ -90,6 +120,7 @@ public:
out << m_v;
return out;
default:
out << "undef";
return out;
}
}
@ -106,6 +137,11 @@ public:
}
nla_expr(expr_type t): m_type(t) {}
nla_expr() {
#if Z3DEBUG
m_type = expr_type::UNDEF;
#endif
}
void add_child(const nla_expr& e) {
SASSERT(m_type == expr_type::SUM || m_type == expr_type::MUL);
@ -126,6 +162,21 @@ public:
return r;
}
static nla_expr mul(const T& v, const nla_expr & w) {
if (v == 1)
return w;
nla_expr r(expr_type::MUL);
r.add_child(scalar(v));
r.add_child(w);
return r;
}
static nla_expr mul(const T& v, lpvar j) {
if (v == 1)
return var(j);
return mul(scalar(v), var(j));
}
static nla_expr scalar(const T& v) {
nla_expr r(expr_type::SCALAR);
r.m_v = v;