mirror of
https://github.com/Z3Prover/z3
synced 2025-06-25 07:13:41 +00:00
renaming
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
ef965574e2
commit
1a68c3f0a7
1 changed files with 14 additions and 177 deletions
|
@ -619,29 +619,22 @@ namespace nlsat {
|
|||
}
|
||||
|
||||
bool is_well_oriented(polynomial_ref_vector &ps, var x) {
|
||||
polynomial_ref p_poly(m_pm);
|
||||
polynomial_ref p(m_pm);
|
||||
polynomial_ref lc_poly(m_pm);
|
||||
polynomial_ref disc_poly(m_pm);
|
||||
polynomial_ref current_coeff_poly(m_pm);
|
||||
|
||||
for (unsigned i = 0; i < ps.size(); i++) {
|
||||
p_poly = ps.get(i);
|
||||
unsigned k_deg = m_pm.degree(p_poly, x);
|
||||
p = ps.get(i);
|
||||
unsigned k_deg = m_pm.degree(p, x);
|
||||
if (k_deg == 0)
|
||||
continue;
|
||||
// p_poly depends on x
|
||||
lc_poly = m_pm.coeff(p_poly, x, k_deg);
|
||||
if (sign(lc_poly) == 0) { // LC is zero
|
||||
TRACE(nlsat_explain, tout << "Global !WO: LC of poly is zero. Poly: "; display(tout, p_poly); tout << " LC: "; display(tout, lc_poly) << "\\n";);
|
||||
return false;
|
||||
}
|
||||
|
||||
disc_poly = discriminant(p_poly, x); // Use global helper
|
||||
// p depends on x
|
||||
disc_poly = discriminant(p, x); // Use global helper
|
||||
if (sign(disc_poly) == 0) { // Discriminant is zero
|
||||
TRACE(nlsat_explain, tout << "Global !WO: Discriminant of poly is zero. Poly: "; display(tout, p_poly); tout << " Disc: "; display(tout, disc_poly) << "\\n";);
|
||||
|
||||
TRACE(nlsat_explain, tout << "Global !WO: Discriminant of poly is zero. Poly: "; display(tout, p); tout << " Disc: "; display(tout, disc_poly) << "\\n";);
|
||||
return false;
|
||||
}
|
||||
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
@ -649,21 +642,20 @@ namespace nlsat {
|
|||
// For each p in ps add the leading or all the coefficients of p to the projection,
|
||||
// depending on the well-orientedness of ps.
|
||||
void add_lcs(polynomial_ref_vector &ps, var x) {
|
||||
polynomial_ref p_poly(m_pm);
|
||||
polynomial_ref p(m_pm);
|
||||
polynomial_ref coeff(m_pm);
|
||||
polynomial_ref disc_poly(m_pm);
|
||||
|
||||
bool wo = is_well_oriented(ps, x);
|
||||
// Add coefficients based on well-orientedness
|
||||
for (unsigned i = 0; i < ps.size(); i++) {
|
||||
p_poly = ps.get(i);
|
||||
unsigned k_deg = m_pm.degree(p_poly, x);
|
||||
p = ps.get(i);
|
||||
unsigned k_deg = m_pm.degree(p, x);
|
||||
if (k_deg == 0) continue;
|
||||
// p_poly depends on x
|
||||
TRACE(nlsat_explain, tout << "processing poly of degree " << k_deg << " w.r.t x" << x << ": "; display(tout, p_poly); tout << (wo ? " (wo)" : " (!wo)") << "\\n";);
|
||||
// p depends on x
|
||||
TRACE(nlsat_explain, tout << "processing poly of degree " << k_deg << " w.r.t x" << x << ": "; display(tout, p); tout << (wo ? " (wo)" : " (!wo)") << "\n";);
|
||||
for (unsigned j_coeff_deg = k_deg; j_coeff_deg >= 1; j_coeff_deg--) {
|
||||
coeff = m_pm.coeff(p_poly, x, j_coeff_deg);
|
||||
TRACE(nlsat_explain, tout << " coeff deg " << j_coeff_deg << ": "; display(tout, coeff) << "\\n";);
|
||||
coeff = m_pm.coeff(p, x, j_coeff_deg);
|
||||
TRACE(nlsat_explain, tout << " coeff deg " << j_coeff_deg << ": "; display(tout, coeff) << "\n";);
|
||||
add_factors(coeff);
|
||||
if (wo)
|
||||
break;
|
||||
|
@ -1926,161 +1918,6 @@ namespace nlsat {
|
|||
scoped_anum_vector & roots = m_roots_tmp;
|
||||
roots.reset();
|
||||
m_am.isolate_roots(p, undef_var_assignment(m_assignment, x), roots);
|
||||
for (auto const& r : roots) {
|
||||
int s = m_am.compare(x_val, r);
|
||||
SASSERT(s != 0);
|
||||
|
||||
if (s < 0 && (!lub_valid || m_am.lt(r, lub))) {
|
||||
lub_index = i;
|
||||
m_am.set(lub, r);
|
||||
lub_valid = true;
|
||||
}
|
||||
|
||||
if (s > 0 && (!glb_valid || m_am.lt(glb, r))) {
|
||||
glb_index = i;
|
||||
m_am.set(glb, r);
|
||||
glb_valid = true;
|
||||
}
|
||||
if (s < 0) ++num_lub;
|
||||
if (s > 0) ++num_glb;
|
||||
}
|
||||
}
|
||||
TRACE(nlsat_explain, tout << "glb: " << num_glb << " lub: " << num_lub << "\n" << lub_index << "\n" << glb_index << "\n" << ps << "\n";);
|
||||
|
||||
if (num_lub == 0) {
|
||||
project_plus_infinity(x, ps);
|
||||
return;
|
||||
}
|
||||
|
||||
if (num_glb == 0) {
|
||||
project_minus_infinity(x, ps);
|
||||
return;
|
||||
}
|
||||
|
||||
if (num_lub <= num_glb) {
|
||||
glb_index = lub_index;
|
||||
}
|
||||
|
||||
project_pairs(x, glb_index, ps);
|
||||
}
|
||||
|
||||
void project_plus_infinity(var x, polynomial_ref_vector const& ps) {
|
||||
polynomial_ref p(m_pm), lc(m_pm);
|
||||
for (unsigned i = 0; i < ps.size(); ++i) {
|
||||
p = ps.get(i);
|
||||
unsigned d = degree(p, x);
|
||||
lc = m_pm.coeff(p, x, d);
|
||||
if (!is_const(lc)) {
|
||||
int s = sign(p);
|
||||
SASSERT(s != 0);
|
||||
atom::kind k = (s > 0)?(atom::GT):(atom::LT);
|
||||
add_simple_assumption(k, lc);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void project_minus_infinity(var x, polynomial_ref_vector const& ps) {
|
||||
polynomial_ref p(m_pm), lc(m_pm);
|
||||
for (unsigned i = 0; i < ps.size(); ++i) {
|
||||
p = ps.get(i);
|
||||
unsigned d = degree(p, x);
|
||||
lc = m_pm.coeff(p, x, d);
|
||||
if (!is_const(lc)) {
|
||||
int s = sign(p);
|
||||
TRACE(nlsat_explain, tout << "degree: " << d << " " << lc << " sign: " << s << "\n";);
|
||||
SASSERT(s != 0);
|
||||
atom::kind k;
|
||||
if (s > 0) {
|
||||
k = (d % 2 == 0)?(atom::GT):(atom::LT);
|
||||
}
|
||||
else {
|
||||
k = (d % 2 == 0)?(atom::LT):(atom::GT);
|
||||
}
|
||||
add_simple_assumption(k, lc);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void project_pairs(var x, unsigned idx, polynomial_ref_vector const& ps) {
|
||||
TRACE(nlsat_explain, tout << "project pairs\n";);
|
||||
polynomial_ref p(m_pm);
|
||||
p = ps.get(idx);
|
||||
for (unsigned i = 0; i < ps.size(); ++i) {
|
||||
if (i != idx) {
|
||||
project_pair(x, ps.get(i), p);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void project_pair(var x, polynomial::polynomial* p1, polynomial::polynomial* p2) {
|
||||
m_ps2.reset();
|
||||
m_ps2.push_back(p1);
|
||||
m_ps2.push_back(p2);
|
||||
project(m_ps2, x);
|
||||
}
|
||||
|
||||
void project_single(var x, polynomial::polynomial* p) {
|
||||
m_ps2.reset();
|
||||
m_ps2.push_back(p);
|
||||
project(m_ps2, x);
|
||||
}
|
||||
|
||||
void solve_eq(var x, unsigned idx, polynomial_ref_vector const& ps) {
|
||||
polynomial_ref p(m_pm), A(m_pm), B(m_pm), C(m_pm), D(m_pm), E(m_pm), q(m_pm), r(m_pm);
|
||||
polynomial_ref_vector As(m_pm), Bs(m_pm);
|
||||
p = ps.get(idx);
|
||||
SASSERT(degree(p, x) == 1);
|
||||
A = m_pm.coeff(p, x, 1);
|
||||
B = m_pm.coeff(p, x, 0);
|
||||
As.push_back(m_pm.mk_const(rational(1)));
|
||||
Bs.push_back(m_pm.mk_const(rational(1)));
|
||||
B = neg(B);
|
||||
TRACE(nlsat_explain, tout << "p: " << p << " A: " << A << " B: " << B << "\n";);
|
||||
// x = B/A
|
||||
for (unsigned i = 0; i < ps.size(); ++i) {
|
||||
if (i != idx) {
|
||||
q = ps.get(i);
|
||||
unsigned d = degree(q, x);
|
||||
D = m_pm.mk_const(rational(1));
|
||||
E = D;
|
||||
r = m_pm.mk_zero();
|
||||
for (unsigned j = As.size(); j <= d; ++j) {
|
||||
D = As.back(); As.push_back(A * D);
|
||||
D = Bs.back(); Bs.push_back(B * D);
|
||||
}
|
||||
for (unsigned j = 0; j <= d; ++j) {
|
||||
// A^d*p0 + A^{d-1}*B*p1 + ... + B^j*A^{d-j}*pj + ... + B^d*p_d
|
||||
C = m_pm.coeff(q, x, j);
|
||||
TRACE(nlsat_explain, tout << "coeff: q" << j << ": " << C << "\n";);
|
||||
if (!is_zero(C)) {
|
||||
D = As.get(d - j);
|
||||
E = Bs.get(j);
|
||||
r = r + D*E*C;
|
||||
}
|
||||
}
|
||||
TRACE(nlsat_explain, tout << "p: " << p << " q: " << q << " r: " << r << "\n";);
|
||||
ensure_sign(r);
|
||||
}
|
||||
else {
|
||||
ensure_sign(A);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void maximize(var x, unsigned num, literal const * ls, scoped_anum& val, bool& unbounded) {
|
||||
svector<literal> lits;
|
||||
polynomial_ref p(m_pm);
|
||||
split_literals(x, num, ls, lits);
|
||||
collect_polys(lits.size(), lits.data(), m_ps);
|
||||
unbounded = true;
|
||||
scoped_anum x_val(m_am);
|
||||
x_val = m_assignment.value(x);
|
||||
for (unsigned i = 0; i < m_ps.size(); ++i) {
|
||||
p = m_ps.get(i);
|
||||
scoped_anum_vector & roots = m_roots_tmp;
|
||||
roots.reset();
|
||||
m_am.isolate_roots(p, undef_var_assignment(m_assignment, x), roots);
|
||||
for (unsigned j = 0; j < roots.size(); ++j) {
|
||||
int s = m_am.compare(x_val, roots[j]);
|
||||
if (s <= 0 && (unbounded || m_am.compare(roots[j], val) <= 0)) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue