mirror of
https://github.com/Z3Prover/z3
synced 2025-04-24 01:25:31 +00:00
Use constraint graphs for minimum cost flow correctly
This commit is contained in:
parent
637b63cbe1
commit
1a32a64b96
3 changed files with 85 additions and 44 deletions
|
@ -933,7 +933,7 @@ public:
|
|||
return found;
|
||||
}
|
||||
|
||||
// Return true if there is an edge source --> target.
|
||||
// Return true if there is an edge source --> target (also counting disabled edges).
|
||||
// If there is such edge, return its edge_id in parameter id.
|
||||
bool get_edge_id(dl_var source, dl_var target, edge_id & id) {
|
||||
edge_id_vector & edges = m_out_edges[source];
|
||||
|
@ -942,7 +942,7 @@ public:
|
|||
for (; it != end; ++it) {
|
||||
id = *it;
|
||||
edge & e = m_edges[id];
|
||||
if (e.is_enabled() && e.get_target() == target) {
|
||||
if (e.get_target() == target) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -66,14 +66,15 @@ namespace smt {
|
|||
|
||||
svector<edge_state> m_states;
|
||||
|
||||
// An element is true if the corresponding edge points upwards (compared to the root node)
|
||||
// m_upwards[i] is true if the corresponding edge
|
||||
// (i, m_pred[i]) points upwards (pointing toward the root node)
|
||||
svector<bool> m_upwards;
|
||||
|
||||
// Store the parent of a node i in the spanning tree
|
||||
svector<node> m_pred;
|
||||
// Store the number of edge on the path from node i to the root
|
||||
svector<int> m_depth;
|
||||
// Store the pointer from node i to the next node in depth first search ordering
|
||||
// Store the pointer from node i to the next node in depth-first search order
|
||||
svector<node> m_thread;
|
||||
// Reverse orders of m_thread
|
||||
svector<node> m_rev_thread;
|
||||
|
|
|
@ -45,8 +45,20 @@ namespace smt {
|
|||
|
||||
template<typename Ext>
|
||||
network_flow<Ext>::network_flow(graph & g, vector<fin_numeral> const & balances) :
|
||||
m_graph(g),
|
||||
m_balances(balances) {
|
||||
// Network flow graph has the edges in the reversed order compared to constraint graph
|
||||
// We only take enabled edges from the original graph
|
||||
for (unsigned i = 0; i < g.get_num_nodes(); ++i) {
|
||||
m_graph.init_var(i);
|
||||
}
|
||||
vector<edge> const & es = g.get_all_edges();
|
||||
for (unsigned i = 0; i < es.size(); ++i) {
|
||||
edge const & e = es[i];
|
||||
if (e.is_enabled()) {
|
||||
m_graph.add_edge(e.get_target(), e.get_source(), e.get_weight(), explanation());
|
||||
}
|
||||
}
|
||||
|
||||
unsigned num_nodes = m_graph.get_num_nodes() + 1;
|
||||
unsigned num_edges = m_graph.get_num_edges();
|
||||
|
||||
|
@ -89,7 +101,7 @@ namespace smt {
|
|||
m_states.resize(num_nodes + num_edges);
|
||||
m_states.fill(NON_BASIS);
|
||||
|
||||
// Create artificial edges and initialize the spanning tree
|
||||
// Create artificial edges from/to root node to/from other nodes and initialize the spanning tree
|
||||
for (unsigned i = 0; i < num_nodes; ++i) {
|
||||
m_upwards[i] = !m_balances[i].is_neg();
|
||||
m_pred[i] = root;
|
||||
|
@ -101,12 +113,13 @@ namespace smt {
|
|||
node src = m_upwards[i] ? i : root;
|
||||
node tgt = m_upwards[i] ? root : i;
|
||||
m_flows[num_edges + i] = m_upwards[i] ? m_balances[i] : -m_balances[i];
|
||||
m_graph.enable_edge(m_graph.add_edge(src, tgt, numeral::one(), explanation()));
|
||||
m_graph.add_edge(src, tgt, numeral::one(), explanation());
|
||||
}
|
||||
|
||||
// Compute initial potentials
|
||||
node u = m_thread[root];
|
||||
while (u != root) {
|
||||
bool direction = m_upwards[u];
|
||||
node v = m_pred[u];
|
||||
edge_id e_id = get_edge_id(u, v);
|
||||
m_potentials[u] = m_potentials[v] + (m_upwards[u] ? - m_graph.get_weight(e_id) : m_graph.get_weight(e_id));
|
||||
|
@ -166,20 +179,19 @@ namespace smt {
|
|||
bool network_flow<Ext>::choose_entering_edge() {
|
||||
TRACE("network_flow", tout << "choose_entering_edge...\n";);
|
||||
vector<edge> const & es = m_graph.get_all_edges();
|
||||
for (unsigned int i = 0; i < es.size(); ++i) {
|
||||
edge const & e = es[i];
|
||||
edge_id e_id;
|
||||
node source = e.get_source();
|
||||
node target = e.get_target();
|
||||
if (e.is_enabled() && m_graph.get_edge_id(source, target, e_id) && m_states[e_id] == NON_BASIS) {
|
||||
numeral cost = e.get_weight() - m_potentials[source] + m_potentials[target];
|
||||
for (unsigned i = 0; i < es.size(); ++i) {
|
||||
node src = m_graph.get_source(i);
|
||||
node tgt = m_graph.get_target(i);
|
||||
if (m_states[i] == NON_BASIS) {
|
||||
numeral cost = m_graph.get_weight(i);
|
||||
numeral change = cost - m_potentials[src] + m_potentials[tgt];
|
||||
// Choose the first negative-cost edge to be the violating edge
|
||||
// TODO: add multiple pivoting strategies
|
||||
if (cost.is_neg()) {
|
||||
m_entering_edge = e_id;
|
||||
if (change.is_neg()) {
|
||||
m_entering_edge = i;
|
||||
TRACE("network_flow", {
|
||||
tout << "Found entering edge " << e_id << " between node ";
|
||||
tout << source << " and node " << target << "...\n";
|
||||
tout << "Found entering edge " << i << " between node ";
|
||||
tout << src << " and node " << tgt << "...\n";
|
||||
});
|
||||
return true;
|
||||
}
|
||||
|
@ -215,7 +227,7 @@ namespace smt {
|
|||
// Send flows along the path from source to the ancestor
|
||||
for (unsigned u = source; u != m_join_node; u = m_pred[u]) {
|
||||
edge_id e_id = get_edge_id(u, m_pred[u]);
|
||||
numeral d = m_upwards[u] ? infty : m_flows[e_id];
|
||||
numeral d = m_upwards[u] ? m_flows[e_id] : infty;
|
||||
if (d < m_delta) {
|
||||
m_delta = d;
|
||||
src = u;
|
||||
|
@ -226,7 +238,7 @@ namespace smt {
|
|||
// Send flows along the path from target to the ancestor
|
||||
for (unsigned u = target; u != m_join_node; u = m_pred[u]) {
|
||||
edge_id e_id = get_edge_id(u, m_pred[u]);
|
||||
numeral d = m_upwards[u] ? m_flows[e_id] : infty;
|
||||
numeral d = m_upwards[u] ? infty : m_flows[e_id];
|
||||
if (d <= m_delta) {
|
||||
m_delta = d;
|
||||
src = u;
|
||||
|
@ -249,9 +261,26 @@ namespace smt {
|
|||
template<typename Ext>
|
||||
void network_flow<Ext>::update_spanning_tree() {
|
||||
node p = m_graph.get_source(m_entering_edge);
|
||||
node q = m_graph.get_target(m_entering_edge);
|
||||
node q = m_graph.get_target(m_entering_edge);
|
||||
node u = m_graph.get_source(m_leaving_edge);
|
||||
node v = m_graph.get_target(m_leaving_edge);
|
||||
// v is parent of u so T_u does not contain root node
|
||||
if (m_pred[u] == v) {
|
||||
node temp = u;
|
||||
u = v;
|
||||
v = temp;
|
||||
}
|
||||
node n = p;
|
||||
while (n != -1) {
|
||||
if (n == v) {
|
||||
// q should be in T_v so swap p and q
|
||||
node temp = p;
|
||||
p = q;
|
||||
q = temp;
|
||||
break;
|
||||
}
|
||||
n = m_pred[n];
|
||||
}
|
||||
|
||||
TRACE("network_flow", {
|
||||
tout << "update_spanning_tree: (" << p << ", " << q << ") enters, (";
|
||||
|
@ -263,16 +292,22 @@ namespace smt {
|
|||
node z = m_final[q];
|
||||
|
||||
// Update m_pred (for nodes in the stem from q to v)
|
||||
node n = q;
|
||||
n = q;
|
||||
node last = m_pred[v];
|
||||
node parent = p;
|
||||
while (n != last) {
|
||||
node next = m_pred[n];
|
||||
m_pred[n] = parent;
|
||||
m_upwards[n] = !m_upwards[n];
|
||||
m_pred[n] = parent;
|
||||
parent = n;
|
||||
n = next;
|
||||
}
|
||||
n = v;
|
||||
while (n != q) {
|
||||
node next = m_pred[n];
|
||||
m_upwards[n] = !m_upwards[next];
|
||||
n = next;
|
||||
}
|
||||
m_upwards[q] = true;
|
||||
|
||||
TRACE("network_flow", tout << "Graft T_q and T_r'\n";);
|
||||
|
||||
|
@ -289,7 +324,7 @@ namespace smt {
|
|||
node gamma = m_thread[m_final[p]];
|
||||
n = p;
|
||||
last = m_pred[gamma];
|
||||
while (n != last) {
|
||||
while (n != last && n != -1) {
|
||||
m_final[n] = z;
|
||||
n = m_pred[n];
|
||||
}
|
||||
|
@ -299,33 +334,34 @@ namespace smt {
|
|||
// Update T_r'
|
||||
node phi = m_rev_thread[v];
|
||||
node theta = m_thread[m_final[v]];
|
||||
m_thread[phi] = theta;
|
||||
|
||||
|
||||
gamma = m_thread[m_final[v]];
|
||||
// REVIEW: check f(n) is not in T_v
|
||||
// REVIEW: check f(u) is not in T_v
|
||||
node delta = m_final[u] != m_final[v] ? m_final[u] : phi;
|
||||
n = u;
|
||||
last = m_pred[gamma];
|
||||
while (n != last) {
|
||||
while (n != last && n != -1) {
|
||||
m_final[n] = delta;
|
||||
n = m_pred[n];
|
||||
}
|
||||
|
||||
m_thread[phi] = theta;
|
||||
|
||||
// Reroot T_v at q
|
||||
if (u != q) {
|
||||
if (v != q) {
|
||||
TRACE("network_flow", tout << "Reroot T_v at q\n";);
|
||||
|
||||
node n = m_pred[q];
|
||||
node n = v;
|
||||
m_thread[m_final[q]] = n;
|
||||
last = v;
|
||||
node alpha1, alpha2;
|
||||
last = q;
|
||||
node alpha1, alpha2 = -1;
|
||||
unsigned count = 0;
|
||||
while (n != last) {
|
||||
// Find all immediate successors of n
|
||||
node t1 = m_thread[n];
|
||||
node t2 = m_thread[m_final[t1]];
|
||||
node t3 = m_thread[m_final[t2]];
|
||||
if (t1 = m_pred[n]) {
|
||||
if (t1 == m_pred[n]) {
|
||||
alpha1 = t2;
|
||||
alpha2 = t3;
|
||||
}
|
||||
|
@ -348,7 +384,13 @@ namespace smt {
|
|||
m_depth[m] -= d;
|
||||
}
|
||||
}
|
||||
m_thread[m_final[alpha2]] = v;
|
||||
if (alpha2 != -1) {
|
||||
m_thread[m_final[alpha2]] = v;
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < m_thread.size(); ++i) {
|
||||
m_rev_thread[m_thread[i]] = i;
|
||||
}
|
||||
|
||||
TRACE("network_flow", {
|
||||
|
@ -376,14 +418,12 @@ namespace smt {
|
|||
vector<edge> const & es = m_graph.get_all_edges();
|
||||
for (unsigned i = 0; i < es.size(); ++i) {
|
||||
edge const & e = es[i];
|
||||
if (e.is_enabled()) {
|
||||
oss << prefix << e.get_source() << " -> " << prefix << e.get_target();
|
||||
if (m_states[i] == BASIS) {
|
||||
oss << "[color=red,penwidth=3.0,label=\"" << m_flows[i] << "/" << e.get_weight() << "\"];\n";
|
||||
}
|
||||
else {
|
||||
oss << "[label=\"" << m_flows[i] << "/" << e.get_weight() << "\"];\n";
|
||||
}
|
||||
oss << prefix << e.get_source() << " -> " << prefix << e.get_target();
|
||||
if (m_states[i] == BASIS) {
|
||||
oss << "[color=red,penwidth=3.0,label=\"" << m_flows[i] << "/" << e.get_weight() << "\"];\n";
|
||||
}
|
||||
else {
|
||||
oss << "[label=\"" << m_flows[i] << "/" << e.get_weight() << "\"];\n";
|
||||
}
|
||||
}
|
||||
oss << std::endl;
|
||||
|
@ -418,7 +458,7 @@ namespace smt {
|
|||
vector<edge> const & es = m_graph.get_all_edges();
|
||||
for (unsigned i = 0; i < es.size(); ++i) {
|
||||
edge const & e = es[i];
|
||||
if (e.is_enabled() && m_states[i] == BASIS) {
|
||||
if (m_states[i] == BASIS) {
|
||||
m_objective_value += e.get_weight().get_rational() * m_flows[i];
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue