3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-31 19:52:29 +00:00

setting up python tuning experiment, not done

This commit is contained in:
Ilana Shapiro 2025-10-15 22:15:15 -07:00
parent b9fb032a67
commit 193845c753

199
param-tuning-experiment.py Normal file
View file

@ -0,0 +1,199 @@
import os
import z3
MAX_CONFLICTS = 1000
MAX_EXAMPLES = 5
bench_dir = "C:/tmp/parameter-tuning"
# Baseline parameter candidates (you can grow this)
BASE_PARAM_CANDIDATES = [
("smt.arith.eager_eq_axioms", False),
("smt.restart_factor", 1.2),
("smt.relevancy", 0),
("smt.phase_caching_off", 200),
("smt.phase_caching_on", 600),
]
# --------------------------
# One class: BatchManager
# --------------------------
class BatchManager:
def __init__(self):
self.best_param_state = None
self.best_score = (10**9, 10**9, 10**9) # (conflicts, decisions, rlimit)
self.search_complete = False
def mark_complete(self):
self.search_complete = True
def maybe_update_best(self, param_state, triple):
if self._better(triple, self.best_score):
self.best_param_state = list(param_state)
self.best_score = triple
@staticmethod
def _better(a, b):
return a < b # lexicographic
# -------------------
# Helpers
# -------------------
def get_stat_int(st, key):
try:
v = st.get_key_value(key)
if isinstance(v, (int, float)):
return int(v)
except Exception:
pass
if key == "decisions" and hasattr(st, "decisions"):
try:
return int(st.decisions())
except Exception:
return 0
return 0
def solver_from_file(filepath):
s = z3.Solver()
s.set("smt.auto_config", False)
s.from_file(filepath)
return s
def apply_param_state(s, param_state):
for name, value in param_state:
s.set(name, value)
def stats_tuple(st):
return (
get_stat_int(st, "conflicts"),
get_stat_int(st, "decisions"),
get_stat_int(st, "rlimit count"),
)
# --------------------------
# Protocol steps
# --------------------------
def run_prefix_step(S, K):
S.set("smt.K", K)
r = S.check()
return r, S.statistics()
def collect_conflict_clauses_placeholder(S, limit = 4):
return []
def replay_prefix_on_pps(filepath, clauses, param_state, budget):
if not clauses:
s = solver_from_file(filepath)
apply_param_state(s, param_state)
s.set("smt.K", budget)
_ = s.check()
st = s.statistics()
return stats_tuple(st)
total_conflicts = 0
total_decisions = 0
total_rlimit = 0
PPS = solver_from_file(filepath)
apply_param_state(PPS, param_state)
for Cj in clauses:
PPS.set("smt.K", budget)
assumption = z3.Not(Cj)
PPS.check([assumption])
st = PPS.statistics()
c, d, rl = stats_tuple(st)
total_conflicts += c
total_decisions += d
total_rlimit += rl
return (total_conflicts, total_decisions, total_rlimit)
def choose_best_pps(filepath, clauses, base_param_state, candidate_param_states, K, eps = 200):
budget = K + eps
best_param_state = base_param_state
best_score = (10**9, 10**9, 10**9)
score0 = replay_prefix_on_pps(filepath, clauses, base_param_state, budget)
if score0 < best_score:
best_param_state, best_score = base_param_state, score0
for p_state in candidate_param_states:
sc = replay_prefix_on_pps(filepath, clauses, p_state, budget)
if sc < best_score:
best_param_state, best_score = p_state, sc
return best_param_state, best_score
def next_perturbations(around_state):
outs = []
for name, val in around_state:
if isinstance(val, (int, float)) and "restart_factor" in name:
outs.append([(name, float(val) * 0.9)])
outs.append([(name, float(val) * 1.1)])
elif isinstance(val, int) and "phase_caching" in name:
k = max(1, int(val))
outs.append([(name, k // 2)])
outs.append([(name, k * 2)])
else:
if name == "smt.relevancy":
outs.extend([[(name, 0)], [(name, 1)], [(name, 2)]])
return outs or [around_state]
# --------------------------
# Protocol iteration
# --------------------------
def protocol_iteration(filepath, manager, K, eps=200):
S = solver_from_file(filepath) # Proof Prefix solver
P = manager.best_param_state or BASE_PARAM_CANDIDATES # current optimal parameter setting
apply_param_state(S, P)
# Run S with max conflicts K
r, st = run_prefix_step(S, K)
# If S returns SAT, or UNSAT we have a verdict. Tell the central dispatch that search is complete. Exit.
if r == z3.sat or r == z3.unsat:
print(f"[S] {os.path.basename(filepath)}{r} (within max_conflicts={K}). Search complete.")
manager.mark_complete()
return
# Collect a subset of conflict clauses from the bounded run of S. Call these clauses C1, ..., Cl.
C_list = collect_conflict_clauses_placeholder(S)
print(f"[S] collected {len(C_list)} conflict clauses for replay")
PPS0 = P
PPS_perturb = next_perturbations(P)
best_state, best_score = choose_best_pps(filepath, C_list, PPS0, PPS_perturb, K, eps)
print(f"[Replay] best={best_state} score(conf, dec, rlim)={best_score}")
if best_state != P:
print(f"[Dispatch] updating best param state")
manager.maybe_update_best(best_state, best_score)
P = best_state
PPS0 = P
PPS_perturb = next_perturbations(P)
print(f"[Dispatch] PPS_0 := {PPS0}, new perturbations: {PPS_perturb}")
# --------------------------
# Main
# --------------------------
def main():
manager = BatchManager()
for benchmark in os.listdir(bench_dir):
if benchmark != "From_T2__hqr.t2_fixed__term_unfeasibility_1_0.smt2":
continue
filepath = os.path.join(bench_dir, benchmark)
protocol_iteration(filepath, manager, K=MAX_CONFLICTS, eps=200)
if manager.best_param_state:
print(f"\n[GLOBAL] Best parameter state: {manager.best_param_state} with score {manager.best_score}")
if __name__ == "__main__":
main()