3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 17:45:32 +00:00

fixes to saturation

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2021-09-10 05:34:52 +02:00
parent 98331c261d
commit 18e5a3a991
2 changed files with 71 additions and 87 deletions

View file

@ -10,9 +10,6 @@ Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
TODO:
- saturation instantiates lemmas that are used for unit propagation.
- the unit propagated constraint should/could be added to Gamma & core and enable simpler conflict resolution.
TODO: preserve falsification
- each rule selects a certain premise that is problematic,
@ -21,7 +18,11 @@ TODO: preserve falsification
TODO:
- remove level information from created constraints.
-
TODO: when we check that 'x' is "unary":
- in principle, 'x' could be any polynomial. However, we need to divide the lhs by x, and we don't have general polynomial division yet.
so for now we just allow the form 'value*variable'.
(extension to arbitrary monomials for 'x' should be fairly easy too)
--*/
#include "math/polysat/saturation.h"
#include "math/polysat/solver.h"
@ -53,32 +54,32 @@ namespace polysat {
return s().m_constraints.ule(lvl, lhs, rhs);
}
bool inf_saturate::push_c(conflict_core& core, signed_constraint const& c, clause_builder& reason) {
#if 0
TODO: check if c is already true.
if (is_true(c))
/**
* Propagate c. It is added to reason and core all other literals in reason are false in current stack.
* The lemmas outlines in the rules are valid and therefore c is implied.
*/
bool inf_saturate::propagate(conflict_core& core, signed_constraint& c, clause_builder& reason) {
if (c.is_currently_true(s()))
return false;
#endif
core.insert(c);
clause_ref lemma = reason.build();
s().add_lemma(lemma);
s().propagate_bool(c.blit(), lemma.get());
reason.push(c);
s().propagate_bool(c.blit(), reason.build().get());
return true;
}
bool inf_saturate::push_l(conflict_core& core, unsigned lvl, bool is_strict, pdd const& lhs, pdd const& rhs, clause_builder& reason) {
bool inf_saturate::propagate(conflict_core& core, unsigned lvl, bool is_strict, pdd const& lhs, pdd const& rhs, clause_builder& reason) {
signed_constraint c = ineq(lvl, is_strict, lhs, rhs);
return push_c(core, c, reason);
return propagate(core, c, reason);
}
/// Add premises for Ω*(x, y)
void inf_saturate::push_omega_bisect(clause_builder& reason, unsigned level, pdd const& px, rational x_max, pdd const& py, rational y_max) {
void inf_saturate::push_omega_bisect(clause_builder& reason, unsigned level, pdd const& x, rational x_max, pdd const& y, rational y_max) {
rational x_val, y_val;
auto& pddm = px.manager();
auto& pddm = x.manager();
unsigned bit_size = pddm.power_of_2();
rational bound = rational::power_of_two(bit_size);
VERIFY(s().try_eval(px, x_val));
VERIFY(s().try_eval(py, y_val));
VERIFY(s().try_eval(x, x_val));
VERIFY(s().try_eval(y, y_val));
SASSERT(x_val * y_val < bound);
rational x_lo = x_val, x_hi = x_max, y_lo = y_val, y_hi = y_max;
@ -118,40 +119,38 @@ namespace polysat {
SASSERT((x_lo + 1) * y_lo >= bound);
SASSERT(x_lo * (y_lo + 1) >= bound);
// inequalities are justified by current assignments to px, py
// inequalities are justified by current assignments to x, y
// conflict resolution should be able to pick up this as a valid justification.
// or we resort to the same extension as in the original mul_overflow code
// where we add explicit equality propagations from the current assignment.
auto c1 = s().m_constraints.ule(level, px, pddm.mk_val(x_lo));
auto c2 = s().m_constraints.ule(level, py, pddm.mk_val(y_lo));
reason.push(c1);
reason.push(c2);
auto c1 = s().m_constraints.ule(level, x, pddm.mk_val(x_lo));
auto c2 = s().m_constraints.ule(level, y, pddm.mk_val(y_lo));
reason.push(~c1);
reason.push(~c2);
}
// special case viable sets used by variables.
void inf_saturate::push_omega(clause_builder& reason, unsigned level, pdd const& px, pdd const& py) {
auto& pddm = px.manager();
// determine worst case upper bounds for x, y
// then extract premises for a non-worst-case bound.
void inf_saturate::push_omega(clause_builder& reason, unsigned level, pdd const& x, pdd const& y) {
auto& pddm = x.manager();
unsigned bit_size = pddm.power_of_2();
rational bound = rational::power_of_two(bit_size);
rational x_max = bound - 1;
rational y_max = bound - 1;
if (px.is_var() && py.is_var()) {
pvar x = px.var();
pvar y = py.var();
rational x_max = s().m_viable.max_viable(x);
rational y_max = s().m_viable.max_viable(y);
if (x.is_var())
x_max = s().m_viable.max_viable(x.var());
if (y.is_var())
y_max = s().m_viable.max_viable(y.var());
if (x_max * y_max < bound) {
// max values don't overflow, we can justify no-overflow using cjust for x, y
for (auto c : s().m_cjust[x])
reason.push(c);
for (auto c : s().m_cjust[y])
reason.push(c);
return;
}
else
push_omega_bisect(reason, level, px, x_max, py, y_max);
if (x_max * y_max >= bound)
push_omega_bisect(reason, level, x, x_max, y, y_max);
else {
for (auto c : s().m_cjust[y.var()])
reason.push(~c);
for (auto c : s().m_cjust[x.var()])
reason.push(~c);
}
push_omega_bisect(reason, level, px, bound - 1, py, bound-1);
}
/*
@ -188,34 +187,30 @@ namespace polysat {
return d.lhs == y && d.rhs == a * s().var(x);
}
/**
* Match [coeff*x] coeff*x*Y
*/
bool inf_saturate::is_coeffxY(pdd const& x, pdd const& p, pdd& y) {
pdd xy = x;
return x.is_unary() && p.try_div(x.hi().val(), xy) && xy.factor(x.var(), 1, y);
}
/**
* determine whether values of x * y is non-overflowing.
*/
bool inf_saturate::is_non_overflow(pdd const& x, pdd const& y) {
rational x_val, y_val;
if (!s().try_eval(x, x_val) || !s().try_eval(y, y_val))
return false;
auto& pddm = x.manager();
rational bound = rational::power_of_two(pddm.power_of_2());
return x_val * y_val < bound;
return s().try_eval(x, x_val) && s().try_eval(y, y_val) && x_val * y_val < bound;
}
/**
* Match [v] v*x <= z*x
* Match [v] v*x <= z*x with x a variable
*/
bool inf_saturate::is_Xy_l_XZ(pvar v, inequality const& c, pdd& x, pdd& z) {
if (!is_xY(v, c.lhs, x))
return false;
// TODO: in principle, 'x' could be any polynomial. However, we need to divide the lhs by x, and we don't have general polynomial division yet.
// so for now we just allow the form 'value*variable'.
// (extension to arbitrary monomials for 'x' should be fairly easy too)
if (!x.is_unary())
return false;
rational x_coeff = x.hi().val();
pdd xz = x;
return c.rhs.try_div(x_coeff, xz) && xz.factor(x.var(), 1, z);
return is_xY(v, c.lhs, x) && is_coeffxY(x, c.rhs, z);
}
bool inf_saturate::verify_Xy_l_XZ(pvar v, inequality const& c, pdd const& x, pdd const& z) {
@ -223,21 +218,10 @@ namespace polysat {
}
/**
* Match [z] yx <= zx
* Match [z] yx <= zx with x a variable
*/
bool inf_saturate::is_YX_l_zX(pvar z, inequality const& c, pdd& x, pdd& y) {
if (!is_xY(z, c.rhs, x))
return false;
// TODO: in principle, 'x' could be any polynomial. However, we need to divide the lhs by x, and we don't have general polynomial division yet.
// so for now we just allow the form 'value*variable'.
// (extension to arbitrary monomials for 'x' should be fairly easy too)
if (!x.is_unary())
return false;
unsigned x_var = x.var();
rational x_coeff = x.hi().val();
pdd xy = x;
return c.lhs.try_div(x_coeff, xy) && xy.factor(x_var, 1, y);
return is_xY(z, c.rhs, x) && is_coeffxY(x, c.lhs, y);
}
bool inf_saturate::verify_YX_l_zX(pvar z, inequality const& c, pdd const& x, pdd const& y) {
@ -275,15 +259,14 @@ namespace polysat {
unsigned const lvl = c.src->level();
clause_builder reason(s());
reason.push(c);
reason.push(~c.as_signed_constraint());
push_omega(reason, lvl, x, y);
return push_l(core, lvl, c.is_strict, y, z, reason);
return propagate(core, lvl, c.is_strict, y, z, reason);
}
/// [y] z' <= y /\ zx > yx ==> Ω*(x,y) \/ zx > z'x
/// [y] z' <= y /\ yx <= zx ==> Ω*(x,y) \/ z'x <= zx
bool inf_saturate::try_ugt_y(pvar v, conflict_core& core, inequality const& le_y, inequality const& yx_l_zx, pdd const& x, pdd const& z) {
LOG_H3("Try z' <= y && zx > yx where y := v" << v);
pdd const y = s().var(v);
SASSERT(is_l_v(v, le_y));
@ -295,11 +278,11 @@ namespace polysat {
pdd const& z_prime = le_y.lhs;
clause_builder reason(s());
reason.push(le_y);
reason.push(yx_l_zx);
reason.push(~le_y.as_signed_constraint());
reason.push(~yx_l_zx.as_signed_constraint());
push_omega(reason, lvl, x, y);
// z'x <= zx
return push_l(core, lvl, yx_l_zx.is_strict || le_y.is_strict, z_prime * x, z * x, reason);
return propagate(core, lvl, yx_l_zx.is_strict || le_y.is_strict, z_prime * x, z * x, reason);
}
bool inf_saturate::try_ugt_y(pvar v, conflict_core& core, inequality const& c) {
@ -321,7 +304,6 @@ namespace polysat {
bool inf_saturate::try_y_l_ax_and_x_l_z(pvar x, conflict_core& core, inequality const& c) {
if (!is_g_v(x, c))
return false;
pdd y = s().var(x);
pdd a = y;
for (auto dd : core) {
@ -341,10 +323,10 @@ namespace polysat {
return false;
unsigned const lvl = std::max(x_l_z.src->level(), y_l_ax.src->level());
clause_builder reason(s());
reason.push(x_l_z);
reason.push(y_l_ax);
reason.push(~x_l_z.as_signed_constraint());
reason.push(~y_l_ax.as_signed_constraint());
push_omega(reason, lvl, a, z);
return push_l(core, lvl, x_l_z.is_strict || y_l_ax.is_strict, y, a * z, reason);
return propagate(core, lvl, x_l_z.is_strict || y_l_ax.is_strict, y, a * z, reason);
}
@ -353,7 +335,6 @@ namespace polysat {
bool inf_saturate::try_ugt_z(pvar z, conflict_core& core, inequality const& c) {
if (!is_g_v(z, c))
return false;
pdd y = s().var(z);
pdd x = y;
for (auto dd : core) {
@ -372,11 +353,11 @@ namespace polysat {
if (!is_non_overflow(x, y_prime))
return false;
clause_builder reason(s());
reason.push(c);
reason.push(d);
reason.push(~c.as_signed_constraint());
reason.push(~d.as_signed_constraint());
push_omega(reason, lvl, x, y_prime);
// yx <= y'x
return push_l(core, lvl, c.is_strict || d.is_strict, y * x, y_prime * x, reason);
return propagate(core, lvl, c.is_strict || d.is_strict, y * x, y_prime * x, reason);
}

View file

@ -41,8 +41,8 @@ namespace polysat {
void push_omega(clause_builder& reason, unsigned level, pdd const& x, pdd const& y);
void push_omega_bisect(clause_builder& reason, unsigned level, pdd const& x, rational x_max, pdd const& y, rational y_max);
signed_constraint ineq(unsigned level, bool strict, pdd const& lhs, pdd const& rhs);
bool push_c(conflict_core& core, signed_constraint const& c, clause_builder& reason);
bool push_l(conflict_core& core, unsigned level, bool strict, pdd const& lhs, pdd const& rhs, clause_builder& reason);
bool propagate(conflict_core& core, signed_constraint& c, clause_builder& reason);
bool propagate(conflict_core& core, unsigned level, bool strict, pdd const& lhs, pdd const& rhs, clause_builder& reason);
bool try_ugt_x(pvar v, conflict_core& core, inequality const& c);
@ -86,6 +86,9 @@ namespace polysat {
// a * b does not overflow
bool is_non_overflow(pdd const& a, pdd const& b);
// p := coeff*x*y where coeff_x = coeff*x, x a variable
bool is_coeffxY(pdd const& coeff_x, pdd const& p, pdd& y);
public:
bool perform(pvar v, conflict_core& core) override;