3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 18:31:49 +00:00

reorganizing input

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2013-12-03 13:36:25 -08:00
parent 51704b7b95
commit 18815e3e53
8 changed files with 192 additions and 539 deletions

View file

@ -1,54 +0,0 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
objective_ast.h
Abstract:
Abstract data-type for compound objectives.
Author:
Anh-Dung Phan (t-anphan) 2013-11-26
Notes:
--*/
#include"objective_ast.h"
namespace opt {
objective* objective::mk_max(expr_ref& e) { return alloc(min_max_objective, MAXIMIZE, e); };
objective* objective::mk_min(expr_ref& e) { return alloc(min_max_objective, MINIMIZE, e); };
objective* objective::mk_maxsat(symbol id) { return alloc(maxsat_objective, id); };
objective* objective::mk_lex(unsigned sz, objective * const* children) {
return alloc(compound_objective, LEX, sz, children);
};
objective* objective::mk_box(unsigned sz, objective * const* children) {
return alloc(compound_objective, BOX, sz, children);
};
objective* objective::mk_pareto(unsigned sz, objective * const* children) {
return alloc(compound_objective, PARETO, sz, children);
};
compound_objective& objective::get_compound() {
SASSERT(m_type == LEX || m_type == BOX || m_type == PARETO);
return dynamic_cast<compound_objective&>(*this);
}
min_max_objective& objective::get_min_max() {
SASSERT(m_type == MAXIMIZE || m_type == MINIMIZE);
return dynamic_cast<min_max_objective&>(*this);
}
maxsat_objective& objective::get_maxsat() {
SASSERT(m_type == MAXSAT);
return dynamic_cast<maxsat_objective&>(*this);
}
};

View file

@ -1,108 +0,0 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
objective_ast.h
Abstract:
Abstract data-type for compound objectives.
Author:
Nikolaj Bjorner (nbjorner) 2013-11-21
Notes:
--*/
#ifndef __OBJECTIVE_AST_H_
#define __OBJECTIVE_AST_H_
#include"ast.h"
namespace opt {
enum objective_t {
MINIMIZE,
MAXIMIZE,
MAXSAT,
LEX,
BOX,
PARETO
};
class compound_objective;
class min_max_objective;
class maxsat_objective;
class objective {
objective_t m_type;
public:
objective(objective_t ty):
m_type(ty)
{}
virtual ~objective() {}
objective_t type() const { return m_type; }
// constructors;
static objective* mk_max(expr_ref& e);
static objective* mk_min(expr_ref& e);
static objective* mk_maxsat(symbol id);
static objective* mk_lex(unsigned sz, objective * const* children);
static objective* mk_box(unsigned sz, objective * const* children);
static objective* mk_pareto(unsigned sz, objective * const* children);
// accessors (implicit cast operations)
compound_objective& get_compound();
min_max_objective& get_min_max();
maxsat_objective& get_maxsat();
};
class compound_objective : public objective {
ptr_vector<objective> m_children;
public:
compound_objective(objective_t t, unsigned sz, objective * const* children):
objective(t),
m_children(sz, children) {}
virtual ~compound_objective() {
ptr_vector<objective>::iterator it = m_children.begin(), end = m_children.end();
for (; it != end; ++it) {
dealloc(*it);
}
}
objective *const* children() const { return m_children.c_ptr(); }
unsigned num_children() const { return m_children.size(); }
};
class min_max_objective : public objective {
bool m_is_max;
expr_ref m_expr;
public:
min_max_objective(bool is_max, expr_ref& e):
objective(is_max ? MAXIMIZE : MINIMIZE),
m_is_max(is_max),
m_expr(e) {}
virtual ~min_max_objective() {}
expr* term() { return m_expr; }
bool is_max() const { return m_is_max; }
};
class maxsat_objective : public objective {
symbol m_id;
public:
maxsat_objective(symbol const& id): objective(MAXSAT), m_id(id) {}
virtual ~maxsat_objective() {}
symbol const& get_id() const { return m_id; }
};
};
#endif

View file

@ -1,89 +0,0 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
objective_decl_plugin.cpp
Abstract:
Abstract data-type for compound objectives.
Author:
Nikolaj Bjorner (nbjorner) 2013-11-21
Notes:
--*/
#include "objective_decl_plugin.h"
namespace opt{
objective_decl_plugin::objective_decl_plugin() {}
objective_decl_plugin::~objective_decl_plugin() {}
sort * objective_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters) {
SASSERT(k == OBJECTIVE_SORT);
SASSERT(num_parameters == 0);
return m_manager->mk_sort(symbol("objective"), sort_info(get_family_id(), k));
}
symbol objective_decl_plugin::get_name(obj_kind k) const {
switch(k) {
case OP_MINIMIZE: return symbol("minimize");
case OP_MAXIMIZE: return symbol("maximize");
case OP_LEX: return symbol("lex");
case OP_BOX: return symbol("box");
case OP_PARETO: return symbol("pareto");
default:
UNREACHABLE();
return symbol();
}
}
func_decl * objective_decl_plugin::mk_func_decl(
decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range) {
SASSERT(num_parameters == 0);
symbol name = get_name(static_cast<obj_kind>(k));
func_decl_info info(get_family_id(), k, num_parameters, parameters);
range = mk_sort(OBJECTIVE_SORT, 0, 0);
return m_manager->mk_func_decl(name, arity, domain, range, info);
}
void objective_decl_plugin::get_op_names(svector<builtin_name> & op_names, symbol const & logic) {
if (logic == symbol::null) {
op_names.push_back(builtin_name(get_name(OP_MAXIMIZE).bare_str(), OP_MAXIMIZE));
op_names.push_back(builtin_name(get_name(OP_MINIMIZE).bare_str(), OP_MINIMIZE));
op_names.push_back(builtin_name(get_name(OP_LEX).bare_str(), OP_LEX));
op_names.push_back(builtin_name(get_name(OP_BOX).bare_str(), OP_BOX));
op_names.push_back(builtin_name(get_name(OP_PARETO).bare_str(), OP_PARETO));
}
}
objective_util::objective_util(ast_manager& m): m(m), m_fid(m.get_family_id("objective")) {}
app* objective_util::mk_max(expr_ref& e) {
expr* es[1] = { e };
return m.mk_app(m_fid, OP_MAXIMIZE, 0, 0, 1, es);
}
app* objective_util::mk_min(expr_ref& e) {
expr* es[1] = { e };
return m.mk_app(m_fid, OP_MINIMIZE, 0, 0, 1, es);
}
app* objective_util::mk_maxsat(symbol id) {
return m.mk_const(id, m.mk_sort(m_fid, OBJECTIVE_SORT, 0, 0));
}
app* objective_util::mk_lex(unsigned sz, expr * const * children) {
return m.mk_app(m_fid, OP_LEX, 0, 0, sz, children);
}
app* objective_util::mk_box(unsigned sz, expr * const * children) {
return m.mk_app(m_fid, OP_BOX, 0, 0, sz, children);
}
app* objective_util::mk_pareto(unsigned sz, expr * const * children) {
return m.mk_app(m_fid, OP_PARETO, 0, 0, sz, children);
}
}

View file

@ -1,71 +0,0 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
objective_decl_plugin.h
Abstract:
Abstract data-type for compound objectives.
Author:
Nikolaj Bjorner (nbjorner) 2013-11-21
Notes:
--*/
#ifndef __OBJECTIVE_DECL_PLUGIN_H_
#define __OBJECTIVE_DECL_PLUGIN_H_
#include"ast.h"
namespace opt {
enum obj_kind {
OP_MINIMIZE,
OP_MAXIMIZE,
OP_LEX,
OP_BOX,
OP_PARETO,
LAST_OBJ_OP
};
enum objective_sort_kind {
OBJECTIVE_SORT
};
class objective_decl_plugin : public decl_plugin {
public:
objective_decl_plugin();
virtual ~objective_decl_plugin();
virtual sort * mk_sort(decl_kind k, unsigned num_parameters, parameter const * parameters);
virtual decl_plugin * mk_fresh() { return alloc(objective_decl_plugin); }
virtual func_decl * mk_func_decl(decl_kind k, unsigned num_parameters, parameter const * parameters,
unsigned arity, sort * const * domain, sort * range);
virtual void get_op_names(svector<builtin_name> & op_names, symbol const & logic);
private:
symbol objective_decl_plugin::get_name(obj_kind k) const;
};
class objective_util {
ast_manager& m;
family_id m_fid;
public:
objective_util(ast_manager& m);
family_id get_family_id() const { return m_fid; }
app* mk_max(expr_ref& e);
app* mk_min(expr_ref& e);
app* mk_maxsat(symbol id);
app* mk_lex(unsigned sz, expr * const * children);
app* mk_box(unsigned sz, expr * const * children);
app* mk_pareto(unsigned sz, expr * const * children);
};
};
#endif

View file

@ -29,8 +29,6 @@ Notes:
#include "scoped_ctrl_c.h"
#include "scoped_timer.h"
#include "parametric_cmd.h"
#include "objective_ast.h"
#include "objective_decl_plugin.h"
class opt_context {
cmd_context& ctx;
@ -41,21 +39,10 @@ public:
opt_context(cmd_context& ctx): ctx(ctx) {}
opt::context& operator()() {
if (!m_opt) {
decl_plugin * p = alloc(opt::objective_decl_plugin);
ctx.register_plugin(symbol("objective"), p, true);
m_opt = alloc(opt::context, ctx.m());
}
return *m_opt;
}
bool contains(symbol const& s) const { return m_ids.contains(s); }
void insert(symbol const& s) { m_ids.insert(s); }
sort* obj_sort(cmd_context& ctx) {
return ctx.m().mk_sort(ctx.m().get_family_id(symbol("objective")), opt::OBJECTIVE_SORT);
}
}
};
@ -76,7 +63,6 @@ public:
{}
virtual ~assert_weighted_cmd() {
dealloc(&m_opt_ctx);
}
virtual void reset(cmd_context & ctx) {
@ -128,10 +114,81 @@ public:
virtual void execute(cmd_context & ctx) {
m_opt_ctx().add_soft_constraint(m_formula, m_weight, m_id);
if (!m_opt_ctx.contains(m_id)) {
ctx.insert(m_id, 0, ctx.m().mk_const(m_id, m_opt_ctx.obj_sort(ctx)));
m_opt_ctx.insert(m_id);
reset(ctx);
}
virtual void finalize(cmd_context & ctx) {
}
};
class assert_soft_cmd : public parametric_cmd {
opt_context& m_opt_ctx;
unsigned m_idx;
expr* m_formula;
public:
assert_soft_cmd(cmd_context& ctx, opt_context& opt_ctx):
parametric_cmd("assert-soft"),
m_opt_ctx(opt_ctx),
m_idx(0),
m_formula(0)
{}
virtual ~assert_soft_cmd() {
}
virtual void reset(cmd_context & ctx) {
m_idx = 0;
m_formula = 0;
}
virtual char const * get_usage() const { return "<formula> [:weight <rational-weight>] [:id <symbol>]"; }
virtual char const * get_main_descr() const { return "assert soft constraint with optional weight and identifier"; }
// command invocation
virtual void prepare(cmd_context & ctx) {}
virtual cmd_arg_kind next_arg_kind(cmd_context & ctx) const {
if (m_idx == 0) return CPK_EXPR;
return parametric_cmd::next_arg_kind(ctx);
}
virtual void init_pdescrs(cmd_context & ctx, param_descrs & p) {
p.insert("weight", CPK_UINT, "(default: 1) penalty of not satisfying constraint.");
p.insert("dweight", CPK_DOUBLE, "(default: 1.0) penalty as double of not satisfying constraint.");
p.insert("id", CPK_SYMBOL, "(default: null) partition identifier for soft constraints.");
}
virtual void set_next_arg(cmd_context & ctx, expr * t) {
SASSERT(m_idx == 0);
if (!ctx.m().is_bool(t)) {
throw cmd_exception("Invalid type for expression. Expected Boolean type.");
}
m_formula = t;
++m_idx;
}
virtual void failure_cleanup(cmd_context & ctx) {
reset(ctx);
}
virtual void execute(cmd_context & ctx) {
symbol w("weight");
rational weight = rational(ps().get_uint(symbol("weight"), 0));
if (weight.is_zero()) {
double d = ps().get_double(symbol("dweight"), 0.0);
if (d != 0.0) {
std::stringstream strm;
strm << d;
weight = rational(strm.str().c_str());
}
}
if (weight.is_zero()) {
weight = rational::one();
}
symbol id = ps().get_sym(symbol("id"), symbol::null);
m_opt_ctx().add_soft_constraint(m_formula, weight, id);
reset(ctx);
}
@ -183,6 +240,10 @@ public:
m_opt_ctx(opt_ctx)
{}
virtual ~optimize_cmd() {
dealloc(&m_opt_ctx);
}
virtual void init_pdescrs(cmd_context & ctx, param_descrs & p) {
insert_timeout(p);
insert_max_memory(p);
@ -263,6 +324,19 @@ private:
};
void install_opt_cmds(cmd_context & ctx) {
opt_context* opt_ctx = alloc(opt_context, ctx);
ctx.insert(alloc(assert_weighted_cmd, ctx, *opt_ctx));
ctx.insert(alloc(assert_soft_cmd, ctx, *opt_ctx));
ctx.insert(alloc(min_maximize_cmd, ctx, *opt_ctx, true));
ctx.insert(alloc(min_maximize_cmd, ctx, *opt_ctx, false));
ctx.insert(alloc(optimize_cmd, *opt_ctx));
}
#if 0
ctx.insert(alloc(execute_cmd, *opt_ctx));
class execute_cmd : public parametric_cmd {
protected:
expr * m_objective;
@ -365,108 +439,4 @@ private:
stats.display_smt2(ctx.regular_stream());
}
};
void install_opt_cmds(cmd_context & ctx) {
opt_context* opt_ctx = alloc(opt_context, ctx);
ctx.insert(alloc(assert_weighted_cmd, ctx, *opt_ctx));
ctx.insert(alloc(execute_cmd, *opt_ctx));
//ctx.insert(alloc(min_maximize_cmd, ctx, *opt_ctx, true));
//ctx.insert(alloc(min_maximize_cmd, ctx, *opt_ctx, false));
//ctx.insert(alloc(optimize_cmd, *opt_ctx));
}
#if 0
expr_ref sexpr2expr(cmd_context & ctx, sexpr& s) {
expr_ref result(ctx.m());
switch(s.get_kind()) {
case sexpr::COMPOSITE: {
sexpr& h = *s.get_child(0);
if (!h.is_symbol()) {
throw cmd_exception("invalid head symbol", s.get_line(), s.get_pos());
}
symbol sym = h.get_symbol();
expr_ref_vector args(ctx.m());
for (unsigned i = 1; i < s.get_num_children(); ++i) {
args.push_back(sexpr2expr(ctx, *s.get_child(i)));
}
ctx.mk_app(sym, args.size(), args.c_ptr(), 0, 0, 0, result);
return result;
}
case sexpr::NUMERAL:
case sexpr::BV_NUMERAL:
// TBD: handle numerals
case sexpr::STRING:
case sexpr::KEYWORD:
throw cmd_exception("non-supported expression", s.get_line(), s.get_pos());
case sexpr::SYMBOL:
ctx.mk_const(s.get_symbol(), result);
return result;
}
return result;
}
opt::objective_t get_objective_type(sexpr& s) {
if (!s.is_symbol())
throw cmd_exception("invalid objective, symbol expected", s.get_line(), s.get_pos());
symbol const & sym = s.get_symbol();
if (sym == symbol("maximize")) return opt::MAXIMIZE;
if (sym == symbol("minimize")) return opt::MINIMIZE;
if (sym == symbol("lex")) return opt::LEX;
if (sym == symbol("box")) return opt::BOX;
if (sym == symbol("pareto")) return opt::PARETO;
throw cmd_exception("invalid objective, unexpected input", s.get_line(), s.get_pos());
}
opt::objective* sexpr2objective(cmd_context & ctx, sexpr& s) {
if (s.is_symbol())
throw cmd_exception("invalid objective, more arguments expected ", s.get_symbol(), s.get_line(), s.get_pos());
if (s.is_composite()) {
sexpr * head = s.get_child(0);
opt::objective_t type = get_objective_type(*head);
switch(type) {
case opt::MAXIMIZE:
case opt::MINIMIZE: {
if (s.get_num_children() != 2)
throw cmd_exception("invalid objective, wrong number of arguments ", s.get_line(), s.get_pos());
sexpr * arg = s.get_child(1);
expr_ref term(sexpr2expr(ctx, *arg), ctx.m());
if (type == opt::MAXIMIZE)
return opt::objective::mk_max(term);
else
return opt::objective::mk_min(term);
}
case opt::MAXSAT: {
if (s.get_num_children() != 2)
throw cmd_exception("invalid objective, wrong number of arguments ", s.get_line(), s.get_pos());
sexpr * arg = s.get_child(1);
if (!arg->is_symbol())
throw cmd_exception("invalid objective, symbol expected", s.get_line(), s.get_pos());
symbol const & id = arg->get_symbol();
// TODO: check whether id is declared via assert-weighted
return opt::objective::mk_maxsat(id);
}
case opt::LEX:
case opt::BOX:
case opt::PARETO: {
if (s.get_num_children() <= 2)
throw cmd_exception("invalid objective, wrong number of arguments ", s.get_line(), s.get_pos());
unsigned num_children = s.get_num_children();
ptr_vector<opt::objective> args;
for (unsigned i = 1; i < num_children; i++)
args.push_back(sexpr2objective(ctx, *s.get_child(i)));
switch(type) {
case opt::LEX:
return opt::objective::mk_lex(args.size(), args.c_ptr());
case opt::BOX:
return opt::objective::mk_box(args.size(), args.c_ptr());
case opt::PARETO:
return opt::objective::mk_pareto(args.size(), args.c_ptr());
}
}
}
}
return 0;
}
#endif

View file

@ -27,9 +27,7 @@ namespace opt {
context::context(ast_manager& m):
m(m),
m_hard_constraints(m),
m_optsmt(m),
m_objs(m),
m_obj_util(m)
m_optsmt(m)
{
m_params.set_bool("model", true);
m_params.set_bool("unsat_core", true);
@ -48,35 +46,36 @@ namespace opt {
if (!m_maxsmts.find(id, ms)) {
ms = alloc(maxsmt, m);
m_maxsmts.insert(id, ms);
m_objectives.push_back(objective(m, id));
}
ms->add(f, w);
}
lbool context::execute(expr* _obj, bool committed) {
SASSERT(is_app(_obj));
app* obj = to_app(_obj);
void context::add_objective(app* t, bool is_max) {
app_ref tr(m);
m_objectives.push_back(objective(is_max, tr));
}
if (obj->get_family_id() == null_family_id) {
return execute_maxsat(obj, committed);
}
if (obj->get_family_id() != m_obj_util.get_family_id()) {
return execute_min_max(obj, committed, true);
lbool context::optimize() {
opt_solver& s = get_solver();
solver::scoped_push _sp(s);
for (unsigned i = 0; i < m_hard_constraints.size(); ++i) {
s.assert_expr(m_hard_constraints[i].get());
}
switch (obj->get_decl_kind()) {
case OP_MINIMIZE:
return execute_min_max(to_app(obj->get_arg(0)), committed, false);
case OP_MAXIMIZE:
return execute_min_max(to_app(obj->get_arg(0)), committed, true);
case OP_LEX:
return execute_lex(obj);
case OP_BOX:
return execute_box(obj);
case OP_PARETO:
return execute_pareto(obj);
default:
UNREACHABLE();
return l_undef;
if (m_objectives.size() == 1) {
return execute(m_objectives[0], false);
}
symbol pri = m_params.get_sym("priority", symbol("lex"));
if (pri == symbol("pareto")) {
return execute_pareto();
}
else if (pri == symbol("box")) {
return execute_box();
}
else {
return execute_lex();
}
}
@ -89,35 +88,44 @@ namespace opt {
}
lbool context::execute_maxsat(app* obj, bool committed) {
lbool context::execute_maxsat(symbol const& id, bool committed) {
maxsmt* ms;
VERIFY(m_maxsmts.find(obj->get_decl()->get_name(), ms));
VERIFY(m_maxsmts.find(id, ms));
lbool result = (*ms)(get_solver());
if (committed) ms->commit_assignment();
return result;
}
lbool context::execute(objective const& obj, bool committed) {
switch(obj.m_type) {
case O_MAXIMIZE: return execute_min_max(obj.m_term, committed, true);
case O_MINIMIZE: return execute_min_max(obj.m_term, committed, false);
case O_MAXSMT: return execute_maxsat(obj.m_id, committed);
default: UNREACHABLE(); return l_undef;
}
}
lbool context::execute_lex(app* obj) {
lbool context::execute_lex() {
lbool r = l_true;
for (unsigned i = 0; r == l_true && i < obj->get_num_args(); ++i) {
r = execute(obj->get_arg(i), true);
for (unsigned i = 0; r == l_true && i < m_objectives.size(); ++i) {
r = execute(m_objectives[i], true);
}
return r;
}
lbool context::execute_box(app* obj) {
lbool context::execute_box() {
lbool r = l_true;
for (unsigned i = 0; r == l_true && i < obj->get_num_args(); ++i) {
for (unsigned i = 0; r == l_true && i < m_objectives.size(); ++i) {
push();
r = execute(obj->get_arg(i), false);
r = execute(m_objectives[i], false);
pop(1);
}
return r;
}
lbool context::execute_pareto(app* obj) {
lbool context::execute_pareto() {
// TODO: record a stream of results from pareto front
return execute_lex(obj);
return execute_lex();
}
opt_solver& context::get_solver() {
@ -132,60 +140,42 @@ namespace opt {
get_solver().pop(sz);
}
lbool context::optimize(expr* objective) {
if (!objective) {
return optimize();
}
opt_solver& s = get_solver();
solver::scoped_push _sp(s);
for (unsigned i = 0; i < m_hard_constraints.size(); ++i) {
s.assert_expr(m_hard_constraints[i].get());
}
return execute(objective, false);
}
lbool context::optimize() {
// Construct objectives
expr_ref_vector objectives(m);
expr_ref objective(m);
map_t::iterator it = m_maxsmts.begin(), end = m_maxsmts.end();
for (; it != end; ++it) {
objectives.push_back(m_obj_util.mk_maxsat(it->m_key));
}
for (unsigned i = 0; i < m_objs.size(); ++i) {
expr_ref e(m_objs[i].get(), m);
app * o = m_ismaxs[i] ? m_obj_util.mk_max(e) : m_obj_util.mk_min(e);
objectives.push_back(o);
}
if (m_params.get_bool("pareto", false)) {
objective = m_obj_util.mk_pareto(objectives.size(), objectives.c_ptr());
}
else {
objective = m_obj_util.mk_box(objectives.size(), objectives.c_ptr());
}
return optimize(objective);
}
void context::display_assignment(std::ostream& out) {
map_t::iterator it = m_maxsmts.begin(), end = m_maxsmts.end();
for (; it != end; ++it) {
maxsmt* ms = it->m_value;
if (it->m_key != symbol::null) {
out << it->m_key << " : ";
for (unsigned i = 0; i < m_objectives.size(); ++i) {
objective const& obj = m_objectives[i];
switch(obj.m_type) {
case O_MAXSMT: {
symbol s = obj.m_id;
if (s != symbol::null) {
out << s << " : ";
}
maxsmt* ms = m_maxsmts.find(s);
out << ms->get_value() << "\n";
break;
}
default:
break;
}
out << ms->get_value() << "\n";
}
m_optsmt.display_assignment(out);
}
void context::display_range_assignment(std::ostream& out) {
map_t::iterator it = m_maxsmts.begin(), end = m_maxsmts.end();
for (; it != end; ++it) {
maxsmt* ms = it->m_value;
if (it->m_key != symbol::null) {
out << it->m_key << " : ";
for (unsigned i = 0; i < m_objectives.size(); ++i) {
objective const& obj = m_objectives[i];
switch(obj.m_type) {
case O_MAXSMT: {
symbol s = obj.m_id;
if (s != symbol::null) {
out << s << " : ";
}
maxsmt* ms = m_maxsmts.find(s);
out << "[" << ms->get_lower() << ":" << ms->get_upper() << "]\n";
break;
}
default:
break;
}
out << "[" << ms->get_lower() << ":" << ms->get_upper() << "]\n";
}
m_optsmt.display_range_assignment(out);
}

View file

@ -29,7 +29,6 @@ Notes:
#include "opt_solver.h"
#include "optsmt.h"
#include "maxsmt.h"
#include "objective_decl_plugin.h"
namespace opt {
@ -37,24 +36,40 @@ namespace opt {
class context {
typedef map<symbol, maxsmt*, symbol_hash_proc, symbol_eq_proc> map_t;
enum objective_t {
O_MAXIMIZE,
O_MINIMIZE,
O_MAXSMT
};
struct objective {
objective_t m_type;
app_ref m_term; // for maximize, minimize
symbol m_id; // for maxsmt
objective(bool is_max, app_ref& t):
m_type(is_max?O_MAXIMIZE:O_MINIMIZE),
m_term(t),
m_id()
{}
objective(ast_manager& m, symbol id):
m_type(O_MAXSMT),
m_term(m),
m_id(id)
{}
};
ast_manager& m;
expr_ref_vector m_hard_constraints;
ref<opt_solver> m_solver;
params_ref m_params;
optsmt m_optsmt;
optsmt m_optsmt;
map_t m_maxsmts;
expr_ref_vector m_objs;
svector<bool> m_ismaxs;
objective_util m_obj_util;
vector<objective> m_objectives;
public:
context(ast_manager& m);
~context();
void add_soft_constraint(expr* f, rational const& w, symbol const& id);
void add_objective(app* t, bool is_max) { m_objs.push_back(t); m_ismaxs.push_back(is_max); }
void add_objective(app* t, bool is_max);
void add_hard_constraint(expr* f) { m_hard_constraints.push_back(f); }
lbool optimize(expr* objective);
lbool optimize();
void set_cancel(bool f);
@ -68,12 +83,12 @@ namespace opt {
private:
void validate_feasibility(maxsmt& ms);
lbool execute(expr* obj, bool committed);
lbool execute(objective const& obj, bool committed);
lbool execute_min_max(app* obj, bool committed, bool is_max);
lbool execute_maxsat(app* obj, bool committed);
lbool execute_lex(app* obj);
lbool execute_box(app* obj);
lbool execute_pareto(app* obj);
lbool execute_maxsat(symbol const& s, bool committed);
lbool execute_lex();
lbool execute_box();
lbool execute_pareto();
void push();
void pop(unsigned sz);

View file

@ -4,7 +4,7 @@ def_module_params('opt',
params=(('timeout', UINT, UINT_MAX, 'set timeout'),
('engine', SYMBOL, 'basic', "select optimization engine: 'basic', 'farkas', 'symba'"),
('maxsat_engine', SYMBOL, 'fu_malik', "select engine for non-weighted maxsat: 'fu_malik', 'core_maxsat'"),
('pareto', BOOL, False, 'return a Pareto front (as opposed to a bounding box)'),
('priority', SYMBOL, 'lex', "select how to priortize objectives: 'lex' (lexicographic), 'pareto', or 'box'"),
('dump_benchmarks', BOOL, False, 'dump benchmarks for profiling'),
('debug_conflict', BOOL, False, 'debug conflict resolution'),
))