3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 17:15:31 +00:00

Extract helper for refining intervals

This commit is contained in:
Jakob Rath 2023-11-06 10:51:04 +01:00
parent ec64b93edb
commit 17d9888d37
5 changed files with 266 additions and 208 deletions

View file

@ -17,6 +17,7 @@ z3_add_component(polysat
naming.cpp
op_constraint.cpp
polysat_ast.cpp
refine.cpp
restart.cpp
saturation.cpp
search_state.cpp

213
src/math/polysat/refine.cpp Normal file
View file

@ -0,0 +1,213 @@
/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
helpers for refining intervals
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-06
Notes:
--*/
#include "util/debug.h"
#include "math/polysat/refine.h"
#include "math/polysat/number.h"
namespace {
rational div_floor(rational const& a, rational const& b) {
return floor(a / b);
}
rational div_ceil(rational const& a, rational const& b) {
return ceil(a / b);
}
}
namespace polysat {
rational refine_equal::compute_y_max(rational const& y0, rational const& a, rational const& lo0, rational const& hi, rational const& M) {
// verbose_stream() << "y0=" << y0 << " a=" << a << " lo0=" << lo0 << " hi=" << hi << " M=" << M << std::endl;
// SASSERT(0 <= y0 && y0 < M); // not required
SASSERT(1 <= a && a < M);
SASSERT(0 <= lo0 && lo0 < M);
SASSERT(0 <= hi && hi < M);
if (lo0 <= hi) {
SASSERT(lo0 <= mod(a*y0, M) && mod(a*y0, M) <= hi);
}
else {
SASSERT(mod(a*y0, M) <= hi || mod(a*y0, M) >= lo0);
}
// wrapping intervals are handled by replacing the lower bound lo by lo - M
rational const lo = lo0 > hi ? (lo0 - M) : lo0;
// the length of the interval is now hi - lo + 1.
// full intervals shouldn't go through this computation.
SASSERT(hi - lo + 1 < M);
auto contained = [&lo, &hi] (rational const& a_y) -> bool {
return lo <= a_y && a_y <= hi;
};
auto delta_h = [&a, &lo, &hi] (rational const& a_y) -> rational {
SASSERT(lo <= a_y && a_y <= hi);
(void)lo; // avoid warning in release mode
return div_floor(hi - a_y, a);
};
// minimal k such that lo <= a*y0 + k*M
rational const k = div_ceil(lo - a * y0, M);
rational const kM = k*M;
rational const a_y0 = a*y0 + kM;
SASSERT(contained(a_y0));
// maximal y for [lo;hi]-interval around a*y0
// rational const y0h = y0 + div_floor(hi - a_y0, a);
rational const delta0 = delta_h(a_y0);
rational const y0h = y0 + delta0;
rational const a_y0h = a_y0 + a*delta0;
SASSERT(y0 <= y0h);
SASSERT(contained(a_y0h));
// Check the first [lo;hi]-interval after a*y0
rational const y1l = y0h + 1;
rational const a_y1l = a_y0h + a - M;
if (!contained(a_y1l))
return y0h;
rational const delta1 = delta_h(a_y1l);
rational const y1h = y1l + delta1;
rational const a_y1h = a_y1l + a*delta1;
SASSERT(y1l <= y1h);
SASSERT(contained(a_y1h));
// Check the second [lo;hi]-interval after a*y0
rational const y2l = y1h + 1;
rational const a_y2l = a_y1h + a - M;
if (!contained(a_y2l))
return y1h;
SASSERT(contained(a_y2l));
// At this point, [y1l;y1h] must be a full y-interval that can be extended to the right.
// Extending the interval can only be possible if the part not covered by [lo;hi] is smaller than the coefficient a.
// The size of the gap is (lo + M) - (hi + 1).
SASSERT(lo + M - hi - 1 < a);
// The points a*[y0l;y0h] + k*M fall into the interval [lo;hi].
// After the first overflow, the points a*[y1l .. y1h] + (k - 1)*M fall into [lo;hi].
// With each overflow, these points drift by some offset alpha.
rational const step = y1h - y0h;
rational const alpha = a * step - M;
if (alpha == 0) {
// the points do not drift after overflow
// => y_max is infinite
return y0 + M;
}
rational const i =
alpha < 0
// alpha < 0:
// With each overflow to the right, the points drift to the left.
// We can continue overflowing while a * yil >= lo, where yil = y1l + i * step.
? div_floor(lo - a_y1l, alpha)
// alpha > 0:
// With each overflow to the right, the points drift to the right.
// We can continue overflowing while a * yih <= hi, where yih = y1h + i * step.
: div_floor(hi - a_y1h, alpha);
// i is the number of overflows to the right
SASSERT(i >= 0);
// a * [yil;yih] is the right-most y-interval that is completely in [lo;hi].
rational const yih = y1h + i * step;
rational const a_yih = a_y1h + i * alpha;
SASSERT_EQ(a_yih, a*yih + (k - i - 1)*M);
SASSERT(contained(a_yih));
// The next interval to the right may contain a few more values if alpha > 0
// (because only the upper end moved out of the interval)
rational const y_next = yih + 1;
rational const a_y_next = a_yih + a - M;
if (contained(a_y_next))
return y_next + delta_h(a_y_next);
else
return yih;
}
rational refine_equal::compute_y_min(rational const& y0, rational const& a, rational const& lo, rational const& hi, rational const& M) {
// verbose_stream() << "y0=" << y0 << " a=" << a << " lo=" << lo << " hi=" << hi << " M=" << M << std::endl;
// SASSERT(0 <= y0 && y0 < M); // not required
SASSERT(1 <= a && a < M);
SASSERT(0 <= lo && lo < M);
SASSERT(0 <= hi && hi < M);
auto const negateM = [&M] (rational const& x) -> rational {
if (x.is_zero())
return x;
else
return M - x;
};
rational y_min = -compute_y_max(-y0, a, negateM(hi), negateM(lo), M);
while (y_min > y0)
y_min -= M;
return y_min;
}
std::pair<rational, rational> refine_equal::compute_y_bounds(rational const& y0, rational const& a, rational const& lo, rational const& hi, rational const& M) {
// verbose_stream() << "y0=" << y0 << " a=" << a << " lo=" << lo << " hi=" << hi << " M=" << M << std::endl;
SASSERT(0 <= y0 && y0 < M);
SASSERT(1 <= a && a < M);
SASSERT(0 <= lo && lo < M);
SASSERT(0 <= hi && hi < M);
auto const is_valid = [&] (rational const& y) -> bool {
rational const a_y = mod(a * y, M);
if (lo <= hi)
return lo <= a_y && a_y <= hi;
else
return a_y <= hi || lo <= a_y;
};
unsigned const max_refinements = 100;
unsigned i = 0;
rational const y_max_max = y0 + M - 1;
rational y_max = compute_y_max(y0, a, lo, hi, M);
while (y_max < y_max_max && is_valid(y_max + 1)) {
y_max = compute_y_max(y_max + 1, a, lo, hi, M);
if (++i == max_refinements) {
// verbose_stream() << "y0=" << y0 << ", a=" << a << ", lo=" << lo << ", hi=" << hi << "\n";
// verbose_stream() << "refined y_max: " << y_max << "\n";
break;
}
}
i = 0;
rational const y_min_min = y_max - M + 1;
rational y_min = y0;
while (y_min > y_min_min && is_valid(y_min - 1)) {
y_min = compute_y_min(y_min - 1, a, lo, hi, M);
if (++i == max_refinements) {
// verbose_stream() << "y0=" << y0 << ", a=" << a << ", lo=" << lo << ", hi=" << hi << "\n";
// verbose_stream() << "refined y_min: " << y_min << "\n";
break;
}
}
SASSERT(y_min <= y0 && y0 <= y_max);
rational const len = y_max - y_min + 1;
if (len >= M)
// full
return { rational::zero(), M - 1 };
else
return { mod(y_min, M), mod(y_max, M) };
}
}

46
src/math/polysat/refine.h Normal file
View file

@ -0,0 +1,46 @@
/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
helpers for refining intervals
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-06
--*/
#pragma once
#include "math/polysat/types.h"
namespace polysat {
namespace refine_equal {
/**
* Given a*y0 mod M \in [lo;hi], try to find the largest y_max >= y0 such that for all y \in [y0;y_max] . a*y mod M \in [lo;hi].
* Result may not be optimal.
* NOTE: upper bound is inclusive.
*/
rational compute_y_max(rational const& y0, rational const& a, rational const& lo0, rational const& hi, rational const& M);
/**
* Given a*y0 mod M \in [lo;hi], try to find the smallest y_min <= y0 such that for all y \in [y_min;y0] . a*y mod M \in [lo;hi].
* Result may not be optimal.
* NOTE: upper bound is inclusive.
*/
rational compute_y_min(rational const& y0, rational const& a, rational const& lo, rational const& hi, rational const& M);
/**
* Given a*y0 mod M \in [lo;hi],
* find the largest interval [y_min;y_max] around y0 such that for all y \in [y_min;y_max] . a*y mod M \in [lo;hi].
* Result may not be optimal.
* NOTE: upper bounds are inclusive.
*/
std::pair<rational, rational> compute_y_bounds(rational const& y0, rational const& a, rational const& lo, rational const& hi, rational const& M);
}
}

View file

@ -30,6 +30,7 @@ TODO: plan to fix the FI "pumping":
#include "util/debug.h"
#include "math/polysat/viable.h"
#include "math/polysat/refine.h"
#include "math/polysat/solver.h"
#include "math/polysat/number.h"
@ -368,211 +369,6 @@ namespace polysat {
return refine_bits<FORWARD>(v, val, fbi) && refine_equal_lin(v, val) && refine_disequal_lin(v, val);
}
namespace {
rational div_floor(rational const& a, rational const& b) {
return floor(a / b);
}
rational div_ceil(rational const& a, rational const& b) {
return ceil(a / b);
}
/**
* Given a*y0 mod M \in [lo;hi], try to find the largest y_max >= y0 such that for all y \in [y0;y_max] . a*y mod M \in [lo;hi].
* Result may not be optimal.
* NOTE: upper bound is inclusive.
*/
rational compute_y_max(rational const& y0, rational const& a, rational const& lo0, rational const& hi, rational const& M) {
// verbose_stream() << "y0=" << y0 << " a=" << a << " lo0=" << lo0 << " hi=" << hi << " M=" << M << std::endl;
// SASSERT(0 <= y0 && y0 < M); // not required
SASSERT(1 <= a && a < M);
SASSERT(0 <= lo0 && lo0 < M);
SASSERT(0 <= hi && hi < M);
if (lo0 <= hi) {
SASSERT(lo0 <= mod(a*y0, M) && mod(a*y0, M) <= hi);
}
else {
SASSERT(mod(a*y0, M) <= hi || mod(a*y0, M) >= lo0);
}
// wrapping intervals are handled by replacing the lower bound lo by lo - M
rational const lo = lo0 > hi ? (lo0 - M) : lo0;
// the length of the interval is now hi - lo + 1.
// full intervals shouldn't go through this computation.
SASSERT(hi - lo + 1 < M);
auto contained = [&lo, &hi] (rational const& a_y) -> bool {
return lo <= a_y && a_y <= hi;
};
auto delta_h = [&a, &lo, &hi] (rational const& a_y) -> rational {
SASSERT(lo <= a_y && a_y <= hi);
(void)lo; // avoid warning in release mode
return div_floor(hi - a_y, a);
};
// minimal k such that lo <= a*y0 + k*M
rational const k = div_ceil(lo - a * y0, M);
rational const kM = k*M;
rational const a_y0 = a*y0 + kM;
SASSERT(contained(a_y0));
// maximal y for [lo;hi]-interval around a*y0
// rational const y0h = y0 + div_floor(hi - a_y0, a);
rational const delta0 = delta_h(a_y0);
rational const y0h = y0 + delta0;
rational const a_y0h = a_y0 + a*delta0;
SASSERT(y0 <= y0h);
SASSERT(contained(a_y0h));
// Check the first [lo;hi]-interval after a*y0
rational const y1l = y0h + 1;
rational const a_y1l = a_y0h + a - M;
if (!contained(a_y1l))
return y0h;
rational const delta1 = delta_h(a_y1l);
rational const y1h = y1l + delta1;
rational const a_y1h = a_y1l + a*delta1;
SASSERT(y1l <= y1h);
SASSERT(contained(a_y1h));
// Check the second [lo;hi]-interval after a*y0
rational const y2l = y1h + 1;
rational const a_y2l = a_y1h + a - M;
if (!contained(a_y2l))
return y1h;
SASSERT(contained(a_y2l));
// At this point, [y1l;y1h] must be a full y-interval that can be extended to the right.
// Extending the interval can only be possible if the part not covered by [lo;hi] is smaller than the coefficient a.
// The size of the gap is (lo + M) - (hi + 1).
SASSERT(lo + M - hi - 1 < a);
// The points a*[y0l;y0h] + k*M fall into the interval [lo;hi].
// After the first overflow, the points a*[y1l .. y1h] + (k - 1)*M fall into [lo;hi].
// With each overflow, these points drift by some offset alpha.
rational const step = y1h - y0h;
rational const alpha = a * step - M;
if (alpha == 0) {
// the points do not drift after overflow
// => y_max is infinite
return y0 + M;
}
rational const i =
alpha < 0
// alpha < 0:
// With each overflow to the right, the points drift to the left.
// We can continue overflowing while a * yil >= lo, where yil = y1l + i * step.
? div_floor(lo - a_y1l, alpha)
// alpha > 0:
// With each overflow to the right, the points drift to the right.
// We can continue overflowing while a * yih <= hi, where yih = y1h + i * step.
: div_floor(hi - a_y1h, alpha);
// i is the number of overflows to the right
SASSERT(i >= 0);
// a * [yil;yih] is the right-most y-interval that is completely in [lo;hi].
rational const yih = y1h + i * step;
rational const a_yih = a_y1h + i * alpha;
SASSERT_EQ(a_yih, a*yih + (k - i - 1)*M);
SASSERT(contained(a_yih));
// The next interval to the right may contain a few more values if alpha > 0
// (because only the upper end moved out of the interval)
rational const y_next = yih + 1;
rational const a_y_next = a_yih + a - M;
if (contained(a_y_next))
return y_next + delta_h(a_y_next);
else
return yih;
}
/**
* Given a*y0 mod M \in [lo;hi], try to find the smallest y_min <= y0 such that for all y \in [y_min;y0] . a*y mod M \in [lo;hi].
* Result may not be optimal.
* NOTE: upper bound is inclusive.
*/
rational compute_y_min(rational const& y0, rational const& a, rational const& lo, rational const& hi, rational const& M) {
// verbose_stream() << "y0=" << y0 << " a=" << a << " lo=" << lo << " hi=" << hi << " M=" << M << std::endl;
// SASSERT(0 <= y0 && y0 < M); // not required
SASSERT(1 <= a && a < M);
SASSERT(0 <= lo && lo < M);
SASSERT(0 <= hi && hi < M);
auto const negateM = [&M] (rational const& x) -> rational {
if (x.is_zero())
return x;
else
return M - x;
};
rational y_min = -compute_y_max(-y0, a, negateM(hi), negateM(lo), M);
while (y_min > y0)
y_min -= M;
return y_min;
}
/**
* Given a*y0 mod M \in [lo;hi],
* find the largest interval [y_min;y_max] around y0 such that for all y \in [y_min;y_max] . a*y mod M \in [lo;hi].
* Result may not be optimal.
* NOTE: upper bounds are inclusive.
*/
std::pair<rational, rational> compute_y_bounds(rational const& y0, rational const& a, rational const& lo, rational const& hi, rational const& M) {
// verbose_stream() << "y0=" << y0 << " a=" << a << " lo=" << lo << " hi=" << hi << " M=" << M << std::endl;
SASSERT(0 <= y0 && y0 < M);
SASSERT(1 <= a && a < M);
SASSERT(0 <= lo && lo < M);
SASSERT(0 <= hi && hi < M);
auto const is_valid = [&] (rational const& y) -> bool {
rational const a_y = mod(a * y, M);
if (lo <= hi)
return lo <= a_y && a_y <= hi;
else
return a_y <= hi || lo <= a_y;
};
unsigned const max_refinements = 100;
unsigned i = 0;
rational const y_max_max = y0 + M - 1;
rational y_max = compute_y_max(y0, a, lo, hi, M);
while (y_max < y_max_max && is_valid(y_max + 1)) {
y_max = compute_y_max(y_max + 1, a, lo, hi, M);
if (++i == max_refinements) {
// verbose_stream() << "y0=" << y0 << ", a=" << a << ", lo=" << lo << ", hi=" << hi << "\n";
// verbose_stream() << "refined y_max: " << y_max << "\n";
break;
}
}
i = 0;
rational const y_min_min = y_max - M + 1;
rational y_min = y0;
while (y_min > y_min_min && is_valid(y_min - 1)) {
y_min = compute_y_min(y_min - 1, a, lo, hi, M);
if (++i == max_refinements) {
// verbose_stream() << "y0=" << y0 << ", a=" << a << ", lo=" << lo << ", hi=" << hi << "\n";
// verbose_stream() << "refined y_min: " << y_min << "\n";
break;
}
}
SASSERT(y_min <= y0 && y0 <= y_max);
rational const len = y_max - y_min + 1;
if (len >= M)
// full
return { rational::zero(), M - 1 };
else
return { mod(y_min, M), mod(y_max, M) };
}
}
template<bool FORWARD>
bool viable::refine_bits(pvar v, rational const& val, fixed_bits_info const& fbi) {
@ -717,9 +513,13 @@ namespace {
// TODO: special handling for the even factors of e->coeff = 2^k * a', a' odd
// (create one interval for v[N-k:] instead of 2^k intervals for v)
// TODO: often, the intervals alternate between short forbidden and short allowed intervals.
// we should be able to handle this similarly to compute_y_bounds,
// and be able to represent such periodic intervals (inside safe bounds).
//
// compute_y_bounds calculates with inclusive upper bound, so we need to adjust argument and result accordingly.
rational const hi_val_incl = e->interval.hi_val().is_zero() ? max_value : (e->interval.hi_val() - 1);
auto [lo, hi] = compute_y_bounds(val, e->coeff, e->interval.lo_val(), hi_val_incl, mod_value);
auto [lo, hi] = refine_equal::compute_y_bounds(val, e->coeff, e->interval.lo_val(), hi_val_incl, mod_value);
hi += 1;
LOG("refined to [" << num_pp(s, v, lo) << ", " << num_pp(s, v, hi) << "[");
// verbose_stream() << "lo=" << lo << " val=" << val << " hi=" << hi << "\n";

View file

@ -16,8 +16,6 @@ Author:
--*/
#pragma once
#include <limits>
#include "util/dlist.h"
#include "util/map.h"
#include "util/small_object_allocator.h"