3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-04 16:44:07 +00:00

change a comment

This commit is contained in:
Lev Nachmanson 2025-03-24 15:29:19 -10:00
parent 8bbe752d7d
commit 17bd02d1a3

View file

@ -1693,20 +1693,20 @@ namespace lp {
TRACE("dio",
tout << "current " << (is_upper? "upper":"lower") << " bound for x" << j << ":"
<< rs << std::endl;);
mpq rs_mod_g = (rs - m_c) % g;
if (rs_mod_g.is_neg()) {
rs_mod_g += g;
mpq rs_g = (rs - m_c) % g;
if (rs_g.is_neg()) {
rs_g += g;
}
if (! (!rs_mod_g.is_neg() && rs_mod_g.is_int())) {
if (! (!rs_g.is_neg() && rs_g.is_int())) {
std::cout << "rs:" << rs << "\n";
std::cout << "m_c:" << m_c << "\n";
std::cout << "g:" << g << "\n";
std::cout << "rs_mod_g:" << rs_mod_g << "\n";
std::cout << "rs_g:" << rs_g << "\n";
}
SASSERT(rs_mod_g.is_int());
TRACE("dio", tout << "(rs - m_c) % g:" << rs_mod_g << std::endl;);
if (!rs_mod_g.is_zero()) {
if (tighten_bound_kind(g, j, rs, rs_mod_g, is_upper))
SASSERT(rs_g.is_int());
TRACE("dio", tout << "(rs - m_c) % g:" << rs_g << std::endl;);
if (!rs_g.is_zero()) {
if (tighten_bound_kind(g, j, rs, rs_g, is_upper))
return lia_move::conflict;
} else {
TRACE("dio", tout << "no improvement in the bound\n";);
@ -1716,25 +1716,31 @@ namespace lp {
}
// returns true only on a conflict
bool tighten_bound_kind(const mpq& g, unsigned j, const mpq& rs, const mpq& rs_mod_g, bool upper) {
// Assume:
// rs_mod_g := (rs - m_c) % g
// rs_mod_g != 0
//
// In case of an upper bound we have
// xj = t = g*t_+ m_c <= rs, also, by definition of rs_mod_g, for some integer k holds rs - m_c = k*g + rs_mod_g.
// Then g*t_ <= rs - mc = k*g + rs_mod_g => g*t_ <= k*g = rs - m_c - rs_mod_g.
// Adding m_c to both parts gets us
// xj = g*t_ + m_c <= rs - rs_mod_g
bool tighten_bound_kind(const mpq& g, unsigned j, const mpq& rs, const mpq& rs_g, bool upper) {
/*
Variable j corresponds to term t = lra.get_term(j).
At this point we substituted some variables of t with the equivalent terms in S and the equivalent expressions containing fresh variables: t = sum{a_i * x_i: i in K} + sum{b_i * x_i: i in P }, where P and K are disjoint sets, a_i % g = 0 for each i in K, and x_i is a fixed variable for each i in P.
In the notations of the program:
m_espace corresponds to sum{a_i * x_i: i in K},
m_c is the value of sum{b_i * x_i: i in P},
open_ml(m_lspace) gives sum{a_i*x_i: i in K} + {b_i * x_i: i in P}.
We can rewrite t = g*t_ + m_c, where t_ = sum{(a_i/g)*x_i: i in K}.
Let us suppose that upper is true and rs is an upper bound of variable j, or t = g*t_ + m_c <= rs.
Parameter rs_g is defined as (rs - m_c) % g. Notice that rs_g does not change when m_c changes by a multiple of g. We also know that rs_g > 0. For some integer k we have rs - m_c = k*g + rs_g.
Starting with g*t_ + m_c <= rs, we proceed to g*t_ <= rs - m_c = k*g + rs_g. We can discard rs_g on the right: g*t_ <= k*g = rs - m_c - rs_g. Adding m_c to both sides gives us g*t_ + m_c <= rs - rs_g, or t <= rs - rs_g.
// In case of a lower bound we have
// xj = t = g*t_+ m_c >= rs, also, by definition fo rs_mod_g, for some integer k holds rs - m_c = k*g + rs_mod_g.
// Then g*t_ >= rs - mc = k*g + rs_mod_g => g*t_ >= k*g = rs - m_c + g - rs_mod_g.
// Adding m_c to both parts gets us
// xj = g*t_ + m_c >= rs + g - rs_mod_g
In case of a lower bound we have
t = g*t_+ m_c >= rs
Then g*t_ >= rs - m_c = k*g + rs_g => g*t_ >= k*g + g.
Adding m_c to both sides gets us
g*t_ + m_c >= k*g + g + m_c = rs - m_c - rs_g + g + m_c = rs + (g - rs_g).
Each fixed variable i in P such that b_i is divisible by g can be moved from P to K.
Then we apply all arguments above, and get the same result, since m_c changes by a multiple of g.
*/
mpq bound = upper ? rs - rs_mod_g : rs + g - rs_mod_g;
mpq bound = upper ? rs - rs_g : rs + g - rs_g;
TRACE("dio", tout << "is upper:" << upper << std::endl;
tout << "new " << (upper ? "upper" : "lower") << " bound:" << bound << std::endl;);
@ -1755,7 +1761,7 @@ namespace lp {
if (p.coeff().is_int() && (p.coeff() % g).is_zero()) {
// we can skip this dependency
// because the monomial p.coeff()*p.var() is 0 modulo g, and it does not matter that p.var() is fixed.
// We could have added p.coeff()*p.var() to t_, substructed the value of p.coeff()*p.var() from m_c and
// We could have added p.coeff()*p.var() to g*t_, substructed the value of p.coeff()*p.var() from m_c and
// still get the same result.
TRACE("dio", tout << "skipped dep:\n"; print_deps(tout, lra.get_bound_constraint_witnesses_for_column(p.var())););
continue;