mirror of
https://github.com/Z3Prover/z3
synced 2025-04-04 16:44:07 +00:00
change a comment
This commit is contained in:
parent
8bbe752d7d
commit
17bd02d1a3
|
@ -1693,20 +1693,20 @@ namespace lp {
|
|||
TRACE("dio",
|
||||
tout << "current " << (is_upper? "upper":"lower") << " bound for x" << j << ":"
|
||||
<< rs << std::endl;);
|
||||
mpq rs_mod_g = (rs - m_c) % g;
|
||||
if (rs_mod_g.is_neg()) {
|
||||
rs_mod_g += g;
|
||||
mpq rs_g = (rs - m_c) % g;
|
||||
if (rs_g.is_neg()) {
|
||||
rs_g += g;
|
||||
}
|
||||
if (! (!rs_mod_g.is_neg() && rs_mod_g.is_int())) {
|
||||
if (! (!rs_g.is_neg() && rs_g.is_int())) {
|
||||
std::cout << "rs:" << rs << "\n";
|
||||
std::cout << "m_c:" << m_c << "\n";
|
||||
std::cout << "g:" << g << "\n";
|
||||
std::cout << "rs_mod_g:" << rs_mod_g << "\n";
|
||||
std::cout << "rs_g:" << rs_g << "\n";
|
||||
}
|
||||
SASSERT(rs_mod_g.is_int());
|
||||
TRACE("dio", tout << "(rs - m_c) % g:" << rs_mod_g << std::endl;);
|
||||
if (!rs_mod_g.is_zero()) {
|
||||
if (tighten_bound_kind(g, j, rs, rs_mod_g, is_upper))
|
||||
SASSERT(rs_g.is_int());
|
||||
TRACE("dio", tout << "(rs - m_c) % g:" << rs_g << std::endl;);
|
||||
if (!rs_g.is_zero()) {
|
||||
if (tighten_bound_kind(g, j, rs, rs_g, is_upper))
|
||||
return lia_move::conflict;
|
||||
} else {
|
||||
TRACE("dio", tout << "no improvement in the bound\n";);
|
||||
|
@ -1716,25 +1716,31 @@ namespace lp {
|
|||
}
|
||||
|
||||
// returns true only on a conflict
|
||||
bool tighten_bound_kind(const mpq& g, unsigned j, const mpq& rs, const mpq& rs_mod_g, bool upper) {
|
||||
// Assume:
|
||||
// rs_mod_g := (rs - m_c) % g
|
||||
// rs_mod_g != 0
|
||||
//
|
||||
// In case of an upper bound we have
|
||||
// xj = t = g*t_+ m_c <= rs, also, by definition of rs_mod_g, for some integer k holds rs - m_c = k*g + rs_mod_g.
|
||||
// Then g*t_ <= rs - mc = k*g + rs_mod_g => g*t_ <= k*g = rs - m_c - rs_mod_g.
|
||||
// Adding m_c to both parts gets us
|
||||
// xj = g*t_ + m_c <= rs - rs_mod_g
|
||||
bool tighten_bound_kind(const mpq& g, unsigned j, const mpq& rs, const mpq& rs_g, bool upper) {
|
||||
/*
|
||||
Variable j corresponds to term t = lra.get_term(j).
|
||||
At this point we substituted some variables of t with the equivalent terms in S and the equivalent expressions containing fresh variables: t = sum{a_i * x_i: i in K} + sum{b_i * x_i: i in P }, where P and K are disjoint sets, a_i % g = 0 for each i in K, and x_i is a fixed variable for each i in P.
|
||||
In the notations of the program:
|
||||
m_espace corresponds to sum{a_i * x_i: i in K},
|
||||
m_c is the value of sum{b_i * x_i: i in P},
|
||||
open_ml(m_lspace) gives sum{a_i*x_i: i in K} + {b_i * x_i: i in P}.
|
||||
We can rewrite t = g*t_ + m_c, where t_ = sum{(a_i/g)*x_i: i in K}.
|
||||
Let us suppose that upper is true and rs is an upper bound of variable j, or t = g*t_ + m_c <= rs.
|
||||
Parameter rs_g is defined as (rs - m_c) % g. Notice that rs_g does not change when m_c changes by a multiple of g. We also know that rs_g > 0. For some integer k we have rs - m_c = k*g + rs_g.
|
||||
Starting with g*t_ + m_c <= rs, we proceed to g*t_ <= rs - m_c = k*g + rs_g. We can discard rs_g on the right: g*t_ <= k*g = rs - m_c - rs_g. Adding m_c to both sides gives us g*t_ + m_c <= rs - rs_g, or t <= rs - rs_g.
|
||||
|
||||
// In case of a lower bound we have
|
||||
// xj = t = g*t_+ m_c >= rs, also, by definition fo rs_mod_g, for some integer k holds rs - m_c = k*g + rs_mod_g.
|
||||
// Then g*t_ >= rs - mc = k*g + rs_mod_g => g*t_ >= k*g = rs - m_c + g - rs_mod_g.
|
||||
// Adding m_c to both parts gets us
|
||||
// xj = g*t_ + m_c >= rs + g - rs_mod_g
|
||||
In case of a lower bound we have
|
||||
t = g*t_+ m_c >= rs
|
||||
Then g*t_ >= rs - m_c = k*g + rs_g => g*t_ >= k*g + g.
|
||||
Adding m_c to both sides gets us
|
||||
g*t_ + m_c >= k*g + g + m_c = rs - m_c - rs_g + g + m_c = rs + (g - rs_g).
|
||||
|
||||
Each fixed variable i in P such that b_i is divisible by g can be moved from P to K.
|
||||
Then we apply all arguments above, and get the same result, since m_c changes by a multiple of g.
|
||||
*/
|
||||
|
||||
|
||||
mpq bound = upper ? rs - rs_mod_g : rs + g - rs_mod_g;
|
||||
mpq bound = upper ? rs - rs_g : rs + g - rs_g;
|
||||
TRACE("dio", tout << "is upper:" << upper << std::endl;
|
||||
tout << "new " << (upper ? "upper" : "lower") << " bound:" << bound << std::endl;);
|
||||
|
||||
|
@ -1755,7 +1761,7 @@ namespace lp {
|
|||
if (p.coeff().is_int() && (p.coeff() % g).is_zero()) {
|
||||
// we can skip this dependency
|
||||
// because the monomial p.coeff()*p.var() is 0 modulo g, and it does not matter that p.var() is fixed.
|
||||
// We could have added p.coeff()*p.var() to t_, substructed the value of p.coeff()*p.var() from m_c and
|
||||
// We could have added p.coeff()*p.var() to g*t_, substructed the value of p.coeff()*p.var() from m_c and
|
||||
// still get the same result.
|
||||
TRACE("dio", tout << "skipped dep:\n"; print_deps(tout, lra.get_bound_constraint_witnesses_for_column(p.var())););
|
||||
continue;
|
||||
|
|
Loading…
Reference in a new issue