mirror of
https://github.com/Z3Prover/z3
synced 2025-06-27 00:18:45 +00:00
consolidate methods that add lemma specific information to under "new_lemma"
This commit is contained in:
parent
caee936af5
commit
179c9c2da2
12 changed files with 314 additions and 560 deletions
|
@ -11,7 +11,7 @@
|
|||
|
||||
namespace nla {
|
||||
|
||||
struct imp {
|
||||
struct tangent_imp {
|
||||
point m_a;
|
||||
point m_b;
|
||||
point m_xy;
|
||||
|
@ -26,33 +26,30 @@ struct imp {
|
|||
lpvar m_jx;
|
||||
lpvar m_jy;
|
||||
tangents& m_tang;
|
||||
imp(point xy,
|
||||
bool m_is_mon;
|
||||
tangent_imp(point xy,
|
||||
const rational& v,
|
||||
lpvar j, // the monic variable
|
||||
const monic& m,
|
||||
const factor& x,
|
||||
const factor& y,
|
||||
const factorization& f,
|
||||
tangents& tang) : m_xy(xy),
|
||||
m_correct_v(xy.x * xy.y),
|
||||
m_below(v < m_correct_v),
|
||||
m_v(v),
|
||||
m_j(tang.var(m)),
|
||||
m_m(m),
|
||||
m_x(x),
|
||||
m_y(y),
|
||||
m_jx(tang.var(x)),
|
||||
m_jy(tang.var(y)),
|
||||
m_tang(tang) {}
|
||||
m_x(f[0]),
|
||||
m_y(f[1]),
|
||||
m_jx(tang.var(m_x)),
|
||||
m_jy(tang.var(m_y)),
|
||||
m_tang(tang),
|
||||
m_is_mon(f.is_mon()) {
|
||||
SASSERT(f.size() == 2);
|
||||
}
|
||||
|
||||
|
||||
core & c() { return m_tang.c(); }
|
||||
|
||||
void generate_explanations_of_tang_lemma(lp::explanation& exp) {
|
||||
// here we repeat the same explanation for each lemma
|
||||
c().explain(m_m, exp);
|
||||
c().explain(m_x, exp);
|
||||
c().explain(m_y, exp);
|
||||
}
|
||||
void tangent_lemma_on_bf() {
|
||||
get_tang_points();
|
||||
TRACE("nla_solver", tout << "tang domain = "; print_tangent_domain(tout) << std::endl;);
|
||||
|
@ -61,11 +58,18 @@ struct imp {
|
|||
generate_tang_plane(m_b);
|
||||
}
|
||||
|
||||
void explain(new_lemma& lemma) {
|
||||
if (!m_is_mon) {
|
||||
lemma &= m_m;
|
||||
lemma &= m_x;
|
||||
lemma &= m_y;
|
||||
}
|
||||
}
|
||||
|
||||
void generate_tang_plane(const point & pl) {
|
||||
new_lemma lemma(c(), "generate tangent plane");
|
||||
c().negate_relation(m_jx, m_x.rat_sign()*pl.x);
|
||||
c().negate_relation(m_jy, m_y.rat_sign()*pl.y);
|
||||
c().negate_relation(lemma, m_jx, m_x.rat_sign()*pl.x);
|
||||
c().negate_relation(lemma, m_jy, m_y.rat_sign()*pl.y);
|
||||
#if Z3DEBUG
|
||||
SASSERT(c().val(m_x) == m_xy.x && c().val(m_y) == m_xy.y);
|
||||
int mult_sign = nla::rat_sign(pl.x - m_xy.x)*nla::rat_sign(pl.y - m_xy.y);
|
||||
|
@ -79,20 +83,23 @@ struct imp {
|
|||
t.add_monomial(- m_y.rat_sign()*pl.x, m_jy);
|
||||
t.add_monomial(- m_x.rat_sign()*pl.y, m_jx);
|
||||
t.add_var(m_j);
|
||||
c().mk_ineq(t, m_below? llc::GT : llc::LT, - pl.x*pl.y);
|
||||
lemma |= ineq(t, m_below? llc::GT : llc::LT, - pl.x*pl.y);
|
||||
explain(lemma);
|
||||
}
|
||||
|
||||
void generate_two_tang_lines() {
|
||||
{
|
||||
new_lemma lemma(c(), "two tangent planes 1");
|
||||
// Should be v = val(m_x)*val(m_y), and val(factor) = factor.rat_sign()*var(factor.var())
|
||||
c().mk_ineq(m_jx, llc::NE, c().val(m_jx));
|
||||
c().mk_ineq(m_j, - m_y.rat_sign() * m_xy.x, m_jy, llc::EQ);
|
||||
lemma |= ineq(m_jx, llc::NE, c().val(m_jx));
|
||||
lemma |= ineq(lp::lar_term(m_j, - m_y.rat_sign() * m_xy.x, m_jy), llc::EQ, 0);
|
||||
explain(lemma);
|
||||
}
|
||||
{
|
||||
new_lemma lemma(c(), "two tangent planes 2");
|
||||
c().mk_ineq(m_jy, llc::NE, c().val(m_jy));
|
||||
c().mk_ineq(m_j, - m_x.rat_sign() * m_xy.y, m_jx, llc::EQ);
|
||||
lemma |= ineq(m_jy, llc::NE, c().val(m_jy));
|
||||
lemma |= ineq(lp::lar_term(m_j, - m_x.rat_sign() * m_xy.y, m_jx), llc::EQ, 0);
|
||||
explain(lemma);
|
||||
}
|
||||
}
|
||||
// Get two planes tangent to surface z = xy, one at point a, and another at point b, creating a cut
|
||||
|
@ -182,36 +189,16 @@ void tangents::tangent_lemma() {
|
|||
factorization bf(nullptr);
|
||||
const monic* m;
|
||||
if (c().find_bfc_to_refine(m, bf)) {
|
||||
unsigned lemmas_size_was = c().m_lemma_vec->size();
|
||||
unsigned j = m->var();
|
||||
imp i(point(val(bf[0]), val(bf[1])),
|
||||
c().val(j),
|
||||
j,
|
||||
*m,
|
||||
bf[0],
|
||||
bf[1],
|
||||
*this);
|
||||
tangent_imp i(point(val(bf[0]), val(bf[1])),
|
||||
c().val(j),
|
||||
j,
|
||||
*m,
|
||||
bf,
|
||||
*this);
|
||||
i.tangent_lemma_on_bf();
|
||||
if (!bf.is_mon()) {
|
||||
lp::explanation expl;
|
||||
generate_explanations_of_tang_lemma(*m, bf, expl);
|
||||
for (unsigned i = lemmas_size_was; i < c().m_lemma_vec->size(); i++) {
|
||||
auto &l = ((*c().m_lemma_vec)[i]);
|
||||
l.expl().add(expl);
|
||||
}
|
||||
}
|
||||
TRACE("nla_solver",
|
||||
for (unsigned i = lemmas_size_was; i < c().m_lemma_vec->size(); i++)
|
||||
c().print_specific_lemma((*c().m_lemma_vec)[i], tout); );
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void tangents::generate_explanations_of_tang_lemma(const monic& rm, const factorization& bf, lp::explanation& exp) {
|
||||
// here we repeat the same explanation for each lemma
|
||||
c().explain(rm, exp);
|
||||
c().explain(bf[0], exp);
|
||||
c().explain(bf[1], exp);
|
||||
}
|
||||
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue