3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 03:15:50 +00:00

consolidate methods that add lemma specific information to under "new_lemma"

This commit is contained in:
Nikolaj Bjorner 2020-05-10 18:31:57 -07:00
parent caee936af5
commit 179c9c2da2
12 changed files with 314 additions and 560 deletions

View file

@ -13,6 +13,8 @@
namespace nla {
typedef lp::lar_term term;
// The order lemma is
// a > b && c > 0 => ac > bc
void order::order_lemma() {
@ -82,9 +84,9 @@ void order::order_lemma_on_binomial_sign(const monic& xy, lpvar x, lpvar y, int
SASSERT(!_().mon_has_zero(xy.vars()));
int sy = rat_sign(val(y));
new_lemma lemma(c(), __FUNCTION__);
mk_ineq(y, sy == 1 ? llc::LE : llc::GE); // negate sy
mk_ineq(x, sy*sign == 1 ? llc::GT : llc::LT , val(x));
mk_ineq(xy.var(), - val(x), y, sign == 1 ? llc::LE : llc::GE);
lemma |= ineq(y, sy == 1 ? llc::LE : llc::GE, 0); // negate sy
lemma |= ineq(x, sy*sign == 1 ? llc::GT : llc::LT , val(x));
lemma |= ineq(term(xy.var(), - val(x), y), sign == 1 ? llc::LE : llc::GE, 0);
}
// We look for monics e = m.rvars()[k]*d and see if we can create an order lemma for m and e
@ -165,13 +167,13 @@ void order::generate_mon_ol(const monic& ac,
SASSERT(ab_cmp != llc::GT || (var_val(ac) <= var_val(bd) && val(a)*c_sign > val(b)*d_sign));
new_lemma lemma(_(), __FUNCTION__);
mk_ineq(c_sign, c, llc::LE);
explain(c); // this explains c == +- d
mk_ineq(c_sign, a, -d_sign * b.rat_sign(), b.var(), negate(ab_cmp));
mk_ineq(ac.var(), rational(-1), var(bd), ab_cmp);
explain(bd);
explain(b);
explain(d);
lemma |= ineq(term(c_sign, c), llc::LE, 0);
lemma &= c; // this explains c == +- d
lemma |= ineq(term(c_sign, a, -d_sign * b.rat_sign(), b.var()), negate(ab_cmp), 0);
lemma |= ineq(term(ac.var(), rational(-1), var(bd)), ab_cmp, 0);
lemma &= bd;
lemma &= b;
lemma &= d;
}
@ -215,8 +217,8 @@ void order::order_lemma_on_factorization(const monic& m, const factorization& ab
for (unsigned j = 0, k = 1; j < 2; j++, k--) {
new_lemma lemma(_(), __FUNCTION__);
order_lemma_on_ab(lemma, m, rsign, var(ab[k]), var(ab[j]), gt);
explain(ab);
explain(m);
lemma &= ab;
lemma &= m;
}
}
for (unsigned j = 0, k = 1; j < 2; j++, k--) {
@ -230,14 +232,14 @@ bool order::order_lemma_on_ac_explore(const monic& rm, const factorization& ac,
if (c.is_var()) {
TRACE("nla_solver", tout << "var(c) = " << var(c););
for (monic const& bc : _().emons().get_use_list(c.var())) {
if (order_lemma_on_ac_and_bc(rm ,ac, k, bc)) {
if (order_lemma_on_ac_and_bc(rm, ac, k, bc)) {
return true;
}
}
}
else {
for (monic const& bc : _().emons().get_products_of(c.var())) {
if (order_lemma_on_ac_and_bc(rm , ac, k, bc)) {
if (order_lemma_on_ac_and_bc(rm, ac, k, bc)) {
return true;
}
}
@ -249,7 +251,7 @@ void order::generate_ol_eq(const monic& ac,
const factor& a,
const factor& c,
const monic& bc,
const factor& b) {
const factor& b) {
new_lemma lemma(_(), __FUNCTION__);
IF_VERBOSE(100,
@ -260,22 +262,21 @@ void order::generate_ol_eq(const monic& ac,
<< " b " << "*v" << var(b) << " " << val(b) << "\n"
<< " c " << "*v" << var(c) << " " << val(c) << "\n");
// ac == bc
mk_ineq(c.var(),llc::EQ); // c is not equal to zero
mk_ineq(ac.var(), -rational(1), bc.var(), llc::NE);
mk_ineq(canonize_sign(a), a.var(), !canonize_sign(b), b.var(), llc::EQ);
explain(ac);
explain(a);
explain(bc);
explain(b);
explain(c);
TRACE("nla_solver", _().print_lemma(tout););
lemma |= ineq(c.var(), llc::EQ, 0); // c is not equal to zero
lemma |= ineq(term(ac.var(), -rational(1), bc.var()), llc::NE, 0);
lemma |= ineq(term(rational(canonize_sign(a)), a.var(), rational(!canonize_sign(b)), b.var()), llc::EQ, 0);
lemma &= ac;
lemma &= a;
lemma &= bc;
lemma &= b;
lemma &= c;
}
void order::generate_ol(const monic& ac,
const factor& a,
const factor& c,
const monic& bc,
const factor& b) {
const factor& b) {
new_lemma lemma(_(), __FUNCTION__);
IF_VERBOSE(100, verbose_stream() << var_val(ac) << "(" << mul_val(ac) << "): " << ac
@ -284,15 +285,14 @@ void order::generate_ol(const monic& ac,
<< " b " << "*v" << var(b) << " " << val(b) << "\n"
<< " c " << "*v" << var(c) << " " << val(c) << "\n");
// fix the sign of c
_().negate_relation(c.var(), rational(0));
_().negate_var_relation_strictly(ac.var(), bc.var());
_().negate_var_relation_strictly(a.var(), b.var());
explain(ac);
explain(a);
explain(bc);
explain(b);
explain(c);
TRACE("nla_solver", _().print_lemma(tout););
lemma |= ineq(c.var(), val(c.var()).is_neg() ? llc::GE : llc::LE, 0);
_().negate_var_relation_strictly(lemma, ac.var(), bc.var());
_().negate_var_relation_strictly(lemma, a.var(), b.var());
lemma &= ac;
lemma &= a;
lemma &= bc;
lemma &= b;
lemma &= c;
}
// We have ac = a*c and bc = b*c.
@ -327,9 +327,9 @@ bool order::order_lemma_on_ac_and_bc_and_factors(const monic& ac,
void order::order_lemma_on_ab_gt(new_lemma& lemma, const monic& m, const rational& sign, lpvar a, lpvar b) {
SASSERT(sign * var_val(m) > val(a) * val(b));
// negate b == val(b)
mk_ineq(b, llc::NE, val(b));
lemma |= ineq(b, llc::NE, val(b));
// ab <= val(b)a
mk_ineq(sign, m.var(), -val(b), a, llc::LE);
lemma |= ineq(term(sign, m.var(), -val(b), a), llc::LE, 0);
}
/*
given: sign * m = ab
@ -340,9 +340,9 @@ void order::order_lemma_on_ab_lt(new_lemma& lemma, const monic& m, const rationa
", b = "; c().print_var(b, tout) << "\n";);
SASSERT(sign * var_val(m) < val(a) * val(b));
// negate b == val(b)
mk_ineq(b, llc::NE, val(b));
lemma |= ineq(b, llc::NE, val(b));
// ab >= val(b)a
mk_ineq(sign, m.var(), -val(b), a, llc::GE);
lemma |= ineq(term(sign, m.var(), -val(b), a), llc::GE, 0);
}
void order::order_lemma_on_ab(new_lemma& lemma, const monic& m, const rational& sign, lpvar a, lpvar b, bool gt) {