3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 12:28:44 +00:00
This commit is contained in:
Nikolaj Bjorner 2019-02-25 18:14:47 -08:00
commit 15d5be66b6
55 changed files with 1426 additions and 1462 deletions

View file

@ -1166,6 +1166,14 @@ static void parse_example() {
// expr b = c.parse_string("(benchmark tst :extrafuns ((x Int) (y Int)) :formula (> x y) :formula (> x 0))");
}
static void parse_string() {
std::cout << "parse string\n";
z3::context c;
z3::solver s(c);
s.from_string("(declare-const x Int)(assert (> x 10))");
std::cout << s.check() << "\n";
}
void mk_model_example() {
context c;
@ -1252,6 +1260,7 @@ int main() {
sudoku_example(); std::cout << "\n";
consequence_example(); std::cout << "\n";
parse_example(); std::cout << "\n";
parse_string(); std::cout << "\n";
mk_model_example(); std::cout << "\n";
recfun_example(); std::cout << "\n";
std::cout << "done\n";

View file

@ -338,26 +338,33 @@ def Z3_set_error_handler(ctx, hndlr, _elems=Elementaries(_lib.Z3_set_error_handl
""")
for sig in _API2PY:
name = sig[0]
result = sig[1]
params = sig[2]
num = len(params)
core_py.write("def %s(" % name)
display_args(num)
comma = ", " if num != 0 else ""
core_py.write("%s_elems=Elementaries(_lib.%s)):\n" % (comma, name))
lval = "r = " if result != VOID else ""
core_py.write(" %s_elems.f(" % lval)
display_args_to_z3(params)
core_py.write(")\n")
if len(params) > 0 and param_type(params[0]) == CONTEXT and not name in Unwrapped:
core_py.write(" _elems.Check(a0)\n")
if result == STRING:
core_py.write(" return _to_pystr(r)\n")
elif result != VOID:
core_py.write(" return r\n")
core_py.write("\n")
core_py
mk_py_wrapper_single(sig)
if sig[1] == STRING:
mk_py_wrapper_single(sig, decode_string=False)
def mk_py_wrapper_single(sig, decode_string=True):
name = sig[0]
result = sig[1]
params = sig[2]
num = len(params)
def_name = name
if not decode_string:
def_name += '_bytes'
core_py.write("def %s(" % def_name)
display_args(num)
comma = ", " if num != 0 else ""
core_py.write("%s_elems=Elementaries(_lib.%s)):\n" % (comma, name))
lval = "r = " if result != VOID else ""
core_py.write(" %s_elems.f(" % lval)
display_args_to_z3(params)
core_py.write(")\n")
if len(params) > 0 and param_type(params[0]) == CONTEXT and not name in Unwrapped:
core_py.write(" _elems.Check(a0)\n")
if result == STRING and decode_string:
core_py.write(" return _to_pystr(r)\n")
elif result != VOID:
core_py.write(" return r\n")
core_py.write("\n")
## .NET API native interface
@ -1704,6 +1711,7 @@ def write_exe_c_preamble(exe_c):
def write_core_py_post(core_py):
core_py.write("""
# Clean up
del _lib
del _default_dirs
del _all_dirs
del _ext

View file

@ -122,7 +122,7 @@ bool lackr::ackr(app * const t1, app * const t2) {
TRACE("ackermannize", tout << "ackr constr abs:" << mk_ismt2_pp(cga, m_m, 2) << "\n";);
if (m_m.is_true(cga)) return false;
m_st.m_ackrs_sz++;
m_ackrs.push_back(cga);
m_ackrs.push_back(std::move(cga));
return true;
}

View file

@ -237,7 +237,7 @@ struct lackr_model_constructor::imp {
// handle functions
if (m_ackr_helper.should_ackermannize(a)) { // handle uninterpreted
app_ref key(m_m.mk_app(a->get_decl(), values.c_ptr()), m_m);
if (!make_value_uninterpreted_function(a, values, key.get(), result)) {
if (!make_value_uninterpreted_function(a, key.get(), result)) {
return false;
}
}
@ -284,7 +284,6 @@ struct lackr_model_constructor::imp {
}
bool make_value_uninterpreted_function(app* a,
expr_ref_vector& values,
app* key,
expr_ref& result) {
// get ackermann constant
@ -370,15 +369,12 @@ lackr_model_constructor::lackr_model_constructor(ast_manager& m, ackr_info_ref i
{}
lackr_model_constructor::~lackr_model_constructor() {
if (m_imp) dealloc(m_imp);
dealloc(m_imp);
}
bool lackr_model_constructor::check(model_ref& abstr_model) {
m_conflicts.reset();
if (m_imp) {
dealloc(m_imp);
m_imp = nullptr;
}
dealloc(m_imp);
m_imp = alloc(lackr_model_constructor::imp, m_m, m_info, abstr_model, m_conflicts);
const bool rv = m_imp->check();
m_state = rv ? CHECKED : CONFLICT;

View file

@ -24,6 +24,7 @@ Revision History:
#include "util/vector.h"
#include "util/smt2_util.h"
#include "ast/ast_smt_pp.h"
#include "ast/ast_smt2_pp.h"
#include "ast/arith_decl_plugin.h"
#include "ast/bv_decl_plugin.h"
#include "ast/array_decl_plugin.h"
@ -223,7 +224,7 @@ class smt_printer {
}
}
else if (m_manager.is_ite(d)) {
m_out << "ite";
m_out << "ite";
}
else if (m_manager.is_implies(d)) {
m_out << "=>";
@ -266,7 +267,7 @@ class smt_printer {
else {
m_out << "(_ " << sym << " ";
}
for (unsigned i = 0; i < num_params; ++i) {
parameter const& p = params[i];
if (p.is_ast()) {
@ -320,7 +321,7 @@ class smt_printer {
if (num_sorts > 0) {
m_out << "(";
}
m_out << m_renaming.get_symbol(s->get_name(), false);
m_out << m_renaming.get_symbol(s->get_name(), false);
if (num_sorts > 0) {
for (unsigned i = 0; i < num_sorts; ++i) {
m_out << " ";
@ -388,10 +389,7 @@ class smt_printer {
m_out << "(_ bv" << val << " " << bv_size << ")";
}
else if (m_futil.is_numeral(n, float_val)) {
m_out << "((_ to_fp " <<
float_val.get().get_ebits() << " " <<
float_val.get().get_sbits() << ") RTZ " <<
m_futil.fm().to_string(float_val).c_str() << ")";
m_out << mk_ismt2_pp(n, m_manager);
}
else if (m_bvutil.is_bit2bool(n)) {
unsigned bit = n->get_decl()->get_parameter(0).get_int();
@ -402,7 +400,7 @@ class smt_printer {
else if (m_manager.is_label(n, pos, names) && !names.empty()) {
m_out << "(! ";
pp_marked_expr(n->get_arg(0));
m_out << (pos?":lblpos":":lblneg") << " " << m_renaming.get_symbol(names[0], false) << ")";
m_out << (pos?":lblpos":":lblneg") << " " << m_renaming.get_symbol(names[0], false) << ")";
}
else if (m_manager.is_label_lit(n, names) && !names.empty()) {
m_out << "(! true :lblpos " << m_renaming.get_symbol(names[0], false) << ")";
@ -435,7 +433,7 @@ class smt_printer {
pp_arg(curr, n);
m_out << ")";
}
}
else if (m_manager.is_distinct(decl)) {
ptr_vector<expr> args(num_args, n->get_args());
unsigned idx = 0;
@ -613,7 +611,7 @@ class smt_printer {
pp_id(n);
m_out << " ";
pp_expr(n);
m_out << ")";
m_out << ")";
m_out << ")";
newline();
}
@ -781,7 +779,7 @@ public:
datatype_util util(m_manager);
SASSERT(util.is_datatype(s));
sort_ref_vector ps(m_manager);
sort_ref_vector ps(m_manager);
ptr_vector<datatype::def> defs;
util.get_defs(s, defs);
@ -790,7 +788,7 @@ public:
if (mark.is_marked(sr)) return; // already processed
mark.mark(sr, true);
}
m_out << "(declare-datatypes (";
bool first_def = true;
for (datatype::def* d : defs) {
@ -800,7 +798,7 @@ public:
m_out << ") (";
bool first_sort = true;
for (datatype::def* d : defs) {
if (!first_sort) m_out << "\n "; else first_sort = false;
if (!first_sort) m_out << "\n "; else first_sort = false;
if (!d->params().empty()) {
m_out << "(par (";
bool first_param = true;
@ -814,7 +812,7 @@ public:
bool first_constr = true;
for (datatype::constructor* f : *d) {
if (!first_constr) m_out << " "; else first_constr = false;
m_out << "(";
m_out << "(";
m_out << m_renaming.get_symbol(f->name(), false);
for (datatype::accessor* a : *f) {
m_out << " (" << m_renaming.get_symbol(a->name(), false) << " ";
@ -828,7 +826,7 @@ public:
}
m_out << ")";
}
m_out << "))";
m_out << "))";
newline();
}
@ -864,7 +862,7 @@ public:
}
m_out << ") ";
visit_sort(d->get_range());
m_out << ")";
m_out << ")";
}
void visit_pred(func_decl* d) {

View file

@ -548,11 +548,15 @@ func_decl * bv_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters, p
case OP_ROTATE_LEFT:
if (arity != 1)
m_manager->raise_exception("rotate left expects one argument");
if (num_parameters != 1 || !parameters[0].is_int())
m_manager->raise_exception("rotate left expects one integer parameter");
return m_manager->mk_func_decl(m_rotate_left_sym, arity, domain, domain[0],
func_decl_info(m_family_id, k, num_parameters, parameters));
case OP_ROTATE_RIGHT:
if (arity != 1)
m_manager->raise_exception("rotate right expects one argument");
if (num_parameters != 1 || !parameters[0].is_int())
m_manager->raise_exception("rotate right expects one integer parameter");
return m_manager->mk_func_decl(m_rotate_right_sym, arity, domain, domain[0],
func_decl_info(m_family_id, k, num_parameters, parameters));
case OP_REPEAT:

View file

@ -375,7 +375,13 @@ br_status array_rewriter::mk_set_intersect(unsigned num_args, expr * const * arg
br_status array_rewriter::mk_set_complement(expr * arg, expr_ref & result) {
return mk_map_core(m().mk_not_decl(), 1, &arg, result);
func_decl* fnot = m().mk_not_decl();
br_status st = mk_map_core(fnot, 1, &arg, result);
if (BR_FAILED == st) {
result = m_util.mk_map(fnot, 1, &arg);
st = BR_DONE;
}
return st;
}
br_status array_rewriter::mk_set_difference(expr * arg1, expr * arg2, expr_ref & result) {

View file

@ -374,13 +374,11 @@ void der::apply_substitution(quantifier * q, expr_ref & r) {
expr_ref_buffer new_patterns(m_manager);
expr_ref_buffer new_no_patterns(m_manager);
for (unsigned j = 0; j < q->get_num_patterns(); j++) {
expr_ref new_pat = m_subst(q->get_pattern(j), m_subst_map.size(), m_subst_map.c_ptr());
new_patterns.push_back(new_pat);
new_patterns.push_back(m_subst(q->get_pattern(j), m_subst_map.size(), m_subst_map.c_ptr()));
}
for (unsigned j = 0; j < q->get_num_no_patterns(); j++) {
expr_ref new_nopat = m_subst(q->get_no_pattern(j), m_subst_map.size(), m_subst_map.c_ptr());
new_no_patterns.push_back(new_nopat);
new_no_patterns.push_back(m_subst(q->get_no_pattern(j), m_subst_map.size(), m_subst_map.c_ptr()));
}
r = m_manager.update_quantifier(q, new_patterns.size(), new_patterns.c_ptr(),

View file

@ -126,8 +126,7 @@ void distribute_forall::reduce1_quantifier(quantifier * q) {
br.mk_not(arg, not_arg);
quantifier_ref tmp_q(m_manager);
tmp_q = m_manager.update_quantifier(q, not_arg);
expr_ref new_q = elim_unused_vars(m_manager, tmp_q, params_ref());
new_args.push_back(new_q);
new_args.push_back(elim_unused_vars(m_manager, tmp_q, params_ref()));
}
expr_ref result(m_manager);
// m_bsimp.mk_and actually constructs a (not (or ...)) formula,

View file

@ -69,7 +69,6 @@ br_status hoist_rewriter::mk_or(unsigned num_args, expr * const * es, expr_ref &
turn = !turn;
(*preds)[turn].reset();
reset(m_uf0);
unsigned v1 = 0, v2 = 0;
VERIFY(is_and(es[j], args[turn]));
for (expr* e : *args[turn]) {
@ -196,6 +195,7 @@ bool hoist_rewriter::is_and(expr * e, expr_ref_vector* args) {
void hoist_rewriter::reset(basic_union_find& uf) {
uf.reset();
for (expr* e : m_var2expr) {
(void)e;
uf.mk_var();
}
}

View file

@ -135,17 +135,14 @@ expr_ref unused_vars_eliminator::operator()(quantifier* q) {
return result;
}
expr_ref tmp(m);
expr_ref_buffer new_patterns(m);
expr_ref_buffer new_no_patterns(m);
for (unsigned i = 0; i < num_patterns; i++) {
tmp = m_subst(q->get_pattern(i), var_mapping.size(), var_mapping.c_ptr());
new_patterns.push_back(tmp);
new_patterns.push_back(m_subst(q->get_pattern(i), var_mapping.size(), var_mapping.c_ptr()));
}
for (unsigned i = 0; i < num_no_patterns; i++) {
tmp = m_subst(q->get_no_pattern(i), var_mapping.size(), var_mapping.c_ptr());
new_no_patterns.push_back(tmp);
new_no_patterns.push_back(m_subst(q->get_no_pattern(i), var_mapping.size(), var_mapping.c_ptr()));
}
result = m.mk_quantifier(q->get_kind(),

View file

@ -112,7 +112,7 @@ void substitution::apply(unsigned num_actual_offsets, unsigned const * deltas, e
TRACE("subst_bug", tout << "visited: " << visited << ", n1: " << mk_pp(n1.get_expr(), m_manager) << " : " << n1.get_offset() << "\n";);
if (visited) {
m_todo.pop_back();
expr * new_expr;
expr * new_expr = nullptr;
m_apply_cache.find(n1, new_expr);
m_apply_cache.insert(n, new_expr);
TRACE("subst_bug", tout << "1. insert n: " << mk_pp(n.get_expr(), m_manager) << " : " << n.get_offset()

View file

@ -217,13 +217,18 @@ struct evaluator_cfg : public default_rewriter_cfg {
return BR_DONE;
}
if (get_macro(g, def, q, def_pr)) {
sort_ref_vector vars(m);
sort_ref_vector sorts(m);
expr_ref_vector vars(m);
svector<symbol> var_names;
for (unsigned i = 0; i < g->get_arity(); ++i) {
var_names.push_back(symbol(i));
vars.push_back(g->get_domain(i));
unsigned sz = g->get_arity();
for (unsigned i = 0; i < sz; ++i) {
var_names.push_back(symbol(sz - i - 1));
vars.push_back(m.mk_var(sz - i - 1, g->get_domain(i)));
sorts.push_back(g->get_domain(i));
}
result = m.mk_lambda(vars.size(), vars.c_ptr(), var_names.c_ptr(), def);
var_subst subst(m, false);
result = subst(def, sorts.size(), vars.c_ptr());
result = m.mk_lambda(sorts.size(), sorts.c_ptr(), var_names.c_ptr(), result);
model_evaluator ev(m_model, m_params);
result = ev(result);
m_pinned.push_back(result);

View file

@ -41,7 +41,6 @@ namespace datalog {
execution_context::~execution_context() {
reset();
dealloc(m_stopwatch);
}
void execution_context::reset() {
@ -104,15 +103,15 @@ namespace datalog {
m_timelimit_ms = time_in_ms;
if (!m_stopwatch) {
m_stopwatch = alloc(stopwatch);
} else {
m_stopwatch->stop();
m_stopwatch->reset();
}
m_stopwatch->stop();
m_stopwatch->reset();
m_stopwatch->start();
}
void execution_context::reset_timelimit() {
if (m_stopwatch) {
m_stopwatch->stop();
}
dealloc(m_stopwatch);
m_stopwatch = nullptr;
m_timelimit_ms = 0;
}

View file

@ -74,11 +74,6 @@ namespace opt {
}
}
void set_value(soft& soft, lbool v) {
soft.set_value(v);
assert_value(soft);
}
void update_assignment(model_ref & mdl) {
bool first_undef = true, second_undef = false;
for (auto & soft : m_soft) {
@ -95,7 +90,9 @@ namespace opt {
soft.set_value(v);
}
else {
set_value(soft, v); // also update constraints
SASSERT(v == l_true);
soft.set_value(v);
assert_value(soft);
}
}
}
@ -130,121 +127,9 @@ namespace opt {
if (mdl) update_assignment(mdl);
}
lbool maxlex1() {
for (auto & soft : m_soft) {
if (soft.value == l_true) {
continue;
}
SASSERT(soft.value == l_undef);
expr* a = soft.s;
lbool is_sat = s().check_sat(1, &a);
switch (is_sat) {
case l_false:
set_value(soft, l_false);
update_bounds();
break;
case l_true:
update_assignment();
SASSERT(soft.value == l_true);
break;
case l_undef:
return l_undef;
}
}
return l_true;
}
// try two literals per round.
// doesn't seem to make a difference based on sample test.
lbool maxlex2() {
unsigned sz = m_soft.size();
for (unsigned i = 0; i < sz; ++i) {
auto& soft = m_soft[i];
if (soft.value != l_undef) {
continue;
}
SASSERT(soft.value == l_undef);
if (i + 1 == sz) {
expr* a = soft.s;
lbool is_sat = s().check_sat(1, &a);
switch (is_sat) {
case l_false:
set_value(soft, l_false);
update_bounds();
break;
case l_true:
update_assignment();
SASSERT(soft.value == l_true);
break;
case l_undef:
return l_undef;
}
}
else {
auto& soft2 = m_soft[i+1];
expr_ref_vector core(m);
expr* a = soft.s;
expr* b = soft2.s;
expr* asms[2] = { a, b };
lbool is_sat = s().check_sat(2, asms);
switch (is_sat) {
case l_true:
update_assignment();
SASSERT(soft.value == l_true);
SASSERT(soft2.value == l_true);
break;
case l_false:
s().get_unsat_core(core);
if (core.contains(b)) {
expr_ref not_b(mk_not(m, b), m);
asms[1] = not_b;
switch (s().check_sat(2, asms)) {
case l_true:
// a, b is unsat, a, not b is sat.
set_value(soft2, l_false);
update_assignment();
SASSERT(soft.value == l_true);
SASSERT(soft2.value == l_false);
break;
case l_false:
// a, b is unsat, a, not b is unsat -> a is unsat
// b is unsat, a, not b is unsat -> not a, not b
set_value(soft, l_false);
// core1 = { b }
// core2 = { a, not b }
if (!core.contains(a)) {
set_value(soft2, l_false);
}
else {
// core1 = { a, b}
// core2 = { not_b }
core.reset();
s().get_unsat_core(core);
if (!core.contains(a)) {
set_value(soft2, l_true);
}
}
update_bounds();
break;
case l_undef:
return l_undef;
}
}
else {
set_value(soft, l_false);
update_bounds();
}
break;
case l_undef:
return l_undef;
}
}
}
return l_true;
}
// every time probing whether to include soft_i,
// include suffix that is known to be assignable to T
//
// include soft constraints that are known to be assignable to true after failed literal.
//
lbool maxlexN() {
unsigned sz = m_soft.size();
for (unsigned i = 0; i < sz; ++i) {
@ -254,12 +139,6 @@ namespace opt {
}
expr_ref_vector asms(m);
asms.push_back(soft.s);
for (unsigned j = i + 1; j < sz; ++j) {
auto& soft2 = m_soft[j];
if (soft2.value == l_true) {
asms.push_back(soft2.s);
}
}
lbool is_sat = s().check_sat(asms);
switch (is_sat) {
case l_true:
@ -267,7 +146,8 @@ namespace opt {
SASSERT(soft.value == l_true);
break;
case l_false:
set_value(soft, l_false);
soft.set_value(l_false);
assert_value(soft);
for (unsigned j = i + 1; j < sz; ++j) {
auto& soft2 = m_soft[j];
if (soft2.value != l_true) {

View file

@ -38,7 +38,6 @@ namespace sat {
memcpy(m_lits, lits, sizeof(literal) * sz);
mark_strengthened();
SASSERT(check_approx());
SASSERT(sz > 1);
}
var_approx_set clause::approx(unsigned num, literal const * lits) {
@ -83,6 +82,7 @@ namespace sat {
i++;
for (; i < m_size; i++)
m_lits[i-1] = m_lits[i];
m_lits[m_size-1] = l;
m_size--;
mark_strengthened();
}

View file

@ -49,10 +49,13 @@ namespace sat {
dealloc(m_bout);
for (unsigned i = 0; i < m_proof.size(); ++i) {
clause* c = m_proof[i];
if (c && (c->size() == 2 || m_status[i] == status::deleted || m_status[i] == status::external)) {
s.dealloc_clause(c);
if (c) {
m_alloc.del_clause(c);
}
}
m_proof.reset();
m_out = nullptr;
m_bout = nullptr;
}
void drat::updt_config() {
@ -75,12 +78,12 @@ namespace sat {
if (st == status::asserted || st == status::external) {
return;
}
char buffer[10000];
char digits[20]; // enough for storing unsigned
char* lastd = digits + sizeof(digits);
int len = 0;
unsigned len = 0;
if (st == status::deleted) {
buffer[0] = 'd';
buffer[1] = ' ';
@ -120,22 +123,27 @@ namespace sat {
case status::deleted: ch = 'd'; break;
default: UNREACHABLE(); break;
}
(*m_bout) << ch;
char buffer[10000];
int len = 0;
buffer[len++] = ch;
for (unsigned i = 0; i < n; ++i) {
literal lit = c[i];
unsigned v = 2 * lit.var() + (lit.sign() ? 1 : 0);
do {
ch = static_cast<unsigned char>(v & ((1 << 7) - 1));
ch = static_cast<unsigned char>(v & 255);
v >>= 7;
if (v) ch |= (1 << 7);
//std::cout << std::hex << ((unsigned char)ch) << std::dec << " ";
(*m_bout) << ch;
if (v) ch |= 128;
buffer[len++] = ch;
if (len == sizeof(buffer)) {
m_bout->write(buffer, len);
len = 0;
}
}
while (v);
}
ch = 0;
(*m_bout) << ch;
buffer[len++] = 0;
m_bout->write(buffer, len);
}
bool drat::is_cleaned(clause& c) const {
@ -161,6 +169,9 @@ namespace sat {
}
void drat::append(literal l, status st) {
TRACE("sat_drat", tout << st << " " << l << "\n";);
declare(l);
IF_VERBOSE(20, trace(verbose_stream(), 1, &l, st););
if (st == status::learned) {
verify(1, &l);
@ -168,11 +179,19 @@ namespace sat {
if (st == status::deleted) {
return;
}
assign_propagate(l);
if (m_check_unsat) {
assign_propagate(l);
}
m_units.push_back(l);
}
void drat::append(literal l1, literal l2, status st) {
TRACE("sat_drat", tout << st << " " << l1 << " " << l2 << "\n";);
declare(l1);
declare(l2);
literal lits[2] = { l1, l2 };
IF_VERBOSE(20, trace(verbose_stream(), 2, lits, st););
if (st == status::deleted) {
// noop
@ -182,9 +201,10 @@ namespace sat {
if (st == status::learned) {
verify(2, lits);
}
clause* c = s.alloc_clause(2, lits, st == status::learned);
clause* c = m_alloc.mk_clause(2, lits, st == status::learned);
m_proof.push_back(c);
m_status.push_back(st);
if (!m_check_unsat) return;
unsigned idx = m_watched_clauses.size();
m_watched_clauses.push_back(watched_clause(c, l1, l2));
m_watches[(~l1).index()].push_back(idx);
@ -202,14 +222,37 @@ namespace sat {
}
}
#if 0
// debugging code
bool drat::is_clause(clause& c, literal l1, literal l2, literal l3, drat::status st1, drat::status st2) {
//if (st1 != st2) return false;
if (c.size() != 3) return false;
if (l1 == c[0]) {
if (l2 == c[1] && l3 == c[2]) return true;
if (l2 == c[2] && l3 == c[1]) return true;
}
if (l2 == c[0]) {
if (l1 == c[1] && l3 == c[2]) return true;
if (l1 == c[2] && l3 == c[1]) return true;
}
if (l3 == c[0]) {
if (l1 == c[1] && l2 == c[2]) return true;
if (l1 == c[2] && l2 == c[1]) return true;
}
return false;
}
#endif
void drat::append(clause& c, status st) {
TRACE("sat_drat", tout << st << " " << c << "\n";);
for (literal lit : c) declare(lit);
unsigned n = c.size();
IF_VERBOSE(20, trace(verbose_stream(), n, c.begin(), st););
if (st == status::learned) {
verify(c);
}
m_status.push_back(st);
m_proof.push_back(&c);
if (st == status::deleted) {
@ -262,6 +305,7 @@ namespace sat {
}
void drat::declare(literal l) {
if (!m_check) return;
unsigned n = static_cast<unsigned>(l.var());
while (m_assignment.size() <= n) {
m_assignment.push_back(l_undef);
@ -357,7 +401,7 @@ namespace sat {
void drat::validate_propagation() const {
for (unsigned i = 0; i < m_proof.size(); ++i) {
status st = m_status[i];
if (m_proof[i] && st != status::deleted) {
if (m_proof[i] && m_proof[i]->size() > 1 && st != status::deleted) {
clause& c = *m_proof[i];
unsigned num_undef = 0, num_true = 0;
for (unsigned j = 0; j < c.size(); ++j) {
@ -367,7 +411,7 @@ namespace sat {
case l_undef: num_undef++; break;
}
}
CTRACE("sat", num_true == 0 && num_undef == 1, display(tout););
CTRACE("sat_drat", num_true == 0 && num_undef == 1, display(tout););
SASSERT(num_true != 0 || num_undef != 1);
}
}
@ -380,7 +424,7 @@ namespace sat {
SASSERT(lits.size() == n);
for (unsigned i = 0; i < m_proof.size(); ++i) {
status st = m_status[i];
if (m_proof[i] && (st == status::asserted || st == status::external)) {
if (m_proof[i] && m_proof[i]->size() > 1 && (st == status::asserted || st == status::external)) {
clause& c = *m_proof[i];
unsigned j = 0;
for (; j < c.size() && c[j] != ~l; ++j) {}
@ -411,7 +455,7 @@ namespace sat {
exit(0);
UNREACHABLE();
//display(std::cout);
TRACE("sat",
TRACE("sat_drat",
tout << literal_vector(n, c) << "\n";
display(tout);
s.display(tout););
@ -419,16 +463,41 @@ namespace sat {
}
}
bool drat::contains(literal c, justification const& j) {
if (!m_check_sat) {
return true;
}
switch (j.get_kind()) {
case justification::NONE:
return m_units.contains(c);
case justification::BINARY:
return contains(c, j.get_literal());
case justification::TERNARY:
return contains(c, j.get_literal1(), j.get_literal2());
case justification::CLAUSE:
return contains(s.get_clause(j));
default:
return true;
}
}
bool drat::contains(unsigned n, literal const* lits) {
if (!m_check) return true;
unsigned num_add = 0;
unsigned num_del = 0;
for (unsigned i = m_proof.size(); i-- > 0; ) {
clause& c = *m_proof[i];
status st = m_status[i];
if (match(n, lits, c)) {
return st != status::deleted;
if (st == status::deleted) {
num_del++;
}
else {
num_add++;
}
}
}
return false;
return num_add > num_del;
}
bool drat::match(unsigned n, literal const* lits, clause const& c) const {
@ -442,7 +511,9 @@ namespace sat {
break;
}
}
if (!found) return false;
if (!found) {
return false;
}
}
return true;
}
@ -500,7 +571,7 @@ namespace sat {
void drat::assign(literal l) {
lbool new_value = l.sign() ? l_false : l_true;
lbool old_value = value(l);
// TRACE("sat", tout << "assign " << l << " := " << new_value << " from " << old_value << "\n";);
// TRACE("sat_drat", tout << "assign " << l << " := " << new_value << " from " << old_value << "\n";);
switch (old_value) {
case l_false:
m_inconsistent = true;
@ -532,7 +603,7 @@ namespace sat {
watched_clause& wc = m_watched_clauses[idx];
clause& c = *wc.m_clause;
//TRACE("sat", tout << "Propagate " << l << " " << c << " watch: " << wc.m_l1 << " " << wc.m_l2 << "\n";);
//TRACE("sat_drat", tout << "Propagate " << l << " " << c << " watch: " << wc.m_l1 << " " << wc.m_l2 << "\n";);
if (wc.m_l1 == ~l) {
std::swap(wc.m_l1, wc.m_l2);
}
@ -578,23 +649,18 @@ namespace sat {
void drat::add() {
if (m_out) (*m_out) << "0\n";
if (m_bout) bdump(0, nullptr, learned);
if (m_bout) bdump(0, nullptr, status::learned);
if (m_check_unsat) {
SASSERT(m_inconsistent);
}
}
void drat::add(literal l, bool learned) {
TRACE("sat", tout << "add: " << l << " " << (learned?"l":"t") << "\n";);
declare(l);
status st = get_status(learned);
if (m_out) dump(1, &l, st);
if (m_bout) bdump(1, &l, st);
if (m_check) append(l, st);
}
void drat::add(literal l1, literal l2, bool learned) {
TRACE("sat", tout << "add: " << l1 << " " << l2 << " " << (learned?"l":"t") << "\n";);
declare(l1);
declare(l2);
literal ls[2] = {l1, l2};
status st = get_status(learned);
if (m_out) dump(2, ls, st);
@ -602,12 +668,13 @@ namespace sat {
if (m_check) append(l1, l2, st);
}
void drat::add(clause& c, bool learned) {
TRACE("sat", tout << "add: " << c << "\n";);
for (unsigned i = 0; i < c.size(); ++i) declare(c[i]);
status st = get_status(learned);
if (m_out) dump(c.size(), c.begin(), st);
if (m_bout) bdump(c.size(), c.begin(), st);
if (m_check_unsat) append(c, get_status(learned));
if (m_check) {
clause* cl = m_alloc.mk_clause(c.size(), c.begin(), learned);
append(*cl, get_status(learned));
}
}
void drat::add(literal_vector const& lits, svector<premise> const& premises) {
if (m_check) {
@ -615,7 +682,7 @@ namespace sat {
case 0: add(); break;
case 1: append(lits[0], status::external); break;
default: {
clause* c = s.alloc_clause(lits.size(), lits.c_ptr(), true);
clause* c = m_alloc.mk_clause(lits.size(), lits.c_ptr(), true);
append(*c, status::external);
break;
}
@ -623,16 +690,16 @@ namespace sat {
}
}
void drat::add(literal_vector const& c) {
for (unsigned i = 0; i < c.size(); ++i) declare(c[i]);
if (m_out) dump(c.size(), c.begin(), status::learned);
if (m_bout) bdump(c.size(), c.begin(), status::learned);
if (m_check) {
for (literal lit : c) declare(lit);
switch (c.size()) {
case 0: add(); break;
case 1: append(c[0], status::learned); break;
default: {
verify(c.size(), c.begin());
clause* cl = s.alloc_clause(c.size(), c.c_ptr(), true);
clause* cl = m_alloc.mk_clause(c.size(), c.c_ptr(), true);
append(*cl, status::external);
break;
}
@ -645,8 +712,10 @@ namespace sat {
if (m_bout) bdump(1, &l, status::deleted);
if (m_check_unsat) append(l, status::deleted);
}
void drat::del(literal l1, literal l2) {
literal ls[2] = {l1, l2};
SASSERT(!(l1 == literal(13923, false) && l2 == literal(14020, true)));
if (m_out) dump(2, ls, status::deleted);
if (m_bout) bdump(2, ls, status::deleted);
if (m_check) append(l1, l2, status::deleted);
@ -665,11 +734,11 @@ namespace sat {
}
#endif
TRACE("sat", tout << "del: " << c << "\n";);
//SASSERT(!(c.size() == 2 && c[0] == literal(13923, false) && c[1] == literal(14020, true)));
if (m_out) dump(c.size(), c.begin(), status::deleted);
if (m_bout) bdump(c.size(), c.begin(), status::deleted);
if (m_check) {
clause* c1 = s.alloc_clause(c.size(), c.begin(), c.is_learned());
clause* c1 = m_alloc.mk_clause(c.size(), c.begin(), c.is_learned());
append(*c1, status::deleted);
}
}

View file

@ -45,6 +45,7 @@ namespace sat {
svector<watched_clause> m_watched_clauses;
typedef svector<unsigned> watch;
solver& s;
clause_allocator m_alloc;
std::ostream* m_out;
std::ostream* m_bout;
ptr_vector<clause> m_proof;
@ -61,6 +62,8 @@ namespace sat {
void append(literal l1, literal l2, status st);
void append(clause& c, status st);
bool is_clause(clause& c, literal l1, literal l2, literal l3, status st1, status st2);
friend std::ostream& operator<<(std::ostream & out, status st);
status get_status(bool learned) const;
@ -104,6 +107,7 @@ namespace sat {
bool contains(unsigned n, literal const* c);
bool contains(literal l1, literal l2) { literal lits[2] = {l1, l2}; return contains(2, lits); }
bool contains(literal l1, literal l2, literal l3) { literal lits[3] = {l1, l2, l3}; return contains(3, lits); }
bool contains(literal c, justification const& j);
void check_model(model const& m);
};

View file

@ -207,7 +207,7 @@ namespace sat {
c.update_approx();
}
if (m_solver.m_config.m_drat) {
m_solver.m_drat.add(c, true);
m_solver.m_drat.add(c, true);
drat_delete_clause();
}

View file

@ -515,7 +515,6 @@ namespace sat {
reinit();
DEBUG_CODE(verify_slack(););
timer timer;
timer.start();
unsigned step = 0, total_flips = 0, tries = 0;
for (tries = 1; !m_unsat_stack.empty() && m_limit.inc(); ++tries) {

View file

@ -52,6 +52,9 @@ namespace sat {
unsigned tr_sz = s.m_trail.size();
for (unsigned i = old_tr_sz; i < tr_sz; i++) {
entry.m_lits.push_back(s.m_trail[i]);
if (s.m_config.m_drat) {
s.m_drat.add(~l, s.m_trail[i], true);
}
}
}

View file

@ -124,9 +124,9 @@ namespace sat {
}
}
inline void simplifier::remove_clause(clause & c) {
inline void simplifier::remove_clause(clause & c, bool is_unique) {
if (!c.was_removed()) {
if (s.m_config.m_drat) {
if (s.m_config.m_drat && is_unique) {
s.m_drat.del(c);
}
for (literal l : c) {
@ -477,7 +477,7 @@ namespace sat {
s.set_learned(c1, false);
}
TRACE("subsumption", tout << c1 << " subsumed " << c2 << "\n";);
remove_clause(c2);
remove_clause(c2, false);
m_num_subsumed++;
}
else if (!c2.was_removed()) {
@ -577,7 +577,7 @@ namespace sat {
if (c1.is_learned() && !c2.is_learned())
s.set_learned(c1, false);
TRACE("subsumption", tout << c1 << " subsumed " << c2 << "\n";);
remove_clause(c2);
remove_clause(c2, false);
m_num_subsumed++;
}
}
@ -662,7 +662,7 @@ namespace sat {
for (auto it = cs.mk_iterator(); !it.at_end(); ) {
clause & c = it.curr();
it.next();
remove_clause(c);
remove_clause(c, true);
}
cs.reset();
}
@ -674,10 +674,12 @@ namespace sat {
m_num_elim_lits++;
insert_elim_todo(l.var());
if (s.m_config.m_drat && c.contains(l)) {
m_dummy.set(c.size(), c.begin(), c.is_learned());
unsigned sz = c.size();
c.elim(l);
s.m_drat.add(c, true);
s.m_drat.del(*m_dummy.get());
c.restore(sz);
s.m_drat.del(c);
c.shrink(sz-1);
}
else {
c.elim(l);
@ -690,7 +692,7 @@ namespace sat {
if (cleanup_clause(c)) {
// clause was satisfied
TRACE("elim_lit", tout << "clause was satisfied\n";);
remove_clause(c);
remove_clause(c, true);
return;
}
unsigned sz = c.size();
@ -710,7 +712,7 @@ namespace sat {
c.restore(sz0);
s.mk_bin_clause(c[0], c[1], c.is_learned());
m_sub_bin_todo.push_back(bin_clause(c[0], c[1], c.is_learned()));
remove_clause(c);
remove_clause(c, sz0 != sz);
break;
default:
if (s.m_config.m_drat && sz0 != sz) {
@ -888,7 +890,7 @@ namespace sat {
if (s.m_trail.size() > m_last_sub_trail_sz) {
unsigned sz0 = c.size();
if (cleanup_clause(c)) {
remove_clause(c);
remove_clause(c, true);
continue;
}
unsigned sz = c.size();
@ -906,7 +908,7 @@ namespace sat {
s.mk_bin_clause(c[0], c[1], c.is_learned());
m_sub_bin_todo.push_back(bin_clause(c[0], c[1], c.is_learned()));
c.restore(sz0);
remove_clause(c);
remove_clause(c, sz != sz0);
continue;
default:
if (s.m_config.m_drat && sz != sz0) {
@ -1222,7 +1224,6 @@ namespace sat {
RI literals.
*/
void minimize_covered_clause(unsigned idx) {
literal _blocked = m_covered_clause[idx];
for (literal l : m_tautology) VERIFY(s.is_marked(l));
for (literal l : m_covered_clause) s.unmark_visited(l);
for (literal l : m_tautology) s.mark_visited(l);

View file

@ -133,7 +133,7 @@ namespace sat {
void register_clauses(clause_vector & cs);
void remove_clause(clause & c);
void remove_clause(clause & c, bool is_unique);
void set_learned(clause & c);
void set_learned(literal l1, literal l2);

View file

@ -27,25 +27,29 @@ Revision History:
#include "util/trace.h"
#include "util/max_cliques.h"
#include "util/gparams.h"
#ifdef _MSC_VER
# include <xmmintrin.h>
#endif
// define to update glue during propagation
#define UPDATE_GLUE
namespace sat {
solver::solver(params_ref const & p, reslimit& l):
solver_core(l),
m_checkpoint_enabled(true),
m_config(p),
m_par(nullptr),
m_cls_allocator_idx(false),
m_drat(*this),
m_cleaner(*this),
m_simplifier(*this, p),
m_scc(*this, p),
m_asymm_branch(*this, p),
m_probing(*this, p),
m_mus(*this),
m_drat(*this),
m_inconsistent(false),
m_searching(false),
m_num_frozen(0),
@ -413,8 +417,6 @@ namespace sat {
clause * r = alloc_clause(3, lits, learned);
bool reinit = attach_ter_clause(*r);
if (reinit && !learned) push_reinit_stack(*r);
if (m_config.m_drat) m_drat.add(*r, learned);
if (learned)
m_learned.push_back(r);
else
@ -424,6 +426,9 @@ namespace sat {
bool solver::attach_ter_clause(clause & c) {
bool reinit = false;
if (m_config.m_drat) m_drat.add(c, c.is_learned());
TRACE("sat", tout << c << "\n";);
SASSERT(!c.was_removed());
m_watches[(~c[0]).index()].push_back(watched(c[1], c[2]));
m_watches[(~c[1]).index()].push_back(watched(c[0], c[2]));
m_watches[(~c[2]).index()].push_back(watched(c[0], c[1]));
@ -459,8 +464,9 @@ namespace sat {
else {
m_clauses.push_back(r);
}
if (m_config.m_drat)
if (m_config.m_drat) {
m_drat.add(*r, learned);
}
return r;
}
@ -1157,6 +1163,7 @@ namespace sat {
}
catch (const abort_solver &) {
m_reason_unknown = "sat.giveup";
IF_VERBOSE(SAT_VB_LVL, verbose_stream() << "(sat \"abort giveup\")\n";);
return l_undef;
}
}
@ -1779,39 +1786,31 @@ namespace sat {
}
#endif
IF_VERBOSE(10, verbose_stream() << "\"checking model\"\n";);
if (!check_clauses(m_model)) {
throw solver_exception("check model failed");
}
if (m_config.m_drat) m_drat.check_model(m_model);
// m_mc.set_solver(nullptr);
m_mc(m_model);
if (!check_clauses(m_model)) {
IF_VERBOSE(0, verbose_stream() << "failure checking clauses on transformed model\n";);
IF_VERBOSE(10, m_mc.display(verbose_stream()));
//IF_VERBOSE(0, display_units(verbose_stream()));
//IF_VERBOSE(0, display(verbose_stream()));
IF_VERBOSE(0, for (bool_var v = 0; v < num; v++) verbose_stream() << v << ": " << m_model[v] << "\n";);
throw solver_exception("check model failed");
}
TRACE("sat", for (bool_var v = 0; v < num; v++) tout << v << ": " << m_model[v] << "\n";);
if (m_clone) {
IF_VERBOSE(1, verbose_stream() << "\"checking model (on original set of clauses)\"\n";);
if (!m_clone->check_model(m_model)) {
//IF_VERBOSE(0, display(verbose_stream()));
//IF_VERBOSE(0, display_watches(verbose_stream()));
IF_VERBOSE(0, m_mc.display(verbose_stream()));
IF_VERBOSE(0, display_units(verbose_stream()));
//IF_VERBOSE(0, m_clone->display(verbose_stream() << "clone\n"));
throw solver_exception("check model failed (for cloned solver)");
IF_VERBOSE(10, verbose_stream() << "\"checking model\"\n";);
if (!check_clauses(m_model)) {
throw solver_exception("check model failed");
}
}
if (m_config.m_drat) {
m_drat.check_model(m_model);
}
m_mc(m_model);
if (m_clone && !check_clauses(m_model)) {
IF_VERBOSE(1, verbose_stream() << "failure checking clauses on transformed model\n";);
IF_VERBOSE(10, m_mc.display(verbose_stream()));
IF_VERBOSE(10, display_model(verbose_stream()));
throw solver_exception("check model failed");
}
if (m_clone && !m_clone->check_model(m_model)) {
IF_VERBOSE(1, m_mc.display(verbose_stream()));
IF_VERBOSE(1, display_units(verbose_stream()));
throw solver_exception("check model failed (for cloned solver)");
}
}
bool solver::check_clauses(model const& m) const {
@ -1819,7 +1818,7 @@ namespace sat {
for (clause const* cp : m_clauses) {
clause const & c = *cp;
if (!c.satisfied_by(m)) {
IF_VERBOSE(0, verbose_stream() << "failed clause " << c.id() << ": " << c << "\n";);
IF_VERBOSE(1, verbose_stream() << "failed clause " << c.id() << ": " << c << "\n";);
TRACE("sat", tout << "failed: " << c << "\n";
tout << "assumptions: " << m_assumptions << "\n";
tout << "trail: " << m_trail << "\n";
@ -1827,7 +1826,7 @@ namespace sat {
m_mc.display(tout);
);
for (literal l : c) {
if (was_eliminated(l.var())) IF_VERBOSE(0, verbose_stream() << "eliminated: " << l << "\n";);
if (was_eliminated(l.var())) IF_VERBOSE(1, verbose_stream() << "eliminated: " << l << "\n";);
}
ok = false;
}
@ -1843,8 +1842,8 @@ namespace sat {
if (l.index() > l2.index())
continue;
if (value_at(l2, m) != l_true) {
IF_VERBOSE(0, verbose_stream() << "failed binary: " << l << " := " << value_at(l, m) << " " << l2 << " := " << value_at(l2, m) << "\n");
IF_VERBOSE(0, verbose_stream() << "elim l1: " << was_eliminated(l.var()) << " elim l2: " << was_eliminated(l2) << "\n");
IF_VERBOSE(1, verbose_stream() << "failed binary: " << l << " := " << value_at(l, m) << " " << l2 << " := " << value_at(l2, m) << "\n");
IF_VERBOSE(1, verbose_stream() << "elim l1: " << was_eliminated(l.var()) << " elim l2: " << was_eliminated(l2) << "\n");
TRACE("sat", m_mc.display(tout << "failed binary: " << l << " " << l2 << "\n"););
ok = false;
}
@ -1855,7 +1854,7 @@ namespace sat {
for (literal l : m_assumptions) {
if (value_at(l, m) != l_true) {
VERIFY(is_external(l.var()));
IF_VERBOSE(0, verbose_stream() << "assumption: " << l << " does not model check " << value_at(l, m) << "\n";);
IF_VERBOSE(1, verbose_stream() << "assumption: " << l << " does not model check " << value_at(l, m) << "\n";);
TRACE("sat",
tout << l << " does not model check\n";
tout << "trail: " << m_trail << "\n";
@ -1876,8 +1875,8 @@ namespace sat {
if (ok && !m_mc.check_model(m)) {
ok = false;
TRACE("sat", tout << "model: " << m << "\n"; m_mc.display(tout););
IF_VERBOSE(0, verbose_stream() << "model check failed\n");
}
IF_VERBOSE(1, verbose_stream() << "model check " << (ok?"OK":"failed") << "\n";);
return ok;
}
@ -2170,6 +2169,36 @@ namespace sat {
IF_VERBOSE(SAT_VB_LVL, verbose_stream() << "(sat-gc :strategy " << st_name << " :deleted " << (sz - new_sz) << ")\n";);
}
bool solver::can_delete3(literal l1, literal l2, literal l3) const {
if (value(l1) == l_true &&
value(l2) == l_false &&
value(l3) == l_false) {
justification const& j = m_justification[l1.var()];
if (j.is_ternary_clause()) {
watched w1(l2, l3);
watched w2(j.get_literal1(), j.get_literal2());
return w1 != w2;
}
}
return true;
}
bool solver::can_delete(clause const & c) const {
if (c.on_reinit_stack())
return false;
if (c.size() == 3) {
return
can_delete3(c[0],c[1],c[2]) &&
can_delete3(c[1],c[0],c[2]) &&
can_delete3(c[2],c[0],c[1]);
}
literal l0 = c[0];
if (value(l0) != l_true)
return true;
justification const & jst = m_justification[l0.var()];
return !jst.is_clause() || cls_allocator().get_clause(jst.get_clause_offset()) != &c;
}
/**
\brief Use gc based on dynamic psm. Clauses are initially frozen.
*/
@ -2388,6 +2417,7 @@ namespace sat {
}
}
m_lemma.reset();
unsigned idx = skip_literals_above_conflict_level();
@ -2408,6 +2438,7 @@ namespace sat {
do {
TRACE("sat_conflict_detail", tout << "processing consequent: " << consequent << "\n";
tout << "num_marks: " << num_marks << ", js: " << js << "\n";);
switch (js.get_kind()) {
case justification::NONE:
break;
@ -2462,6 +2493,8 @@ namespace sat {
idx--;
num_marks--;
reset_mark(c_var);
TRACE("sat", display_justification(tout << consequent << " ", js) << "\n";);
}
while (num_marks > 0);
@ -2474,12 +2507,13 @@ namespace sat {
TRACE("sat_lemma", tout << "new lemma size: " << m_lemma.size() << "\n" << m_lemma << "\n";);
unsigned new_scope_lvl = 0;
bool sub_min = false, res_min = false;
if (!m_lemma.empty()) {
if (m_config.m_minimize_lemmas) {
minimize_lemma();
res_min = minimize_lemma();
reset_lemma_var_marks();
if (m_config.m_dyn_sub_res)
dyn_sub_res();
sub_min = dyn_sub_res();
TRACE("sat_lemma", tout << "new lemma (after minimization) size: " << m_lemma.size() << "\n" << m_lemma << "\n";);
}
else
@ -2499,12 +2533,12 @@ namespace sat {
m_slow_glue_avg.update(glue);
pop_reinit(m_scope_lvl - new_scope_lvl);
TRACE("sat_conflict_detail", tout << glue << " " << new_scope_lvl << "\n";);
// unsound: m_asymm_branch.minimize(m_scc, m_lemma);
clause * lemma = mk_clause_core(m_lemma.size(), m_lemma.c_ptr(), true);
if (lemma) {
lemma->set_glue(glue);
if (m_par) m_par->share_clause(*this, *lemma);
}
TRACE("sat_conflict_detail", tout << new_scope_lvl << "\n";);
decay_activity();
updt_phase_counters();
@ -2851,7 +2885,7 @@ namespace sat {
if (m_lvl_set.may_contain(var_lvl)) {
mark(var);
m_unmark.push_back(var);
m_lemma_min_stack.push_back(var);
m_lemma_min_stack.push_back(antecedent);
}
else {
return false;
@ -2869,11 +2903,12 @@ namespace sat {
*/
bool solver::implied_by_marked(literal lit) {
m_lemma_min_stack.reset(); // avoid recursive function
m_lemma_min_stack.push_back(lit.var());
m_lemma_min_stack.push_back(lit);
unsigned old_size = m_unmark.size();
while (!m_lemma_min_stack.empty()) {
bool_var var = m_lemma_min_stack.back();
lit = m_lemma_min_stack.back();
bool_var var = lit.var();
m_lemma_min_stack.pop_back();
justification const& js = m_justification[var];
switch(js.get_kind()) {
@ -2935,6 +2970,8 @@ namespace sat {
UNREACHABLE();
break;
}
TRACE("sat_conflict",
display_justification(tout << var << " ",js) << "\n";);
}
return true;
}
@ -2965,7 +3002,7 @@ namespace sat {
literals that are implied by other literals in m_lemma and/or literals
assigned at level 0.
*/
void solver::minimize_lemma() {
bool solver::minimize_lemma() {
SASSERT(!m_lemma.empty());
SASSERT(m_unmark.empty());
updt_lemma_lvl_set();
@ -2989,6 +3026,7 @@ namespace sat {
reset_unmark(0);
m_lemma.shrink(j);
m_stats.m_minimized_lits += sz - j;
return j < sz;
}
/**
@ -3062,7 +3100,7 @@ namespace sat {
\brief Apply dynamic subsumption resolution to new lemma.
Only binary and ternary clauses are used.
*/
void solver::dyn_sub_res() {
bool solver::dyn_sub_res() {
unsigned sz = m_lemma.size();
for (unsigned i = 0; i < sz; i++) {
mark_lit(m_lemma[i]);
@ -3175,6 +3213,7 @@ namespace sat {
SASSERT(j >= 1);
m_lemma.shrink(j);
return j < sz;
}
@ -3543,6 +3582,14 @@ namespace sat {
return true;
}
std::ostream& solver::display_model(std::ostream& out) const {
unsigned num = num_vars();
for (bool_var v = 0; v < num; v++) {
out << v << ": " << m_model[v] << "\n";
}
return out;
}
void solver::display_binary(std::ostream & out) const {
unsigned sz = m_watches.size();
for (unsigned l_idx = 0; l_idx < sz; l_idx++) {

View file

@ -85,9 +85,10 @@ namespace sat {
stats m_stats;
scoped_ptr<extension> m_ext;
parallel* m_par;
random_gen m_rand;
drat m_drat; // DRAT for generating proofs
clause_allocator m_cls_allocator[2];
bool m_cls_allocator_idx;
random_gen m_rand;
cleaner m_cleaner;
model m_model;
model_converter m_mc;
@ -97,7 +98,6 @@ namespace sat {
asymm_branch m_asymm_branch;
probing m_probing;
mus m_mus; // MUS for minimal core extraction
drat m_drat; // DRAT for generating proofs
bool m_inconsistent;
bool m_searching;
// A conflict is usually a single justification. That is, a justification
@ -328,6 +328,7 @@ namespace sat {
if (!m_rlimit.inc()) {
m_mc.reset();
m_model_is_current = false;
TRACE("sat", tout << "canceled\n";);
throw solver_exception(Z3_CANCELED_MSG);
}
++m_num_checkpoints;
@ -384,7 +385,7 @@ namespace sat {
model_converter const & get_model_converter() const { return m_mc; }
void flush(model_converter& mc) override { mc.flush(m_mc); }
void set_model(model const& mdl);
char const* get_reason_unknown() const { return m_reason_unknown.c_str(); }
char const* get_reason_unknown() const override { return m_reason_unknown.c_str(); }
bool check_clauses(model const& m) const;
bool is_assumption(bool_var v) const;
void set_activity(bool_var v, unsigned act);
@ -460,17 +461,8 @@ namespace sat {
void gc_dyn_psm();
bool activate_frozen_clause(clause & c);
unsigned psm(clause const & c) const;
bool can_delete(clause const & c) const {
if (c.on_reinit_stack())
return false;
if (c.size() == 3)
return true; // not needed to justify anything.
literal l0 = c[0];
if (value(l0) != l_true)
return true;
justification const & jst = m_justification[l0.var()];
return !jst.is_clause() || cls_allocator().get_clause(jst.get_clause_offset()) != &c;
}
bool can_delete(clause const & c) const;
bool can_delete3(literal l1, literal l2, literal l3) const;
clause& get_clause(watch_list::iterator it) const {
SASSERT(it->get_kind() == watched::CLAUSE);
@ -521,14 +513,14 @@ namespace sat {
typedef approx_set_tpl<unsigned, u2u, unsigned> level_approx_set;
bool_var_vector m_unmark;
level_approx_set m_lvl_set;
bool_var_vector m_lemma_min_stack;
literal_vector m_lemma_min_stack;
bool process_antecedent_for_minimization(literal antecedent);
bool implied_by_marked(literal lit);
void reset_unmark(unsigned old_size);
void updt_lemma_lvl_set();
void minimize_lemma();
void reset_lemma_var_marks();
void dyn_sub_res();
bool minimize_lemma();
bool dyn_sub_res();
// -----------------------
//
@ -668,6 +660,7 @@ namespace sat {
void display_watches(std::ostream & out) const;
void display_watches(std::ostream & out, literal lit) const;
void display_dimacs(std::ostream & out) const override;
std::ostream& display_model(std::ostream& out) const;
void display_wcnf(std::ostream & out, unsigned sz, literal const* lits, unsigned const* weights) const;
void display_assignment(std::ostream & out) const;
std::ostream& display_justification(std::ostream & out, justification const& j) const;

View file

@ -50,6 +50,8 @@ namespace sat {
// check satisfiability
virtual lbool check(unsigned num_lits = 0, literal const* lits = nullptr) = 0;
virtual char const* get_reason_unknown() const { return "reason unavailable"; }
// add clauses
virtual void add_clause(unsigned n, literal* lits, bool is_redundant) = 0;
void add_clause(literal l1, literal l2, bool is_redundant) {

View file

@ -99,6 +99,7 @@ namespace sat {
while (s.rlimit().inc() && st == l_undef) {
if (inconsistent() && !m_decisions.empty()) do_pop();
else if (inconsistent()) st = l_false;
else if (should_restart()) restart();
else if (should_backjump()) st = do_backjump();
else st = decide();
}
@ -276,9 +277,6 @@ namespace sat {
init_runs();
init_phase();
}
if (false && should_restart()) {
restart();
}
}
bool unit_walk::should_restart() {
@ -287,9 +285,7 @@ namespace sat {
++m_luby_index;
return true;
}
else {
return false;
}
return false;
}
void unit_walk::restart() {
@ -328,9 +324,9 @@ namespace sat {
}
void unit_walk::propagate() {
while (m_qhead < m_trail.size() && !inconsistent())
propagate(choose_literal());
// IF_VERBOSE(1, verbose_stream() << m_trail.size() << " " << inconsistent() << "\n";);
while (m_qhead < m_trail.size() && !inconsistent()) {
propagate(m_trail[m_qhead++]);
}
}
std::ostream& unit_walk::display(std::ostream& out) const {
@ -495,10 +491,6 @@ namespace sat {
<< ")\n";);
}
literal unit_walk::choose_literal() {
return m_trail[m_qhead++];
}
void unit_walk::set_conflict(literal l1, literal l2) {
set_conflict();
}

View file

@ -91,7 +91,6 @@ namespace sat {
void flip_phase(literal l);
void propagate();
void propagate(literal lit);
literal choose_literal();
void set_conflict(literal l1, literal l2);
void set_conflict(literal l1, literal l2, literal l3);
void set_conflict(clause const& c);

View file

@ -86,7 +86,15 @@ namespace sat {
}
}
wlist.set_end(it2);
//VERIFY(found);
#if 0
VERIFY(found);
for (watched const& w2 : wlist) {
if (w2 == w) {
std::cout << l1 << " " << l2 << "\n";
}
//VERIFY(w2 != w);
}
#endif
}
void conflict_cleanup(watch_list::iterator it, watch_list::iterator it2, watch_list& wlist) {

View file

@ -65,6 +65,7 @@ class sat_tactic : public tactic {
TRACE("sat_dimacs", m_solver->display_dimacs(tout););
dep2assumptions(dep2asm, assumptions);
lbool r = m_solver->check(assumptions.size(), assumptions.c_ptr());
TRACE("sat", tout << "result of checking: " << r << " " << m_solver->get_reason_unknown() << "\n";);
if (r == l_false) {
expr_dependency * lcore = nullptr;
if (produce_core) {
@ -198,6 +199,11 @@ public:
proc.m_solver->collect_statistics(m_stats);
throw tactic_exception(ex.msg());
}
catch (z3_exception& ex) {
(void)ex;
TRACE("sat", tout << ex.msg() << "\n";);
throw;
}
TRACE("sat_stats", m_stats.display_smt2(tout););
}

View file

@ -115,6 +115,7 @@ void display_usage() {
}
void parse_cmd_line_args(int argc, char ** argv) {
long timeout = 0;
int i = 1;
char * eq_pos = nullptr;
while (i < argc) {
@ -216,8 +217,7 @@ void parse_cmd_line_args(int argc, char ** argv) {
else if (strcmp(opt_name, "T") == 0) {
if (!opt_arg)
error("option argument (-T:timeout) is missing.");
long tm = strtol(opt_arg, nullptr, 10);
set_timeout(tm * 1000);
timeout = strtol(opt_arg, nullptr, 10);
}
else if (strcmp(opt_name, "t") == 0) {
if (!opt_arg)
@ -292,6 +292,9 @@ void parse_cmd_line_args(int argc, char ** argv) {
}
i++;
}
if (timeout)
set_timeout(timeout * 1000);
}

View file

@ -3496,7 +3496,6 @@ namespace smt {
m_case_split_queue ->init_search_eh();
m_next_progress_sample = 0;
TRACE("literal_occ", display_literal_num_occs(tout););
m_timer.start();
}
void context::end_search() {

View file

@ -156,6 +156,14 @@ namespace smt {
}
void set_activity(expr* lit, double act) {
SASSERT(m().is_bool(lit));
m().is_not(lit, lit);
if (!m_kernel.b_internalized(lit)) {
m_kernel.internalize(lit, false);
}
if (!m_kernel.b_internalized(lit)) {
return;
}
auto v = m_kernel.get_bool_var(lit);
double old_act = m_kernel.get_activity(v);
m_kernel.set_activity(v, act);

View file

@ -499,7 +499,10 @@ namespace smt {
std::ostream& theory_jobscheduler::display(std::ostream & out, job_resource const& jr) const {
return out << "r:" << jr.m_resource_id << " cap:" << jr.m_capacity << " load:" << jr.m_loadpct << " end:" << jr.m_finite_capacity_end;
for (auto const& s : jr.m_properties) out << " " << s; out << "\n";
for (auto const& s : jr.m_properties) {
out << " " << s;
}
out << "\n";
}
std::ostream& theory_jobscheduler::display(std::ostream & out, job_info const& j) const {
@ -511,7 +514,10 @@ namespace smt {
std::ostream& theory_jobscheduler::display(std::ostream & out, res_available const& r) const {
return out << "[" << r.m_start << ":" << r.m_end << "] @ " << r.m_loadpct << "%";
for (auto const& s : r.m_properties) out << " " << s; out << "\n";
for (auto const& s : r.m_properties) {
out << " " << s;
}
out << "\n";
}
std::ostream& theory_jobscheduler::display(std::ostream & out, res_info const& r) const {

View file

@ -80,6 +80,7 @@ bool smt_logics::logic_has_arith(symbol const & s) {
s == "LRA" ||
s == "UFIDL" ||
s == "QF_FP" ||
s == "FP" ||
s == "QF_FPBV" ||
s == "QF_BVFP" ||
s == "QF_S" ||
@ -101,6 +102,7 @@ bool smt_logics::logic_has_bv(symbol const & s) {
s == "QF_AUFBV" ||
s == "QF_BVRE" ||
s == "QF_FPBV" ||
s == "FP" ||
s == "QF_BVFP" ||
logic_is_allcsp(s) ||
s == "QF_FD" ||
@ -138,7 +140,7 @@ bool smt_logics::logic_has_str(symbol const & s) {
}
bool smt_logics::logic_has_fpa(symbol const & s) {
return s == "QF_FP" || s == "QF_FPBV" || s == "QF_BVFP" || s == "QF_FPLRA" || logic_is_allcsp(s);
return s == "FP" || s == "QF_FP" || s == "QF_FPBV" || s == "QF_BVFP" || s == "QF_FPLRA" || logic_is_allcsp(s);
}
bool smt_logics::logic_has_uf(symbol const & s) {

View file

@ -21,6 +21,7 @@ Notes:
#include "tactic/tactical.h"
#include "ast/arith_decl_plugin.h"
#include "ast/bv_decl_plugin.h"
#include "ast/pb_decl_plugin.h"
#include "ast/for_each_expr.h"
#include "ast/rewriter/expr_replacer.h"
#include "util/optional.h"
@ -85,13 +86,18 @@ class nla2bv_tactic : public tactic {
TRACE("nla2bv", g.display(tout);
tout << "Muls: " << count_mul(g) << "\n";
);
tactic_report report("nla->bv", g);
m_fmc = alloc(generic_model_converter, m_manager, "nla2bv");
m_bounds(g);
collect_power2(g);
if(!collect_vars(g)) {
switch (collect_vars(g)) {
case has_num:
break;
case not_supported:
throw tactic_exception("goal is not in the fragment supported by nla2bv");
case is_bool:
return;
}
tactic_report report("nla->bv", g);
substitute_vars(g);
TRACE("nla2bv", g.display(tout << "substitute vars\n"););
reduce_bv2int(g);
@ -308,41 +314,47 @@ class nla2bv_tactic : public tactic {
class get_uninterp_proc {
imp& m_imp;
arith_util& a;
ast_manager& m;
pb_util pb;
ptr_vector<app> m_vars;
bool m_no_arith;
bool m_in_supported_fragment;
public:
get_uninterp_proc(imp& s): m_imp(s), m_in_supported_fragment(true) {}
get_uninterp_proc(imp& s): m_imp(s), a(s.m_arith), m(a.get_manager()), pb(m), m_no_arith(true), m_in_supported_fragment(true) {}
ptr_vector<app> const& vars() { return m_vars; }
bool no_arith() const { return m_no_arith; }
void operator()(var * n) {
m_in_supported_fragment = false;
}
void operator()(app* n) {
arith_util& a = m_imp.m_arith;
ast_manager& m = a.get_manager();
if (a.is_int(n) &&
is_uninterp_const(n)) {
if (a.is_int(n) && is_uninterp_const(n)) {
m_vars.push_back(n);
}
else if (a.is_real(n) &&
is_uninterp_const(n)) {
else if (a.is_real(n) && is_uninterp_const(n)) {
m_vars.push_back(n);
}
else if (m.is_bool(n) && is_uninterp_const(n)) {
}
else if (!(a.is_mul(n) ||
a.is_add(n) ||
a.is_sub(n) ||
a.is_le(n) ||
a.is_lt(n) ||
a.is_ge(n) ||
a.is_gt(n) ||
a.is_numeral(n) ||
a.is_uminus(n) ||
m_imp.m_bv2real.is_pos_le(n) ||
m_imp.m_bv2real.is_pos_lt(n) ||
n->get_family_id() == a.get_manager().get_basic_family_id())) {
TRACE("nla2bv", tout << "Not supported: " << mk_ismt2_pp(n, a.get_manager()) << "\n";);
else if (m.is_bool(n) && n->get_decl()->get_family_id() == pb.get_family_id()) {
}
else if (a.is_mul(n) ||
a.is_add(n) ||
a.is_sub(n) ||
a.is_le(n) ||
a.is_lt(n) ||
a.is_ge(n) ||
a.is_gt(n) ||
a.is_numeral(n) ||
a.is_uminus(n) ||
m_imp.m_bv2real.is_pos_le(n) ||
m_imp.m_bv2real.is_pos_lt(n)) {
m_no_arith = false;
}
else if (n->get_family_id() != m.get_basic_family_id()) {
TRACE("nla2bv", tout << "Not supported: " << mk_ismt2_pp(n, m) << "\n";);
m_in_supported_fragment = false;
}
m_imp.update_num_bits(n);
@ -353,13 +365,17 @@ class nla2bv_tactic : public tactic {
bool is_supported() const { return m_in_supported_fragment; }
};
bool collect_vars(goal const & g) {
enum collect_t { has_num, not_supported, is_bool };
collect_t collect_vars(goal const & g) {
get_uninterp_proc fe_var(*this);
for_each_expr_at(fe_var, g);
for (unsigned i = 0; i < fe_var.vars().size(); ++i) {
add_var(fe_var.vars()[i]);
}
return fe_var.is_supported() && !fe_var.vars().empty();
if (!fe_var.is_supported()) return not_supported;
if (fe_var.vars().empty() && fe_var.no_arith()) return is_bool;
return has_num;
}
class count_mul_proc {

View file

@ -37,7 +37,6 @@ class elim_small_bv_tactic : public tactic {
bv_util m_util;
th_rewriter m_simp;
ref<generic_model_converter> m_mc;
goal * m_goal;
unsigned m_max_bits;
unsigned long long m_max_steps;
unsigned long long m_max_memory; // in bytes
@ -53,7 +52,6 @@ class elim_small_bv_tactic : public tactic {
m_bindings(_m),
m_num_eliminated(0) {
updt_params(p);
m_goal = nullptr;
m_max_steps = UINT_MAX;
}
@ -76,7 +74,7 @@ class elim_small_bv_tactic : public tactic {
TRACE("elim_small_bv", tout << "replace idx " << idx << " with " << mk_ismt2_pp(replacement, m) <<
" in " << mk_ismt2_pp(e, m) << std::endl;);
expr_ref res(m);
expr_ref_vector substitution(m);
ptr_vector<expr> substitution;
substitution.resize(num_decls, nullptr);
substitution[num_decls - idx - 1] = replacement;
@ -94,7 +92,7 @@ class elim_small_bv_tactic : public tactic {
TRACE("elim_small_bv", tout << "substitution: " << std::endl;
for (unsigned k = 0; k < substitution.size(); k++) {
expr * se = substitution[k].get();
expr * se = substitution[k];
tout << k << " = ";
if (se == 0) tout << "0";
else tout << mk_ismt2_pp(se, m);
@ -152,9 +150,7 @@ class elim_small_bv_tactic : public tactic {
expr_ref_vector new_bodies(m);
for (unsigned j = 0; j < bv_sz && !max_steps_exceeded(num_steps); j ++) {
expr_ref n(m_util.mk_numeral(j, bv_sz), m);
expr_ref nb(m);
nb = replace_var(uv, num_decls, max_var_idx_p1, i, s, body, n);
new_bodies.push_back(nb);
new_bodies.push_back(replace_var(uv, num_decls, max_var_idx_p1, i, s, body, n));
num_steps++;
}
@ -250,7 +246,6 @@ public:
fail_if_unsat_core_generation("elim-small-bv", g);
m_rw.cfg().m_produce_models = g->models_enabled();
m_rw.m_cfg.m_goal = g.get();
expr_ref new_curr(m);
proof_ref new_pr(m);
unsigned size = g->size();

View file

@ -49,8 +49,7 @@ class distribute_forall_tactic : public tactic {
expr * not_arg = m.mk_not(arg);
quantifier_ref tmp_q(m);
tmp_q = m.update_quantifier(old_q, not_arg);
expr_ref new_q = elim_unused_vars(m, tmp_q, params_ref());
new_args.push_back(new_q);
new_args.push_back(elim_unused_vars(m, tmp_q, params_ref()));
}
result = m.mk_and(new_args.size(), new_args.c_ptr());
return true;
@ -68,8 +67,7 @@ class distribute_forall_tactic : public tactic {
expr * arg = to_app(new_body)->get_arg(i);
quantifier_ref tmp_q(m);
tmp_q = m.update_quantifier(old_q, arg);
expr_ref new_q = elim_unused_vars(m, tmp_q, params_ref());
new_args.push_back(new_q);
new_args.push_back(elim_unused_vars(m, tmp_q, params_ref()));
}
result = m.mk_and(new_args.size(), new_args.c_ptr());
return true;

View file

@ -35,7 +35,7 @@ Notes:
tactic * mk_default_tactic(ast_manager & m, params_ref const & p) {
tactic * st = using_params(and_then(mk_simplify_tactic(m),
cond(mk_is_propositional_probe(), if_no_proofs(mk_fd_tactic(m, p)),
cond(mk_and(mk_is_propositional_probe(), mk_not(mk_produce_proofs_probe())), mk_fd_tactic(m, p),
cond(mk_is_qfbv_probe(), mk_qfbv_tactic(m),
cond(mk_is_qfaufbv_probe(), mk_qfaufbv_tactic(m),
cond(mk_is_qflia_probe(), mk_qflia_tactic(m),

View file

@ -27,6 +27,7 @@ Notes:
#include "sat/tactic/sat_tactic.h"
#include "tactic/arith/nla2bv_tactic.h"
#include "tactic/arith/lia2card_tactic.h"
#include "tactic/arith/card2bv_tactic.h"
#include "tactic/core/ctx_simplify_tactic.h"
#include "tactic/core/cofactor_term_ite_tactic.h"
#include "nlsat/tactic/qfnra_nlsat_tactic.h"
@ -73,7 +74,8 @@ static tactic * mk_qfnia_premable(ast_manager & m, params_ref const & p_ref) {
using_params(mk_ctx_simplify_tactic(m), ctx_simp_p),
using_params(mk_simplify_tactic(m), pull_ite_p),
mk_elim_uncnstr_tactic(m),
mk_lia2card_tactic(m),
mk_lia2card_tactic(m),
mk_card2bv_tactic(m, p_ref),
skip_if_failed(using_params(mk_cofactor_term_ite_tactic(m), elim_p)));
}
@ -105,7 +107,9 @@ static tactic * mk_qfnia_nlsat_solver(ast_manager & m, params_ref const & p) {
static tactic * mk_qfnia_smt_solver(ast_manager& m, params_ref const& p) {
params_ref simp_p = p;
simp_p.set_bool("som", true); // expand into sums of monomials
return and_then(using_params(mk_simplify_tactic(m), simp_p), mk_smt_tactic(m));
return and_then(
using_params(mk_simplify_tactic(m), simp_p),
mk_smt_tactic(m));
}
tactic * mk_qfnia_tactic(ast_manager & m, params_ref const & p) {
@ -113,6 +117,7 @@ tactic * mk_qfnia_tactic(ast_manager & m, params_ref const & p) {
return and_then(
mk_report_verbose_tactic("(qfnia-tactic)", 10),
mk_qfnia_premable(m, p),
or_else(mk_qfnia_sat_solver(m, p),
try_for(mk_qfnia_smt_solver(m, p), 2000),
mk_qfnia_nlsat_solver(m, p),

View file

@ -56,7 +56,6 @@ z3_add_component(util
symbol.cpp
timeit.cpp
timeout.cpp
timer.cpp
trace.cpp
util.cpp
warning.cpp

View file

@ -151,7 +151,7 @@ public:
if (m_data == nullptr) {
return 0;
}
return static_cast<unsigned>(reinterpret_cast<size_t *>(m_data)[SIZE_IDX]);
return static_cast<unsigned>(reinterpret_cast<size_t *>(m_data)[ARRAY_SIZE_IDX]);
}
bool empty() const { return m_data == nullptr; }

View file

@ -1,268 +1,30 @@
/*++
Copyright (c) 2006 Microsoft Corporation
Copyright (c) 2019 Microsoft Corporation
Module Name:
buffer.h
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2006-10-16.
Revision History:
Daniel Schemmel 2019-2-23
--*/
#ifndef BUFFER_H_
#define BUFFER_H_
#include<string.h>
#include "util/memory_manager.h"
#include "old_buffer.h"
template<typename T, bool CallDestructors=true, unsigned INITIAL_SIZE=16>
class buffer {
protected:
T * m_buffer;
unsigned m_pos;
unsigned m_capacity;
char m_initial_buffer[INITIAL_SIZE * sizeof(T)];
void free_memory() {
if (m_buffer != reinterpret_cast<T*>(m_initial_buffer)) {
dealloc_svect(m_buffer);
}
}
using buffer = old_buffer<T, CallDestructors, INITIAL_SIZE>;
void expand() {
unsigned new_capacity = m_capacity << 1;
T * new_buffer = reinterpret_cast<T*>(memory::allocate(sizeof(T) * new_capacity));
memcpy(new_buffer, m_buffer, m_pos * sizeof(T));
free_memory();
m_buffer = new_buffer;
m_capacity = new_capacity;
}
void destroy_elements() {
iterator it = begin();
iterator e = end();
for (; it != e; ++it) {
it->~T();
}
}
void destroy() {
if (CallDestructors) {
destroy_elements();
}
free_memory();
}
public:
typedef T data;
typedef T * iterator;
typedef const T * const_iterator;
buffer():
m_buffer(reinterpret_cast<T *>(m_initial_buffer)),
m_pos(0),
m_capacity(INITIAL_SIZE) {
}
buffer(const buffer & source):
m_buffer(reinterpret_cast<T *>(m_initial_buffer)),
m_pos(0),
m_capacity(INITIAL_SIZE) {
unsigned sz = source.size();
for(unsigned i = 0; i < sz; i++) {
push_back(source.m_buffer[i]);
}
}
buffer(unsigned sz, const T & elem):
m_buffer(reinterpret_cast<T *>(m_initial_buffer)),
m_pos(0),
m_capacity(INITIAL_SIZE) {
for (unsigned i = 0; i < sz; i++) {
push_back(elem);
}
SASSERT(size() == sz);
}
~buffer() {
destroy();
}
void reset() {
if (CallDestructors) {
destroy_elements();
}
m_pos = 0;
}
void finalize() {
destroy();
m_buffer = reinterpret_cast<T *>(m_initial_buffer);
m_pos = 0;
m_capacity = INITIAL_SIZE;
}
unsigned size() const {
return m_pos;
}
bool empty() const {
return m_pos == 0;
}
iterator begin() {
return m_buffer;
}
iterator end() {
return m_buffer + size();
}
void set_end(iterator it) {
m_pos = static_cast<unsigned>(it - m_buffer);
if (CallDestructors) {
iterator e = end();
for (; it != e; ++it) {
it->~T();
}
}
}
const_iterator begin() const {
return m_buffer;
}
const_iterator end() const {
return m_buffer + size();
}
void push_back(const T & elem) {
if (m_pos >= m_capacity)
expand();
new (m_buffer + m_pos) T(elem);
m_pos++;
}
void push_back(T && elem) {
if (m_pos >= m_capacity)
expand();
new (m_buffer + m_pos) T(std::move(elem));
m_pos++;
}
void pop_back() {
if (CallDestructors) {
back().~T();
}
m_pos--;
}
const T & back() const {
SASSERT(!empty());
SASSERT(m_pos > 0);
return m_buffer[m_pos - 1];
}
T & back() {
SASSERT(!empty());
SASSERT(m_pos > 0);
return m_buffer[m_pos - 1];
}
T * c_ptr() const {
return m_buffer;
}
void append(unsigned n, T const * elems) {
for (unsigned i = 0; i < n; i++) {
push_back(elems[i]);
}
}
void append(const buffer& source) {
append(source.size(), source.c_ptr());
}
T & operator[](unsigned idx) {
SASSERT(idx < size());
return m_buffer[idx];
}
const T & operator[](unsigned idx) const {
SASSERT(idx < size());
return m_buffer[idx];
}
T & get(unsigned idx) {
SASSERT(idx < size());
return m_buffer[idx];
}
const T & get(unsigned idx) const {
SASSERT(idx < size());
return m_buffer[idx];
}
void set(unsigned idx, T const & val) {
SASSERT(idx < size());
m_buffer[idx] = val;
}
void resize(unsigned nsz, const T & elem=T()) {
unsigned sz = size();
if (nsz > sz) {
for (unsigned i = sz; i < nsz; i++) {
push_back(elem);
}
}
else if (nsz < sz) {
for (unsigned i = nsz; i < sz; i++) {
pop_back();
}
}
SASSERT(size() == nsz);
}
void shrink(unsigned nsz) {
unsigned sz = size();
SASSERT(nsz <= sz);
for (unsigned i = nsz; i < sz; i++)
pop_back();
SASSERT(size() == nsz);
}
buffer & operator=(buffer const & other) {
if (this == &other)
return *this;
reset();
append(other);
return *this;
}
};
// note that the append added in the old_ptr_buffer is actually not an addition over its base class old_buffer,
// which already has an append function with the same signature and implementation
template<typename T, unsigned INITIAL_SIZE=16>
using ptr_buffer = old_ptr_buffer<T, INITIAL_SIZE>;
template<typename T, unsigned INITIAL_SIZE=16>
class ptr_buffer : public buffer<T *, false, INITIAL_SIZE> {
public:
void append(unsigned n, T * const * elems) {
for (unsigned i = 0; i < n; i++) {
this->push_back(elems[i]);
}
}
};
template<typename T, unsigned INITIAL_SIZE=16>
class sbuffer : public buffer<T, false, INITIAL_SIZE> {
public:
sbuffer(): buffer<T, false, INITIAL_SIZE>() {}
sbuffer(unsigned sz, const T& elem) : buffer<T, false, INITIAL_SIZE>(sz,elem) {}
};
using sbuffer = old_sbuffer<T, INITIAL_SIZE>;
#endif /* BUFFER_H_ */

View file

@ -35,6 +35,6 @@ template lp::dense_matrix<lp::mpq, lp::numeric_pair<lp::mpq> >::dense_matrix(uns
template lp::dense_matrix<lp::mpq, lp::numeric_pair<lp::mpq> >& lp::dense_matrix<lp::mpq, lp::numeric_pair<lp::mpq> >::operator=(lp::dense_matrix<lp::mpq, lp::numeric_pair<lp::mpq> > const&);
template lp::dense_matrix<lp::mpq, lp::numeric_pair<lp::mpq> > lp::operator*<lp::mpq, lp::numeric_pair<lp::mpq> >(lp::matrix<lp::mpq, lp::numeric_pair<lp::mpq> >&, lp::matrix<lp::mpq, lp::numeric_pair<lp::mpq> >&);
template void lp::dense_matrix<lp::mpq, lp::numeric_pair< lp::mpq> >::apply_from_right( vector< lp::mpq> &);
template void lp::dense_matrix<double,double>::apply_from_right(class vector<double> &);
template void lp::dense_matrix<double,double>::apply_from_right(vector<double> &);
template void lp::dense_matrix<lp::mpq, lp::mpq>::apply_from_left(vector<lp::mpq>&);
#endif

View file

@ -94,10 +94,8 @@ public:
obj_ref & operator=(obj_ref && n) {
SASSERT(&m_manager == &n.m_manager);
if (this != &n) {
std::swap(m_obj, n.m_obj);
n.reset();
}
std::swap(m_obj, n.m_obj);
n.reset();
return *this;
}

270
src/util/old_buffer.h Normal file
View file

@ -0,0 +1,270 @@
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
old_buffer.h
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2006-10-16.
Revision History:
2019-2-23 Renamed to old_buffer from buffer to provide new implementation
--*/
#ifndef OLD_BUFFER_H_
#define OLD_BUFFER_H_
#include<string.h>
#include "util/memory_manager.h"
template<typename T, bool CallDestructors=true, unsigned INITIAL_SIZE=16>
class old_buffer {
protected:
T * m_buffer;
unsigned m_pos;
unsigned m_capacity;
char m_initial_buffer[INITIAL_SIZE * sizeof(T)];
void free_memory() {
if (m_buffer != reinterpret_cast<T*>(m_initial_buffer)) {
dealloc_svect(m_buffer);
}
}
void expand() {
unsigned new_capacity = m_capacity << 1;
T * new_buffer = reinterpret_cast<T*>(memory::allocate(sizeof(T) * new_capacity));
memcpy(new_buffer, m_buffer, m_pos * sizeof(T));
free_memory();
m_buffer = new_buffer;
m_capacity = new_capacity;
}
void destroy_elements() {
iterator it = begin();
iterator e = end();
for (; it != e; ++it) {
it->~T();
}
}
void destroy() {
if (CallDestructors) {
destroy_elements();
}
free_memory();
}
public:
typedef T data;
typedef T * iterator;
typedef const T * const_iterator;
old_buffer():
m_buffer(reinterpret_cast<T *>(m_initial_buffer)),
m_pos(0),
m_capacity(INITIAL_SIZE) {
}
old_buffer(const old_buffer & source):
m_buffer(reinterpret_cast<T *>(m_initial_buffer)),
m_pos(0),
m_capacity(INITIAL_SIZE) {
unsigned sz = source.size();
for(unsigned i = 0; i < sz; i++) {
push_back(source.m_buffer[i]);
}
}
old_buffer(unsigned sz, const T & elem):
m_buffer(reinterpret_cast<T *>(m_initial_buffer)),
m_pos(0),
m_capacity(INITIAL_SIZE) {
for (unsigned i = 0; i < sz; i++) {
push_back(elem);
}
SASSERT(size() == sz);
}
~old_buffer() {
destroy();
}
void reset() {
if (CallDestructors) {
destroy_elements();
}
m_pos = 0;
}
void finalize() {
destroy();
m_buffer = reinterpret_cast<T *>(m_initial_buffer);
m_pos = 0;
m_capacity = INITIAL_SIZE;
}
unsigned size() const {
return m_pos;
}
bool empty() const {
return m_pos == 0;
}
iterator begin() {
return m_buffer;
}
iterator end() {
return m_buffer + size();
}
void set_end(iterator it) {
m_pos = static_cast<unsigned>(it - m_buffer);
if (CallDestructors) {
iterator e = end();
for (; it != e; ++it) {
it->~T();
}
}
}
const_iterator begin() const {
return m_buffer;
}
const_iterator end() const {
return m_buffer + size();
}
void push_back(const T & elem) {
if (m_pos >= m_capacity)
expand();
new (m_buffer + m_pos) T(elem);
m_pos++;
}
void push_back(T && elem) {
if (m_pos >= m_capacity)
expand();
new (m_buffer + m_pos) T(std::move(elem));
m_pos++;
}
void pop_back() {
if (CallDestructors) {
back().~T();
}
m_pos--;
}
const T & back() const {
SASSERT(!empty());
SASSERT(m_pos > 0);
return m_buffer[m_pos - 1];
}
T & back() {
SASSERT(!empty());
SASSERT(m_pos > 0);
return m_buffer[m_pos - 1];
}
T * c_ptr() const {
return m_buffer;
}
void append(unsigned n, T const * elems) {
for (unsigned i = 0; i < n; i++) {
push_back(elems[i]);
}
}
void append(const old_buffer& source) {
append(source.size(), source.c_ptr());
}
T & operator[](unsigned idx) {
SASSERT(idx < size());
return m_buffer[idx];
}
const T & operator[](unsigned idx) const {
SASSERT(idx < size());
return m_buffer[idx];
}
T & get(unsigned idx) {
SASSERT(idx < size());
return m_buffer[idx];
}
const T & get(unsigned idx) const {
SASSERT(idx < size());
return m_buffer[idx];
}
void set(unsigned idx, T const & val) {
SASSERT(idx < size());
m_buffer[idx] = val;
}
void resize(unsigned nsz, const T & elem=T()) {
unsigned sz = size();
if (nsz > sz) {
for (unsigned i = sz; i < nsz; i++) {
push_back(elem);
}
}
else if (nsz < sz) {
for (unsigned i = nsz; i < sz; i++) {
pop_back();
}
}
SASSERT(size() == nsz);
}
void shrink(unsigned nsz) {
unsigned sz = size();
SASSERT(nsz <= sz);
for (unsigned i = nsz; i < sz; i++)
pop_back();
SASSERT(size() == nsz);
}
old_buffer & operator=(old_buffer const & other) {
if (this == &other)
return *this;
reset();
append(other);
return *this;
}
};
template<typename T, unsigned INITIAL_SIZE=16>
class old_ptr_buffer : public old_buffer<T *, false, INITIAL_SIZE> {
public:
void append(unsigned n, T * const * elems) {
for (unsigned i = 0; i < n; i++) {
this->push_back(elems[i]);
}
}
};
template<typename T, unsigned INITIAL_SIZE=16>
class old_sbuffer : public old_buffer<T, false, INITIAL_SIZE> {
public:
old_sbuffer(): old_buffer<T, false, INITIAL_SIZE>() {}
old_sbuffer(unsigned sz, const T& elem) : old_buffer<T, false, INITIAL_SIZE>(sz,elem) {}
};
#endif /* OLD_BUFFER_H_ */

611
src/util/old_vector.h Normal file
View file

@ -0,0 +1,611 @@
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
old_vector.h
Abstract:
Dynamic array implementation.
Remarks:
- Empty arrays consume only sizeof(T *) bytes.
- There is the option of disabling the destructor invocation for elements stored in the vector.
This is useful for vectors of int.
Author:
Leonardo de Moura (leonardo) 2006-09-11.
Revision History:
2019-2-23 Renamed from vector to old_vector to provide new implementation
--*/
#ifndef OLD_VECTOR_H_
#define OLD_VECTOR_H_
#include "util/debug.h"
#include<algorithm>
#include<type_traits>
#include<memory.h>
#include<functional>
#include "util/memory_manager.h"
#include "util/hash.h"
#include "util/z3_exception.h"
// disable warning for constant 'if' expressions.
// these are used heavily in templates.
#ifdef _MSC_VER
#pragma warning(disable:4127)
#endif
template<typename T, bool CallDestructors=true, typename SZ = unsigned>
class old_vector {
#define SIZE_IDX -1
#define CAPACITY_IDX -2
T * m_data;
void destroy_elements() {
iterator it = begin();
iterator e = end();
for (; it != e; ++it) {
it->~T();
}
}
void free_memory() {
memory::deallocate(reinterpret_cast<char*>(reinterpret_cast<SZ*>(m_data) - 2));
}
void expand_vector() {
if (m_data == nullptr) {
SZ capacity = 2;
SZ * mem = reinterpret_cast<SZ*>(memory::allocate(sizeof(T) * capacity + sizeof(SZ) * 2));
*mem = capacity;
mem++;
*mem = 0;
mem++;
m_data = reinterpret_cast<T *>(mem);
}
else {
SASSERT(capacity() > 0);
SZ old_capacity = reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX];
SZ old_capacity_T = sizeof(T) * old_capacity + sizeof(SZ) * 2;
SZ new_capacity = (3 * old_capacity + 1) >> 1;
SZ new_capacity_T = sizeof(T) * new_capacity + sizeof(SZ) * 2;
if (new_capacity <= old_capacity || new_capacity_T <= old_capacity_T) {
throw default_exception("Overflow encountered when expanding old_vector");
}
SZ *mem, *old_mem = reinterpret_cast<SZ*>(m_data) - 2;
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5
if (__has_trivial_copy(T)) {
#else
if (std::is_trivially_copyable<T>::value) {
#endif
mem = (SZ*)memory::reallocate(old_mem, new_capacity_T);
m_data = reinterpret_cast<T *>(mem + 2);
} else {
mem = (SZ*)memory::allocate(new_capacity_T);
auto old_data = m_data;
auto old_size = size();
mem[1] = old_size;
m_data = reinterpret_cast<T *>(mem + 2);
for (unsigned i = 0; i < old_size; ++i) {
new (&m_data[i]) T(std::move(old_data[i]));
old_data[i].~T();
}
memory::deallocate(old_mem);
}
*mem = new_capacity;
}
}
void copy_core(old_vector const & source) {
SZ size = source.size();
SZ capacity = source.capacity();
SZ * mem = reinterpret_cast<SZ*>(memory::allocate(sizeof(T) * capacity + sizeof(SZ) * 2));
*mem = capacity;
mem++;
*mem = size;
mem++;
m_data = reinterpret_cast<T *>(mem);
const_iterator it = source.begin();
iterator it2 = begin();
SASSERT(it2 == m_data);
const_iterator e = source.end();
for (; it != e; ++it, ++it2) {
new (it2) T(*it);
}
}
void destroy() {
if (m_data) {
if (CallDestructors) {
destroy_elements();
}
free_memory();
}
}
public:
typedef T data;
typedef T * iterator;
typedef const T * const_iterator;
old_vector():
m_data(nullptr) {
}
old_vector(SZ s) {
if (s == 0) {
m_data = nullptr;
return;
}
SZ * mem = reinterpret_cast<SZ*>(memory::allocate(sizeof(T) * s + sizeof(SZ) * 2));
*mem = s;
mem++;
*mem = s;
mem++;
m_data = reinterpret_cast<T *>(mem);
// initialize elements
iterator it = begin();
iterator e = end();
for (; it != e; ++it) {
new (it) T();
}
}
old_vector(SZ s, T const & elem):
m_data(nullptr) {
resize(s, elem);
}
old_vector(old_vector const & source):
m_data(nullptr) {
if (source.m_data) {
copy_core(source);
}
SASSERT(size() == source.size());
}
old_vector(old_vector&& other) : m_data(nullptr) {
std::swap(m_data, other.m_data);
}
old_vector(SZ s, T const * data):
m_data(nullptr) {
for (SZ i = 0; i < s; i++) {
push_back(data[i]);
}
}
~old_vector() {
destroy();
}
void finalize() {
destroy();
m_data = nullptr;
}
bool operator==(old_vector const & other) const {
if (this == &other) {
return true;
}
if (size() != other.size())
return false;
for (unsigned i = 0; i < size(); i++) {
if ((*this)[i] != other[i])
return false;
}
return true;
}
bool operator!=(old_vector const & other) const {
return !(*this == other);
}
old_vector & operator=(old_vector const & source) {
if (this == &source) {
return *this;
}
destroy();
if (source.m_data) {
copy_core(source);
}
else {
m_data = nullptr;
}
return *this;
}
old_vector & operator=(old_vector && source) {
if (this == &source) {
return *this;
}
destroy();
m_data = nullptr;
std::swap(m_data, source.m_data);
return *this;
}
bool containsp(std::function<bool(T)>& predicate) const {
for (auto const& t : *this)
if (predicate(t))
return true;
return false;
}
/**
* retain elements that satisfy predicate. aka 'where'.
*/
old_vector filter_pure(std::function<bool(T)>& predicate) const {
old_vector result;
for (auto& t : *this)
if (predicate(t))
result.push_back(t);
return result;
}
old_vector& filter_update(std::function<bool(T)>& predicate) {
unsigned j = 0;
for (auto& t : *this)
if (predicate(t))
set(j++, t);
shrink(j);
return *this;
}
/**
* update elements using f, aka 'select'
*/
template <typename S>
old_vector<S> map_pure(std::function<S(T)>& f) const {
old_vector<S> result;
for (auto& t : *this)
result.push_back(f(t));
return result;
}
old_vector& map_update(std::function<T(T)>& f) {
unsigned j = 0;
for (auto& t : *this)
set(j++, f(t));
return *this;
}
void reset() {
if (m_data) {
if (CallDestructors) {
destroy_elements();
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = 0;
}
}
void clear() { reset(); }
bool empty() const {
return m_data == nullptr || reinterpret_cast<SZ *>(m_data)[SIZE_IDX] == 0;
}
SZ size() const {
if (m_data == nullptr) {
return 0;
}
return reinterpret_cast<SZ *>(m_data)[SIZE_IDX];
}
SZ capacity() const {
if (m_data == nullptr) {
return 0;
}
return reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX];
}
iterator begin() {
return m_data;
}
iterator end() {
return m_data + size();
}
const_iterator begin() const {
return m_data;
}
const_iterator end() const {
return m_data + size();
}
class reverse_iterator {
T* v;
public:
reverse_iterator(T* v):v(v) {}
T operator*() { return *v; }
reverse_iterator operator++(int) {
reverse_iterator tmp = *this;
--v;
return tmp;
}
reverse_iterator& operator++() {
--v;
return *this;
}
bool operator==(reverse_iterator const& other) const {
return other.v == v;
}
bool operator!=(reverse_iterator const& other) const {
return other.v != v;
}
};
reverse_iterator rbegin() { return reverse_iterator(end() - 1); }
reverse_iterator rend() { return reverse_iterator(begin() - 1); }
void set_end(iterator it) {
if (m_data) {
SZ new_sz = static_cast<SZ>(it - m_data);
if (CallDestructors) {
iterator e = end();
for(; it != e; ++it) {
it->~T();
}
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = new_sz;
}
else {
SASSERT(it == 0);
}
}
T & operator[](SZ idx) {
SASSERT(idx < size());
return m_data[idx];
}
T const & operator[](SZ idx) const {
SASSERT(idx < size());
return m_data[idx];
}
T & get(SZ idx) {
SASSERT(idx < size());
return m_data[idx];
}
T const & get(SZ idx) const {
SASSERT(idx < size());
return m_data[idx];
}
void set(SZ idx, T const & val) {
SASSERT(idx < size());
m_data[idx] = val;
}
void set(SZ idx, T && val) {
SASSERT(idx < size());
m_data[idx] = std::move(val);
}
T & back() {
SASSERT(!empty());
return operator[](size() - 1);
}
T const & back() const {
SASSERT(!empty());
return operator[](size() - 1);
}
void pop_back() {
SASSERT(!empty());
if (CallDestructors) {
back().~T();
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]--;
}
void push_back(T const & elem) {
if (m_data == nullptr || reinterpret_cast<SZ *>(m_data)[SIZE_IDX] == reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX]) {
expand_vector();
}
new (m_data + reinterpret_cast<SZ *>(m_data)[SIZE_IDX]) T(elem);
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]++;
}
void push_back(T && elem) {
if (m_data == nullptr || reinterpret_cast<SZ *>(m_data)[SIZE_IDX] == reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX]) {
expand_vector();
}
new (m_data + reinterpret_cast<SZ *>(m_data)[SIZE_IDX]) T(std::move(elem));
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]++;
}
void insert(T const & elem) {
push_back(elem);
}
void erase(iterator pos) {
SASSERT(pos >= begin() && pos < end());
iterator prev = pos;
++pos;
iterator e = end();
for(; pos != e; ++pos, ++prev) {
*prev = *pos;
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]--;
}
void erase(T const & elem) {
iterator it = std::find(begin(), end(), elem);
if (it != end()) {
erase(it);
}
}
void shrink(SZ s) {
if (m_data) {
SASSERT(s <= reinterpret_cast<SZ *>(m_data)[SIZE_IDX]);
if (CallDestructors) {
iterator it = m_data + s;
iterator e = end();
for(; it != e; ++it) {
it->~T();
}
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = s;
}
else {
SASSERT(s == 0);
}
}
template<typename Args>
void resize(SZ s, Args args...) {
SZ sz = size();
if (s <= sz) { shrink(s); return; }
while (s > capacity()) {
expand_vector();
}
SASSERT(m_data != 0);
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = s;
iterator it = m_data + sz;
iterator end = m_data + s;
for (; it != end; ++it) {
new (it) T(std::forward<Args>(args));
}
}
void resize(SZ s) {
SZ sz = size();
if (s <= sz) { shrink(s); return; }
while (s > capacity()) {
expand_vector();
}
SASSERT(m_data != 0);
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = s;
iterator it = m_data + sz;
iterator end = m_data + s;
for (; it != end; ++it) {
new (it) T();
}
}
void append(old_vector<T, CallDestructors> const & other) {
for(SZ i = 0; i < other.size(); ++i) {
push_back(other[i]);
}
}
void append(SZ sz, T const * data) {
for(SZ i = 0; i < sz; ++i) {
push_back(data[i]);
}
}
T * c_ptr() const {
return m_data;
}
void swap(old_vector & other) {
std::swap(m_data, other.m_data);
}
void reverse() {
SZ sz = size();
for (SZ i = 0; i < sz/2; ++i) {
std::swap(m_data[i], m_data[sz-i-1]);
}
}
void fill(T const & elem) {
iterator i = begin();
iterator e = end();
for (; i != e; ++i) {
*i = elem;
}
}
void fill(unsigned sz, T const & elem) {
resize(sz);
fill(elem);
}
bool contains(T const & elem) const {
const_iterator it = begin();
const_iterator e = end();
for (; it != e; ++it) {
if (*it == elem) {
return true;
}
}
return false;
}
// set pos idx with elem. If idx >= size, then expand using default.
void setx(SZ idx, T const & elem, T const & d) {
if (idx >= size()) {
resize(idx+1, d);
}
m_data[idx] = elem;
}
// return element at position idx, if idx >= size, then return default
T const & get(SZ idx, T const & d) const {
if (idx >= size()) {
return d;
}
return m_data[idx];
}
void reserve(SZ s, T const & d) {
if (s > size())
resize(s, d);
}
void reserve(SZ s) {
if (s > size())
resize(s);
}
};
template<typename T>
class old_ptr_vector : public old_vector<T *, false> {
public:
old_ptr_vector():old_vector<T *, false>() {}
old_ptr_vector(unsigned s):old_vector<T *, false>(s) {}
old_ptr_vector(unsigned s, T * elem):old_vector<T *, false>(s, elem) {}
old_ptr_vector(old_ptr_vector const & source):old_vector<T *, false>(source) {}
old_ptr_vector(old_ptr_vector && other) : old_vector<T*, false>(std::move(other)) {}
old_ptr_vector(unsigned s, T * const * data):old_vector<T *, false>(s, const_cast<T**>(data)) {}
old_ptr_vector & operator=(old_ptr_vector const & source) {
old_vector<T *, false>::operator=(source);
return *this;
}
};
template<typename T, typename SZ = unsigned>
class old_svector : public old_vector<T, false, SZ> {
public:
old_svector():old_vector<T, false, SZ>() {}
old_svector(SZ s):old_vector<T, false, SZ>(s) {}
old_svector(SZ s, T const & elem):old_vector<T, false, SZ>(s, elem) {}
old_svector(old_svector const & source):old_vector<T, false, SZ>(source) {}
old_svector(old_svector && other) : old_vector<T, false, SZ>(std::move(other)) {}
old_svector(SZ s, T const * data):old_vector<T, false, SZ>(s, data) {}
old_svector & operator=(old_svector const & source) {
old_vector<T, false, SZ>::operator=(source);
return *this;
}
};
#endif /* OLD_VECTOR_H_ */

View file

@ -58,6 +58,12 @@ public:
inc_ref(n);
m_buffer.push_back(n);
}
template <typename M>
void push_back(obj_ref<T,M> && n) {
m_buffer.push_back(n.get());
n.steal();
}
void pop_back() {
SASSERT(!m_buffer.empty());

View file

@ -99,8 +99,8 @@ public:
return *this;
}
template <typename W, typename M>
ref_vector_core& push_back(obj_ref<W,M> && n) {
template <typename M>
ref_vector_core& push_back(obj_ref<T,M> && n) {
m_nodes.push_back(n.get());
n.steal();
return *this;

View file

@ -26,39 +26,33 @@ Revision History:
struct scoped_timer::imp {
event_handler * m_eh;
private:
std::thread m_thread;
std::timed_mutex m_mutex;
unsigned m_ms;
static void* thread_func(imp * st) {
auto end = std::chrono::steady_clock::now() + std::chrono::milliseconds(st->m_ms);
static void thread_func(unsigned ms, event_handler * eh, std::timed_mutex * mutex) {
auto end = std::chrono::steady_clock::now() + std::chrono::milliseconds(ms);
while (!st->m_mutex.try_lock_until(end)) {
if (std::chrono::steady_clock::now() > end) {
st->m_eh->operator()(TIMEOUT_EH_CALLER);
return nullptr;
}
while (!mutex->try_lock_until(end)) {
if (std::chrono::steady_clock::now() >= end) {
eh->operator()(TIMEOUT_EH_CALLER);
return;
}
}
st->m_mutex.unlock();
return nullptr;
mutex->unlock();
}
imp(unsigned ms, event_handler * eh):
m_eh(eh), m_ms(ms) {
public:
imp(unsigned ms, event_handler * eh) {
m_mutex.lock();
m_thread = std::thread(thread_func, this);
m_thread = std::thread(thread_func, ms, eh, &m_mutex);
}
~imp() {
m_mutex.unlock();
while (!m_thread.joinable()) {
std::this_thread::yield();
}
m_thread.join();
}
};
scoped_timer::scoped_timer(unsigned ms, event_handler * eh) {
@ -69,6 +63,5 @@ scoped_timer::scoped_timer(unsigned ms, event_handler * eh) {
}
scoped_timer::~scoped_timer() {
if (m_imp)
dealloc(m_imp);
dealloc(m_imp);
}

View file

@ -20,171 +20,60 @@ Revision History:
#ifndef STOPWATCH_H_
#define STOPWATCH_H_
#if defined(_WINDOWS) || defined(_CYGWIN) || defined(_MINGW)
// Does this redefinition work?
#include <windows.h>
#include "util/debug.h"
#include <chrono>
class stopwatch
{
private:
LARGE_INTEGER m_elapsed;
LARGE_INTEGER m_last_start_time;
LARGE_INTEGER m_last_stop_time;
LARGE_INTEGER m_frequency;
typedef decltype(std::chrono::steady_clock::now()) clock_t;
typedef decltype(std::chrono::steady_clock::now() - std::chrono::steady_clock::now()) duration_t;
clock_t m_start;
duration_t m_elapsed;
#if Z3DEBUG
bool m_running = false;
#endif
// FIXME: just use auto with VS 2015+
static clock_t get() {
return std::chrono::steady_clock::now();
}
public:
stopwatch() {
QueryPerformanceFrequency(&m_frequency);
reset();
reset();
}
~stopwatch() {};
void add (const stopwatch &s) {/* TODO */}
void reset() { m_elapsed.QuadPart = 0; }
void start() {
QueryPerformanceCounter(&m_last_start_time);
}
void stop() {
QueryPerformanceCounter(&m_last_stop_time);
m_elapsed.QuadPart += m_last_stop_time.QuadPart - m_last_start_time.QuadPart;
void add(const stopwatch &s) {
m_elapsed += s.m_elapsed;
}
double get_seconds() const {
return static_cast<double>(m_elapsed.QuadPart / static_cast<double>(m_frequency.QuadPart)) ;
void reset() {
m_elapsed = duration_t::zero();
DEBUG_CODE(m_running = false;);
}
void start() {
SASSERT(!m_running);
DEBUG_CODE(m_running = true;);
m_start = get();
}
void stop() {
SASSERT(m_running);
DEBUG_CODE(m_running = false;);
m_elapsed += get() - m_start;
}
double get_seconds() const {
return std::chrono::duration_cast<std::chrono::milliseconds>(m_elapsed).count() / 1000.0;
}
double get_current_seconds() const {
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
return static_cast<double>( (t.QuadPart - m_last_start_time.QuadPart) / static_cast<double>(m_frequency.QuadPart));
return std::chrono::duration_cast<std::chrono::milliseconds>(get() - m_start).count() / 1000.0;
}
};
#undef max
#undef min
#elif defined(__APPLE__) && defined (__MACH__) // macOS
#include<mach/mach.h>
#include<mach/clock.h>
class stopwatch {
unsigned long long m_time; // elapsed time in ns
bool m_running;
clock_serv_t m_host_clock;
mach_timespec_t m_start;
public:
stopwatch():m_time(0), m_running(false) {
host_get_clock_service(mach_host_self(), SYSTEM_CLOCK, &m_host_clock);
}
~stopwatch() {}
void add (const stopwatch &s) {m_time += s.m_time;}
void reset() {
m_time = 0ull;
}
void start() {
if (!m_running) {
clock_get_time(m_host_clock, &m_start);
m_running = true;
}
}
void stop() {
if (m_running) {
mach_timespec_t _stop;
clock_get_time(m_host_clock, &_stop);
m_time += (_stop.tv_sec - m_start.tv_sec) * 1000000000ull;
m_time += (_stop.tv_nsec - m_start.tv_nsec);
m_running = false;
}
}
double get_seconds() const {
if (m_running) {
const_cast<stopwatch*>(this)->stop();
/* update m_time */
const_cast<stopwatch*>(this)->start();
}
return static_cast<double>(m_time)/static_cast<double>(1000000000ull);
}
double get_current_seconds() const {
return get_seconds();
}
};
#else // Linux
#include<ctime>
#ifndef CLOCK_PROCESS_CPUTIME_ID
/* BSD */
# define CLOCK_PROCESS_CPUTIME_ID CLOCK_MONOTONIC
#endif
class stopwatch {
unsigned long long m_time; // elapsed time in ns
bool m_running;
struct timespec m_start;
public:
stopwatch():m_time(0), m_running(false) {
}
~stopwatch() {}
void add (const stopwatch &s) {m_time += s.m_time;}
void reset() {
m_time = 0ull;
}
void start() {
if (!m_running) {
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &m_start);
m_running = true;
}
}
void stop() {
if (m_running) {
struct timespec _stop;
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &_stop);
m_time += (_stop.tv_sec - m_start.tv_sec) * 1000000000ull;
if (m_time != 0 || _stop.tv_nsec >= m_start.tv_nsec)
m_time += (_stop.tv_nsec - m_start.tv_nsec);
m_running = false;
}
}
double get_seconds() const {
if (m_running) {
const_cast<stopwatch*>(this)->stop();
/* update m_time */
const_cast<stopwatch*>(this)->start();
}
return static_cast<double>(m_time)/static_cast<double>(1000000000ull);
}
double get_current_seconds() const {
return get_seconds();
}
};
#endif
struct scoped_watch {
stopwatch &m_sw;

View file

@ -19,7 +19,6 @@ Revision History:
--*/
#include<iostream>
#include "util/z3_omp.h"
#include "util/util.h"
#include "util/timeout.h"
#include "util/error_codes.h"
@ -34,26 +33,21 @@ namespace {
class g_timeout_eh : public event_handler {
public:
void operator()(event_handler_caller_t caller_id) override {
#pragma omp critical (g_timeout_cs)
{
std::cout << "timeout\n";
m_caller_id = caller_id;
if (g_on_timeout)
g_on_timeout();
if (g_timeout)
delete g_timeout;
g_timeout = nullptr;
throw z3_error(ERR_TIMEOUT);
}
std::cout << "timeout\n";
m_caller_id = caller_id;
if (g_on_timeout)
g_on_timeout();
throw z3_error(ERR_TIMEOUT);
}
};
}
void set_timeout(long ms) {
if (g_timeout)
delete g_timeout;
static g_timeout_eh eh;
g_timeout = new scoped_timer(ms, new g_timeout_eh());
void set_timeout(long ms) {
SASSERT(!g_timeout);
// this is leaked, but since it's only used in the shell, it's ok
g_timeout = new scoped_timer(ms, &eh);
}
void register_on_timeout_proc(void (*proc)()) {

View file

@ -1,40 +0,0 @@
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
timer.cpp
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2009-01-06.
Revision History:
--*/
#include "util/util.h"
#include "util/memory_manager.h"
#include "util/stopwatch.h"
#include "util/timer.h"
timer::timer(){
m_watch = alloc(stopwatch);
start();
}
timer::~timer() {
dealloc(m_watch);
}
void timer::start() {
m_watch->start();
}
double timer::get_seconds() {
return m_watch->get_current_seconds();
}

View file

@ -19,21 +19,29 @@ Revision History:
#ifndef TIMER_H_
#define TIMER_H_
class stopwatch;
#include "util/stopwatch.h"
/**
\brief Wrapper for the stopwatch class. It hides windows.h dependency.
\brief Wrapper for the stopwatch class.
*/
class timer {
stopwatch * m_watch;
stopwatch m_watch;
public:
timer();
~timer();
void start();
double get_seconds();
bool timeout(unsigned secs) { return secs > 0 && secs != UINT_MAX && get_seconds() > secs; }
bool ms_timeout(unsigned ms) { return ms > 0 && ms != UINT_MAX && get_seconds() * 1000 > ms; }
timer() {
m_watch.start();
}
double get_seconds() const {
return m_watch.get_current_seconds();
}
bool timeout(unsigned secs) const {
return secs != 0 && secs != UINT_MAX && get_seconds() > secs;
}
bool ms_timeout(unsigned ms) const {
return ms != 0 && ms != UINT_MAX && get_seconds() * 1000 > ms;
}
};
#endif /* TIMER_H_ */

View file

@ -1,616 +1,36 @@
/*++
Copyright (c) 2006 Microsoft Corporation
Copyright (c) 2019 Microsoft Corporation
Module Name:
vector.h
Abstract:
Dynamic array implementation.
Remarks:
- Empty arrays consume only sizeof(T *) bytes.
- There is the option of disabling the destructor invocation for elements stored in the vector.
This is useful for vectors of int.
Author:
Leonardo de Moura (leonardo) 2006-09-11.
Revision History:
Daniel Schemmel 2019-2-23
--*/
#ifndef VECTOR_H_
#define VECTOR_H_
#include "util/debug.h"
#include<algorithm>
#include<type_traits>
#include<memory.h>
#include<functional>
#include "util/memory_manager.h"
#include "util/hash.h"
#include "util/z3_exception.h"
// disable warning for constant 'if' expressions.
// these are used heavily in templates.
#ifdef _MSC_VER
#pragma warning(disable:4127)
#endif
#include "old_vector.h"
#include "hash.h"
template<typename T, bool CallDestructors=true, typename SZ = unsigned>
class vector {
#define SIZE_IDX -1
#define CAPACITY_IDX -2
T * m_data;
void destroy_elements() {
iterator it = begin();
iterator e = end();
for (; it != e; ++it) {
it->~T();
}
}
void free_memory() {
memory::deallocate(reinterpret_cast<char*>(reinterpret_cast<SZ*>(m_data) - 2));
}
void expand_vector() {
if (m_data == nullptr) {
SZ capacity = 2;
SZ * mem = reinterpret_cast<SZ*>(memory::allocate(sizeof(T) * capacity + sizeof(SZ) * 2));
*mem = capacity;
mem++;
*mem = 0;
mem++;
m_data = reinterpret_cast<T *>(mem);
}
else {
SASSERT(capacity() > 0);
SZ old_capacity = reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX];
SZ old_capacity_T = sizeof(T) * old_capacity + sizeof(SZ) * 2;
SZ new_capacity = (3 * old_capacity + 1) >> 1;
SZ new_capacity_T = sizeof(T) * new_capacity + sizeof(SZ) * 2;
if (new_capacity <= old_capacity || new_capacity_T <= old_capacity_T) {
throw default_exception("Overflow encountered when expanding vector");
}
SZ *mem, *old_mem = reinterpret_cast<SZ*>(m_data) - 2;
#if defined(__GNUC__) && !defined(__clang__) && __GNUC__ < 5
if (__has_trivial_copy(T)) {
#else
if (std::is_trivially_copyable<T>::value) {
#endif
mem = (SZ*)memory::reallocate(old_mem, new_capacity_T);
m_data = reinterpret_cast<T *>(mem + 2);
} else {
mem = (SZ*)memory::allocate(new_capacity_T);
auto old_data = m_data;
auto old_size = size();
mem[1] = old_size;
m_data = reinterpret_cast<T *>(mem + 2);
for (unsigned i = 0; i < old_size; ++i) {
new (&m_data[i]) T(std::move(old_data[i]));
old_data[i].~T();
}
memory::deallocate(old_mem);
}
*mem = new_capacity;
}
}
void copy_core(vector const & source) {
SZ size = source.size();
SZ capacity = source.capacity();
SZ * mem = reinterpret_cast<SZ*>(memory::allocate(sizeof(T) * capacity + sizeof(SZ) * 2));
*mem = capacity;
mem++;
*mem = size;
mem++;
m_data = reinterpret_cast<T *>(mem);
const_iterator it = source.begin();
iterator it2 = begin();
SASSERT(it2 == m_data);
const_iterator e = source.end();
for (; it != e; ++it, ++it2) {
new (it2) T(*it);
}
}
void destroy() {
if (m_data) {
if (CallDestructors) {
destroy_elements();
}
free_memory();
}
}
public:
typedef T data;
typedef T * iterator;
typedef const T * const_iterator;
vector():
m_data(nullptr) {
}
vector(SZ s) {
if (s == 0) {
m_data = nullptr;
return;
}
SZ * mem = reinterpret_cast<SZ*>(memory::allocate(sizeof(T) * s + sizeof(SZ) * 2));
*mem = s;
mem++;
*mem = s;
mem++;
m_data = reinterpret_cast<T *>(mem);
// initialize elements
iterator it = begin();
iterator e = end();
for (; it != e; ++it) {
new (it) T();
}
}
vector(SZ s, T const & elem):
m_data(nullptr) {
resize(s, elem);
}
vector(vector const & source):
m_data(nullptr) {
if (source.m_data) {
copy_core(source);
}
SASSERT(size() == source.size());
}
vector(vector&& other) : m_data(nullptr) {
std::swap(m_data, other.m_data);
}
vector(SZ s, T const * data):
m_data(nullptr) {
for (SZ i = 0; i < s; i++) {
push_back(data[i]);
}
}
~vector() {
destroy();
}
void finalize() {
destroy();
m_data = nullptr;
}
bool operator==(vector const & other) const {
if (this == &other) {
return true;
}
if (size() != other.size())
return false;
for (unsigned i = 0; i < size(); i++) {
if ((*this)[i] != other[i])
return false;
}
return true;
}
bool operator!=(vector const & other) const {
return !(*this == other);
}
vector & operator=(vector const & source) {
if (this == &source) {
return *this;
}
destroy();
if (source.m_data) {
copy_core(source);
}
else {
m_data = nullptr;
}
return *this;
}
vector & operator=(vector && source) {
if (this == &source) {
return *this;
}
destroy();
m_data = nullptr;
std::swap(m_data, source.m_data);
return *this;
}
bool containsp(std::function<bool(T)>& predicate) const {
for (auto const& t : *this)
if (predicate(t))
return true;
return false;
}
/**
* retain elements that satisfy predicate. aka 'where'.
*/
vector filter_pure(std::function<bool(T)>& predicate) const {
vector result;
for (auto& t : *this)
if (predicate(t))
result.push_back(t);
return result;
}
vector& filter_update(std::function<bool(T)>& predicate) {
unsigned j = 0;
for (auto& t : *this)
if (predicate(t))
set(j++, t);
shrink(j);
return *this;
}
/**
* update elements using f, aka 'select'
*/
template <typename S>
vector<S> map_pure(std::function<S(T)>& f) const {
vector<S> result;
for (auto& t : *this)
result.push_back(f(t));
return result;
}
vector& map_update(std::function<T(T)>& f) {
unsigned j = 0;
for (auto& t : *this)
set(j++, f(t));
return *this;
}
void reset() {
if (m_data) {
if (CallDestructors) {
destroy_elements();
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = 0;
}
}
void clear() { reset(); }
bool empty() const {
return m_data == nullptr || reinterpret_cast<SZ *>(m_data)[SIZE_IDX] == 0;
}
SZ size() const {
if (m_data == nullptr) {
return 0;
}
return reinterpret_cast<SZ *>(m_data)[SIZE_IDX];
}
SZ capacity() const {
if (m_data == nullptr) {
return 0;
}
return reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX];
}
iterator begin() {
return m_data;
}
iterator end() {
return m_data + size();
}
const_iterator begin() const {
return m_data;
}
const_iterator end() const {
return m_data + size();
}
class reverse_iterator {
T* v;
public:
reverse_iterator(T* v):v(v) {}
T operator*() { return *v; }
reverse_iterator operator++(int) {
reverse_iterator tmp = *this;
--v;
return tmp;
}
reverse_iterator& operator++() {
--v;
return *this;
}
bool operator==(reverse_iterator const& other) const {
return other.v == v;
}
bool operator!=(reverse_iterator const& other) const {
return other.v != v;
}
};
reverse_iterator rbegin() { return reverse_iterator(end() - 1); }
reverse_iterator rend() { return reverse_iterator(begin() - 1); }
void set_end(iterator it) {
if (m_data) {
SZ new_sz = static_cast<SZ>(it - m_data);
if (CallDestructors) {
iterator e = end();
for(; it != e; ++it) {
it->~T();
}
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = new_sz;
}
else {
SASSERT(it == 0);
}
}
T & operator[](SZ idx) {
SASSERT(idx < size());
return m_data[idx];
}
T const & operator[](SZ idx) const {
SASSERT(idx < size());
return m_data[idx];
}
T & get(SZ idx) {
SASSERT(idx < size());
return m_data[idx];
}
T const & get(SZ idx) const {
SASSERT(idx < size());
return m_data[idx];
}
void set(SZ idx, T const & val) {
SASSERT(idx < size());
m_data[idx] = val;
}
void set(SZ idx, T && val) {
SASSERT(idx < size());
m_data[idx] = std::move(val);
}
T & back() {
SASSERT(!empty());
return operator[](size() - 1);
}
T const & back() const {
SASSERT(!empty());
return operator[](size() - 1);
}
void pop_back() {
SASSERT(!empty());
if (CallDestructors) {
back().~T();
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]--;
}
void push_back(T const & elem) {
if (m_data == nullptr || reinterpret_cast<SZ *>(m_data)[SIZE_IDX] == reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX]) {
expand_vector();
}
new (m_data + reinterpret_cast<SZ *>(m_data)[SIZE_IDX]) T(elem);
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]++;
}
void push_back(T && elem) {
if (m_data == nullptr || reinterpret_cast<SZ *>(m_data)[SIZE_IDX] == reinterpret_cast<SZ *>(m_data)[CAPACITY_IDX]) {
expand_vector();
}
new (m_data + reinterpret_cast<SZ *>(m_data)[SIZE_IDX]) T(std::move(elem));
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]++;
}
void insert(T const & elem) {
push_back(elem);
}
void erase(iterator pos) {
SASSERT(pos >= begin() && pos < end());
iterator prev = pos;
++pos;
iterator e = end();
for(; pos != e; ++pos, ++prev) {
*prev = *pos;
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX]--;
}
void erase(T const & elem) {
iterator it = std::find(begin(), end(), elem);
if (it != end()) {
erase(it);
}
}
void shrink(SZ s) {
if (m_data) {
SASSERT(s <= reinterpret_cast<SZ *>(m_data)[SIZE_IDX]);
if (CallDestructors) {
iterator it = m_data + s;
iterator e = end();
for(; it != e; ++it) {
it->~T();
}
}
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = s;
}
else {
SASSERT(s == 0);
}
}
template<typename Args>
void resize(SZ s, Args args...) {
SZ sz = size();
if (s <= sz) { shrink(s); return; }
while (s > capacity()) {
expand_vector();
}
SASSERT(m_data != 0);
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = s;
iterator it = m_data + sz;
iterator end = m_data + s;
for (; it != end; ++it) {
new (it) T(std::forward<Args>(args));
}
}
void resize(SZ s) {
SZ sz = size();
if (s <= sz) { shrink(s); return; }
while (s > capacity()) {
expand_vector();
}
SASSERT(m_data != 0);
reinterpret_cast<SZ *>(m_data)[SIZE_IDX] = s;
iterator it = m_data + sz;
iterator end = m_data + s;
for (; it != end; ++it) {
new (it) T();
}
}
void append(vector<T, CallDestructors> const & other) {
for(SZ i = 0; i < other.size(); ++i) {
push_back(other[i]);
}
}
void append(SZ sz, T const * data) {
for(SZ i = 0; i < sz; ++i) {
push_back(data[i]);
}
}
T * c_ptr() const {
return m_data;
}
void swap(vector & other) {
std::swap(m_data, other.m_data);
}
void reverse() {
SZ sz = size();
for (SZ i = 0; i < sz/2; ++i) {
std::swap(m_data[i], m_data[sz-i-1]);
}
}
void fill(T const & elem) {
iterator i = begin();
iterator e = end();
for (; i != e; ++i) {
*i = elem;
}
}
void fill(unsigned sz, T const & elem) {
resize(sz);
fill(elem);
}
bool contains(T const & elem) const {
const_iterator it = begin();
const_iterator e = end();
for (; it != e; ++it) {
if (*it == elem) {
return true;
}
}
return false;
}
// set pos idx with elem. If idx >= size, then expand using default.
void setx(SZ idx, T const & elem, T const & d) {
if (idx >= size()) {
resize(idx+1, d);
}
m_data[idx] = elem;
}
// return element at position idx, if idx >= size, then return default
T const & get(SZ idx, T const & d) const {
if (idx >= size()) {
return d;
}
return m_data[idx];
}
void reserve(SZ s, T const & d) {
if (s > size())
resize(s, d);
}
void reserve(SZ s) {
if (s > size())
resize(s);
}
};
template<typename T>
class ptr_vector : public vector<T *, false> {
public:
ptr_vector():vector<T *, false>() {}
ptr_vector(unsigned s):vector<T *, false>(s) {}
ptr_vector(unsigned s, T * elem):vector<T *, false>(s, elem) {}
ptr_vector(ptr_vector const & source):vector<T *, false>(source) {}
ptr_vector(ptr_vector && other) : vector<T*, false>(std::move(other)) {}
ptr_vector(unsigned s, T * const * data):vector<T *, false>(s, const_cast<T**>(data)) {}
ptr_vector & operator=(ptr_vector const & source) {
vector<T *, false>::operator=(source);
return *this;
}
};
using vector = old_vector<T, CallDestructors, SZ>;
template<typename T, typename SZ = unsigned>
class svector : public vector<T, false, SZ> {
public:
svector():vector<T, false, SZ>() {}
svector(SZ s):vector<T, false, SZ>(s) {}
svector(SZ s, T const & elem):vector<T, false, SZ>(s, elem) {}
svector(svector const & source):vector<T, false, SZ>(source) {}
svector(svector && other) : vector<T, false, SZ>(std::move(other)) {}
svector(SZ s, T const * data):vector<T, false, SZ>(s, data) {}
svector & operator=(svector const & source) {
vector<T, false, SZ>::operator=(source);
return *this;
}
};
using svector = old_svector<T, SZ>;
typedef svector<int> int_vector;
typedef svector<unsigned> unsigned_vector;
typedef svector<char> char_vector;
typedef svector<signed char> signed_char_vector;
typedef svector<double> double_vector;
template<typename T>
using ptr_vector = old_ptr_vector<T>;
using int_vector = old_svector<int>;
using unsigned_vector = old_svector<unsigned>;
using char_vector = old_svector<char>;
using signed_char_vector = old_svector<signed char>;
using double_vector = old_svector<double>;
inline std::ostream& operator<<(std::ostream& out, unsigned_vector const& v) {
for (unsigned u : v) out << u << " ";