3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-27 00:18:45 +00:00

cleanup in dioph_eq.cpp

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2025-05-13 14:57:21 -07:00
parent 1109139359
commit 15a3818fce

View file

@ -521,7 +521,6 @@ namespace lp {
term_with_index m_lspace; term_with_index m_lspace;
// m_espace is for operations on m_e_matrix rows // m_espace is for operations on m_e_matrix rows
term_with_index m_espace; term_with_index m_espace;
term_with_index m_espace_backup;
bijection m_k2s; bijection m_k2s;
bij_map<std::pair<lar_term, unsigned>> m_fresh_k2xt_terms; bij_map<std::pair<lar_term, unsigned>> m_fresh_k2xt_terms;
@ -1619,153 +1618,10 @@ namespace lp {
return b; return b;
} }
lia_move try_improve_gcd_on_espace(unsigned term_j) {
mpq second_smallest_coeff = find_second_smallest_coeff_in_espace();
TRACE("dio", tout << "second_smallest_coeff:" << second_smallest_coeff << std::endl;);
if (abs(second_smallest_coeff) <= mpq(1)) {
//can we improve here?
return lia_move::undef;
}
auto r = try_make_gcd(second_smallest_coeff, true, term_j);
if (r == lia_move::undef) {
r = try_make_gcd(second_smallest_coeff, false, term_j);
}
return r;
}
struct restore_espace {
term_with_index & m_original;
term_with_index & m_backup;
restore_espace(term_with_index & orig, term_with_index & backup): m_original(orig), m_backup(backup) {
m_original.copy(m_backup);
}
~restore_espace() {
m_backup.copy(m_original);
}
};
// g is a candidate for new gcd
lia_move try_make_gcd(const mpq& g, bool upper_bound, unsigned term_j) {
restore_espace re(m_espace, m_espace_backup);
if ((upper_bound && !lra.column_has_upper_bound(term_j)) ||
(!upper_bound && !lra.column_has_lower_bound(term_j)))
return lia_move::undef;
mpq new_bound = upper_bound? lra.get_upper_bound(term_j).x: lra.get_lower_bound(term_j).x;
TRACE("dio", tout << "upper_bound:" << upper_bound << ", new_bound:" << new_bound << std::endl;);
for (const auto &[c, v] : m_espace) {
if (abs(c) == g) continue;
if (upper_bound) {
if (!supplement_to_g_upper(c, v, g, new_bound, term_j))
return lia_move::undef;
} else {
if (!supplement_to_g_lower(c, v, g, new_bound, term_j))
return lia_move::undef;
}
}
TRACE("dio", print_espace(tout); tout << "g:" << g << std::endl;);
SASSERT(gcd_of_coeffs(m_espace.m_data, true) == g);
mpq rs_g = new_bound % g;
if (rs_g.is_neg())
rs_g += g;
SASSERT(!rs_g.is_neg());
new_bound -= rs_g;
TRACE("dio", tout << "new_bound:" << new_bound << std::endl;);
if (upper_bound) {
if (new_bound < lra.get_upper_bound(term_j).x) {
NOT_IMPLEMENTED_YET();
}
} else {
if (new_bound > lra.get_lower_bound(term_j).x) {
NOT_IMPLEMENTED_YET();
}
}
return lia_move::undef;
}
// new_bound initially is set to the original lower bound of term_j
bool supplement_to_g_lower(const mpq& c, unsigned lj, const mpq & g, mpq& new_bound, unsigned term_j) {
restore_espace re(m_espace, m_espace_backup);
auto r = c % g;
TRACE("dio", tout << "lj:" << lj << ", g:"<< g << ", new_bound:" << new_bound << ", r:" << r << std::endl;);
if (r.is_zero())
return true; // the coefficient is divisible by g
if (r.is_neg())
r += g;
SASSERT((c - r) % g == 0 && r < g && r.is_pos());
unsigned j = local_to_lar_solver(lj);
if (lra.column_is_free(j)) return false;
if (lra.column_is_bounded(j)) {
const auto& ub = lra.get_upper_bound(j).x;
const auto& lb = lra.get_lower_bound(j).x;
TRACE("dio", tout << "lb:" << lb<< ", ub:" << ub << "\n";);
/*
If lb >= 0 then we can substract r*xj from term_j and be sure that the new term does not get bigger, from the other side it cannot diminish by more than r*bu.
In this case we need to update new_bound -= r*ub.
*/
if (!lb.is_neg()) {
m_espace.add(-r, lj);
new_bound -= r * ub;
TRACE("dio", print_espace(tout) << "\n"; tout << "new_bound:" << new_bound << std::endl;);
} else {
NOT_IMPLEMENTED_YET();
}
}
NOT_IMPLEMENTED_YET();
SASSERT(r.is_pos());
// m_espace <= new_bound
r = g - r;
TRACE("dio", tout << "r:" << r << std::endl;);
// m_espace:4x2 + 2x3 + x4 - 256 >= lb
// We have something like: c = 1, lj = 4,g = 2, then r = 1.
// If we know that 0 >= x[j] >= k and
// then term = m_espace >= m_espace+ r*x_lj >= bound + r*k
m_espace.add(r, lj);
new_bound += r*lra.get_upper_bound(j).x;
TRACE("dio", print_espace(tout); tout << "new_bound:" << new_bound << std::endl; );
return true;
}
void backup_espace() {
m_espace.copy(m_espace_backup);
}
// new_bound is initially let to the original upper bound of term_j
bool supplement_to_g_upper(const mpq& c, unsigned lj, const mpq & g, mpq& new_bound, unsigned term_j) {
auto r = c % g;
TRACE("dio", tout << "r:" << r << std::endl;);
if (r.is_zero())
return true; // the coefficient is divisible by g
if (r.is_neg())
r += g;
SASSERT(r.is_pos());
unsigned j = local_to_lar_solver(lj);
// m_espace <= new_bound
r = g - r;
TRACE("dio", tout << "r:" << r << std::endl;);
if (!lra.column_is_bounded(j)) return false;
// m_espace:4x2 + 2x3 + x4 - 256
// We have something like: c = 1, lj = 4,g = 2, then r = 1.
// If we know that 0 <= x[j] <= k and
// then term = m_espace <= m_espace+ r*x_lj <= new_bound + r*k
m_espace.add(r, lj);
new_bound += r*lra.get_upper_bound(j).x;
TRACE("dio", print_espace(tout); tout << "new_bound:" << new_bound << std::endl; );
return true;
}
lia_move tighten_on_espace(unsigned j) { lia_move tighten_on_espace(unsigned j) {
mpq g = gcd_of_coeffs(m_espace.m_data, true); mpq g = gcd_of_coeffs(m_espace.m_data, true);
if (g.is_one()) { if (g.is_one())
return lia_move::undef; return lia_move::undef;
return try_improve_gcd_on_espace(j);
}
if (g.is_zero()) { if (g.is_zero()) {
handle_constant_term(j); handle_constant_term(j);
if (!m_infeas_explanation.empty()) if (!m_infeas_explanation.empty())