3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-10-09 09:21:56 +00:00

detangle mess

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2025-09-23 12:45:46 +03:00
parent 3c38ee2690
commit 1582e4616e
3 changed files with 145 additions and 71 deletions

84
.clang-format Normal file
View file

@ -0,0 +1,84 @@
# Z3 Theorem Prover clang-format configuration
# Based on analysis of existing codebase style patterns
BasedOnStyle: LLVM
# Indentation
IndentWidth: 4
TabWidth: 4
UseTab: Never
# Column width
ColumnLimit: 120
# Braces
Cpp11BracedListStyle: true
# Classes and structs
BreakConstructorInitializers: BeforeColon
ConstructorInitializerIndentWidth: 4
AccessModifierOffset: -4
# Function definitions
AlwaysBreakAfterReturnType: None
AllowShortFunctionsOnASingleLine: Empty
AllowShortIfStatementsOnASingleLine: false
AllowShortLoopsOnASingleLine: false
# Ensure function-opening brace is attached to the signature
BreakBeforeBraces: Custom
# Explicitly ensure function brace is not placed on a new line
BraceWrapping:
AfterFunction: false
AfterClass: false
AfterControlStatement: false
AfterNamespace: false
AfterStruct: false
# Spacing
SpaceAfterCStyleCast: false
SpaceAfterLogicalNot: false
SpaceBeforeParens: ControlStatements
SpaceInEmptyParentheses: false
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
IndentCaseLabels: false
# Alignment
AlignConsecutiveAssignments: false
AlignConsecutiveDeclarations: false
AlignOperands: true
AlignTrailingComments: true
# Line breaks
AllowAllParametersOfDeclarationOnNextLine: true
BinPackArguments: true
BinPackParameters: true
BreakBeforeBinaryOperators: None
BreakBeforeTernaryOperators: true
# Includes
SortIncludes: false # Z3 has specific include ordering conventions
# Namespaces
NamespaceIndentation: All
# Comments and documentation
ReflowComments: true
SpacesBeforeTrailingComments: 2
# Language standards
Standard: c++20
# Penalties (for line breaking decisions)
PenaltyBreakAssignment: 2
PenaltyBreakBeforeFirstCallParameter: 19
PenaltyBreakComment: 300
PenaltyBreakFirstLessLess: 120
PenaltyBreakString: 1000
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 60
# Misc
KeepEmptyLinesAtTheStartOfBlocks: false
MaxEmptyLinesToKeep: 1

View file

@ -1,5 +0,0 @@
BasedOnStyle: Google
IndentWidth: 4
ColumnLimit: 0
NamespaceIndentation: All
BreakBeforeBraces: Attach

View file

@ -320,11 +320,12 @@ struct solver::imp {
}
lbool check_assignment() {
IF_VERBOSE(1, verbose_stream() << "nra::solver::check_assignment\n";);
setup_solver();
lbool r = l_undef;
statistics& st = m_nla_core.lp_settings().stats().m_st;
statistics &st = m_nla_core.lp_settings().stats().m_st;
nlsat::literal_vector clause;
polynomial::manager& pm = m_nlsat->pm();
polynomial::manager &pm = m_nlsat->pm();
try {
nlsat::assignment rvalues(m_nlsat->am());
for (auto [j, x] : m_lp2nl) {
@ -334,7 +335,7 @@ struct solver::imp {
}
r = m_nlsat->check(rvalues, clause);
}
catch (z3_exception&) {
catch (z3_exception &) {
if (m_limit.is_canceled()) {
r = l_undef;
}
@ -344,73 +345,67 @@ struct solver::imp {
}
}
m_nlsat->collect_statistics(st);
TRACE(nra,
m_nlsat->display(tout << r << "\n");
display(tout);
tout << "m_lp2nl:\n";
TRACE(nra, m_nlsat->display(tout << r << "\n"); display(tout); tout << "m_lp2nl:\n";
for (auto [j, x] : m_lp2nl) tout << "j" << j << " := x" << x << "\n";);
switch (r) {
case l_true:
m_nla_core.set_use_nra_model(true);
lra.init_model();
validate_constraints();
break;
case l_false: {
u_map<lp::lpvar> nl2lp = reverse_lp2nl();
nla::lemma_builder lemma(m_nla_core, __FUNCTION__);
for (nlsat::literal l : clause) {
nlsat::atom* a = m_nlsat->bool_var2atom(l.var());
TRACE(nra, tout << "atom: "; m_nlsat->display(tout, *a); tout << "\n";);
SASSERT(!a->is_root_atom());
SASSERT(a->is_ineq_atom());
auto& ia = *to_ineq_atom(a);
VERIFY(ia.size() == 1); // deal with factored polynomials later
// a is an inequality atom, i.e., p > 0, p < 0, or p = 0.
polynomial::polynomial const* p = ia.p(0);
TRACE(nra, tout << "polynomial: "; pm.display(tout, p); tout << "\n";);
unsigned num_mon = pm.size(p);
rational bound(0);
lp::lar_term t;
process_polynomial_check_assignment(num_mon, p, bound, nl2lp, t);
switch (a->get_kind()) {
{
// Introduce a single ineq variable and assign it per case; common handling after switch.
nla::ineq inq(lp::lconstraint_kind::EQ, t, bound); // initial value overwritten in cases below
switch (a->get_kind()) {
case nlsat::atom::EQ:
inq = nla::ineq(l.sign() ? lp::lconstraint_kind::NE : lp::lconstraint_kind::EQ, t, bound);
break;
case nlsat::atom::LT:
inq = nla::ineq(l.sign() ? lp::lconstraint_kind::GE : lp::lconstraint_kind::LT, t, bound);
break;
case nlsat::atom::GT:
inq = nla::ineq(l.sign() ? lp::lconstraint_kind::LE : lp::lconstraint_kind::GT, t, bound);
break;
default:
UNREACHABLE();
return l_undef;
}
if (m_nla_core.ineq_holds(inq))
return l_undef;
lemma |= inq;
}
break;
default:
UNREACHABLE();
return l_undef;
}
}
IF_VERBOSE(1, verbose_stream() << "linear lemma: " << lemma << "\n");
m_nla_core.set_use_nra_model(true);
break;
}
case l_undef:
break;
case l_true:
m_nla_core.set_use_nra_model(true);
lra.init_model();
validate_constraints();
m_nla_core.set_use_nra_model(true);
break;
case l_false:
return add_lemma(clause);
default:
break;
}
return r;
}
lbool add_lemma(nlsat::literal_vector const &clause) {
u_map<lp::lpvar> nl2lp = reverse_lp2nl();
polynomial::manager &pm = m_nlsat->pm();
nla::lemma_builder lemma(m_nla_core, __FUNCTION__);
for (nlsat::literal l : clause) {
nlsat::atom *a = m_nlsat->bool_var2atom(l.var());
TRACE(nra, tout << "atom: "; m_nlsat->display(tout, *a); tout << "\n";);
SASSERT(!a->is_root_atom());
SASSERT(a->is_ineq_atom());
auto &ia = *to_ineq_atom(a);
VERIFY(ia.size() == 1); // deal with factored polynomials later
// a is an inequality atom, i.e., p > 0, p < 0, or p = 0.
polynomial::polynomial const *p = ia.p(0);
TRACE(nra, tout << "polynomial: "; pm.display(tout, p); tout << "\n";);
unsigned num_mon = pm.size(p);
rational bound(0);
lp::lar_term t;
process_polynomial_check_assignment(num_mon, p, bound, nl2lp, t);
// Introduce a single ineq variable and assign it per case; common handling after switch.
nla::ineq inq(lp::lconstraint_kind::EQ, t, bound); // initial value overwritten in cases below
switch (a->get_kind()) {
case nlsat::atom::EQ:
inq = nla::ineq(l.sign() ? lp::lconstraint_kind::NE : lp::lconstraint_kind::EQ, t, bound);
break;
case nlsat::atom::LT:
inq = nla::ineq(l.sign() ? lp::lconstraint_kind::GE : lp::lconstraint_kind::LT, t, bound);
break;
case nlsat::atom::GT:
inq = nla::ineq(l.sign() ? lp::lconstraint_kind::LE : lp::lconstraint_kind::GT, t, bound);
break;
default:
UNREACHABLE();
return l_undef;
}
// NSB review: what is this???
if (m_nla_core.ineq_holds(inq))
return l_undef;
lemma |= inq;
IF_VERBOSE(1, verbose_stream() << "linear lemma: " << lemma << "\n");
return l_false;
}
}
void constraint_core2ex(lp::explanation& ex) {
vector<nlsat::assumption, false> core;
m_nlsat->get_core(core);