mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
Updated regex derivative engine (#5567)
* updated derivative engine * some edit * further improvements in derivative code * more deriv code edits and re::to_str update * optimized mk_deriv_accept * fixed PR comments * small syntax fix * updated some simplifications * bugfix:forgot to_re before reverse * fixed PR comments * more PR comment fixes * more PR comment fixes * forgot to delete * deleting unused definition * fixes Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> * fixes Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com> Co-authored-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
c0c3e685e7
commit
146f4621c5
|
@ -850,7 +850,7 @@ namespace seq {
|
|||
add_clause(~eq, ge10k);
|
||||
|
||||
for (unsigned i = 0; i < k; ++i) {
|
||||
expr* ch = seq.str.mk_nth_i(ubvs, i);
|
||||
expr* ch = seq.str.mk_nth_c(ubvs, i);
|
||||
is_digit = seq.mk_char_is_digit(ch);
|
||||
add_clause(~ge_len, is_digit);
|
||||
}
|
||||
|
|
|
@ -859,13 +859,12 @@ br_status seq_rewriter::mk_seq_length(expr* a, expr_ref& result) {
|
|||
// elif offset >= len(s) then 0
|
||||
// elif offset + length > len(s) then len(s) - offset
|
||||
// else length
|
||||
expr_ref zero(m_autil.mk_int(0), m());
|
||||
result = length;
|
||||
result = m().mk_ite(m_autil.mk_gt(m_autil.mk_add(offset, length), len_s),
|
||||
m_autil.mk_sub(len_s, offset),
|
||||
result);
|
||||
result = m().mk_ite(m().mk_or(m_autil.mk_le(len_s, offset), m_autil.mk_le(length, zero), m_autil.mk_lt(offset, zero)),
|
||||
zero,
|
||||
result = m().mk_ite(m().mk_or(m_autil.mk_le(len_s, offset), m_autil.mk_le(length, zero()), m_autil.mk_lt(offset, zero())),
|
||||
zero(),
|
||||
result);
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
@ -883,37 +882,56 @@ expr_ref seq_rewriter::mk_seq_first(expr* t) {
|
|||
if (str().is_extract(t, s, j, k))
|
||||
result = str().mk_nth_i(s, j);
|
||||
else
|
||||
result = str().mk_nth_i(t, m_autil.mk_int(0));
|
||||
result = str().mk_nth_c(t, 0);
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_sub(expr* a, rational const& n) {
|
||||
expr* a1, *a2;
|
||||
SASSERT(n.is_int());
|
||||
rational k;
|
||||
if (m_autil.is_sub(a, a1, a2) && m_autil.is_numeral(a2, k))
|
||||
return expr_ref(m_autil.mk_sub(a1, m_autil.mk_int(k + n)), m());
|
||||
if (m_autil.is_add(a, a1, a2) && m_autil.is_numeral(a2, k))
|
||||
return expr_ref(m_autil.mk_add(a1, m_autil.mk_int(k - n)), m());
|
||||
if (m_autil.is_add(a, a1, a2) && m_autil.is_numeral(a1, k))
|
||||
return expr_ref(m_autil.mk_add(a2, m_autil.mk_int(k - n)), m());
|
||||
return expr_ref(m_autil.mk_sub(a, m_autil.mk_int(n)), m());
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* In general constructs substring(t,1,|t|-1) but if t = substring(s,j,k) then simplifies to substring(s,j+1,k-1)
|
||||
* This method assumes that |t| > 0.
|
||||
*/
|
||||
expr_ref seq_rewriter::mk_seq_rest(expr* t) {
|
||||
expr_ref result(m());
|
||||
expr* s, * j, * k;
|
||||
expr_ref one(m_autil.mk_int(1), m());
|
||||
if (str().is_extract(t, s, j, k))
|
||||
result = str().mk_substr(s, m_autil.mk_add(j, one), m_autil.mk_sub(k, one));
|
||||
else
|
||||
result = str().mk_substr(t, one, m_autil.mk_sub(str().mk_length(t), one));
|
||||
expr* s, * j, * k;
|
||||
rational jv;
|
||||
if (str().is_extract(t, s, j, k) && m_autil.is_numeral(j, jv) && jv >= 0)
|
||||
result = str().mk_substr(s, m_autil.mk_int(jv + 1), mk_sub(k, 1));
|
||||
else
|
||||
result = str().mk_substr(t, one(), mk_sub(str().mk_length(t), 1));
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
* In general constructs nth(t,|t|-1) but if t = substring(s,j,k) then simplifies to nth(s,j+k-1)
|
||||
* In general constructs nth(t,|t|-1) but if t = substring(s,j,|s|-j) j >= 0, then simplifies to nth(s,|s|-1)
|
||||
* This method assumes that |t| > 0.
|
||||
*/
|
||||
expr_ref seq_rewriter::mk_seq_last(expr* t) {
|
||||
expr_ref result(m());
|
||||
expr* s, * j, * k;
|
||||
expr_ref one(m_autil.mk_int(1), m());
|
||||
if (str().is_extract(t, s, j, k))
|
||||
result = str().mk_nth_i(s, m_autil.mk_sub(m_autil.mk_add(j, k), one));
|
||||
expr* s, * j, * k, * s_, * len_s;
|
||||
rational jv, i;
|
||||
if (str().is_extract(t, s, j, k) &&
|
||||
m_autil.is_numeral(j, jv) && jv >= 0 &&
|
||||
str().is_len_sub(k, len_s, s_, i) &&
|
||||
s == s_ && jv == i) {
|
||||
expr_ref lastpos = mk_sub(len_s, 1);
|
||||
result = str().mk_nth_i(s, lastpos);
|
||||
}
|
||||
else
|
||||
result = str().mk_nth_i(t, m_autil.mk_sub(str().mk_length(t), one));
|
||||
result = str().mk_nth_i(t, m_autil.mk_sub(str().mk_length(t), one()));
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -924,11 +942,14 @@ expr_ref seq_rewriter::mk_seq_last(expr* t) {
|
|||
expr_ref seq_rewriter::mk_seq_butlast(expr* t) {
|
||||
expr_ref result(m());
|
||||
expr* s, * j, * k;
|
||||
expr_ref one(m_autil.mk_int(1), m());
|
||||
if (str().is_extract(t, s, j, k))
|
||||
result = str().mk_substr(s, j, m_autil.mk_sub(k, one));
|
||||
if (str().is_extract(t, s, j, k)) {
|
||||
expr_ref_vector k_min_1(m());
|
||||
k_min_1.push_back(k);
|
||||
k_min_1.push_back(minus_one());
|
||||
result = str().mk_substr(s, j, m_autil.mk_add_simplify(k_min_1));
|
||||
}
|
||||
else
|
||||
result = str().mk_substr(t, m_autil.mk_int(0), m_autil.mk_sub(str().mk_length(t), one));
|
||||
result = str().mk_substr(t, zero(), m_autil.mk_sub(str().mk_length(t), one()));
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -1678,7 +1699,7 @@ br_status seq_rewriter::mk_seq_index(expr* a, expr* b, expr* c, expr_ref& result
|
|||
return BR_DONE;
|
||||
}
|
||||
if (m_autil.is_numeral(c, r) && r.is_neg()) {
|
||||
result = m_autil.mk_int(-1);
|
||||
result = minus_one();
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
|
@ -1688,10 +1709,10 @@ br_status seq_rewriter::mk_seq_index(expr* a, expr* b, expr* c, expr_ref& result
|
|||
}
|
||||
|
||||
if (str().is_empty(b)) {
|
||||
result = m().mk_ite(m().mk_and(m_autil.mk_le(m_autil.mk_int(0), c),
|
||||
result = m().mk_ite(m().mk_and(m_autil.mk_le(zero(), c),
|
||||
m_autil.mk_le(c, str().mk_length(a))),
|
||||
c,
|
||||
m_autil.mk_int(-1));
|
||||
minus_one());
|
||||
return BR_REWRITE2;
|
||||
}
|
||||
|
||||
|
@ -2307,7 +2328,7 @@ br_status seq_rewriter::mk_str_to_code(expr* a, expr_ref& result) {
|
|||
if (s.length() == 1)
|
||||
result = m_autil.mk_int(s[0]);
|
||||
else
|
||||
result = m_autil.mk_int(-1);
|
||||
result = minus_one();
|
||||
return BR_DONE;
|
||||
}
|
||||
return BR_FAILED;
|
||||
|
@ -2448,7 +2469,7 @@ br_status seq_rewriter::mk_str_stoi(expr* a, expr_ref& result) {
|
|||
result = m_autil.mk_int(ch - '0');
|
||||
}
|
||||
else {
|
||||
result = m_autil.mk_int(-1);
|
||||
result = minus_one();
|
||||
}
|
||||
return BR_DONE;
|
||||
}
|
||||
|
@ -2456,7 +2477,7 @@ br_status seq_rewriter::mk_str_stoi(expr* a, expr_ref& result) {
|
|||
expr_ref_vector as(m());
|
||||
str().get_concat_units(a, as);
|
||||
if (as.empty()) {
|
||||
result = m_autil.mk_int(-1);
|
||||
result = minus_one();
|
||||
return BR_DONE;
|
||||
}
|
||||
if (str().is_unit(as.back())) {
|
||||
|
@ -2466,11 +2487,11 @@ br_status seq_rewriter::mk_str_stoi(expr* a, expr_ref& result) {
|
|||
expr_ref tail(str().mk_stoi(as.back()), m());
|
||||
expr_ref head(str().mk_concat(as.size() - 1, as.data(), a->get_sort()), m());
|
||||
expr_ref stoi_head(str().mk_stoi(head), m());
|
||||
result = m().mk_ite(m_autil.mk_ge(stoi_head, m_autil.mk_int(0)),
|
||||
result = m().mk_ite(m_autil.mk_ge(stoi_head, zero()),
|
||||
m_autil.mk_add(m_autil.mk_mul(m_autil.mk_int(10), stoi_head), tail),
|
||||
m_autil.mk_int(-1));
|
||||
minus_one());
|
||||
|
||||
result = m().mk_ite(m_autil.mk_ge(tail, m_autil.mk_int(0)),
|
||||
result = m().mk_ite(m_autil.mk_ge(tail, zero()),
|
||||
result,
|
||||
tail);
|
||||
result = m().mk_ite(str().mk_is_empty(head),
|
||||
|
@ -2481,7 +2502,7 @@ br_status seq_rewriter::mk_str_stoi(expr* a, expr_ref& result) {
|
|||
if (str().is_unit(as.get(0), u) && m_util.is_const_char(u, ch) && '0' == ch) {
|
||||
result = str().mk_concat(as.size() - 1, as.data() + 1, as[0]->get_sort());
|
||||
result = m().mk_ite(str().mk_is_empty(result),
|
||||
m_autil.mk_int(0),
|
||||
zero(),
|
||||
str().mk_stoi(result));
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
@ -2573,7 +2594,7 @@ bool seq_rewriter::is_sequence(expr* e, expr_ref_vector& seq) {
|
|||
}
|
||||
|
||||
/*
|
||||
s = head + tail where |head| = 1
|
||||
s = [head] + tail where head is the first element of s
|
||||
*/
|
||||
bool seq_rewriter::get_head_tail(expr* s, expr_ref& head, expr_ref& tail) {
|
||||
expr* h = nullptr, *t = nullptr;
|
||||
|
@ -2670,10 +2691,10 @@ expr_ref seq_rewriter::re_predicate(expr* cond, sort* seq_sort) {
|
|||
expr_ref seq_rewriter::is_nullable(expr* r) {
|
||||
STRACE("seq_verbose", tout << "is_nullable: "
|
||||
<< mk_pp(r, m()) << std::endl;);
|
||||
expr_ref result(m_op_cache.find(_OP_RE_IS_NULLABLE, r, nullptr), m());
|
||||
expr_ref result(m_op_cache.find(_OP_RE_IS_NULLABLE, r, nullptr, nullptr), m());
|
||||
if (!result) {
|
||||
result = is_nullable_rec(r);
|
||||
m_op_cache.insert(_OP_RE_IS_NULLABLE, r, nullptr, result);
|
||||
m_op_cache.insert(_OP_RE_IS_NULLABLE, r, nullptr, nullptr, result);
|
||||
}
|
||||
STRACE("seq_verbose", tout << "is_nullable result: "
|
||||
<< result << std::endl;);
|
||||
|
@ -2691,7 +2712,7 @@ expr_ref seq_rewriter::is_nullable_rec(expr* r) {
|
|||
re().is_intersection(r, r1, r2)) {
|
||||
m_br.mk_and(is_nullable(r1), is_nullable(r2), result);
|
||||
}
|
||||
else if (re().is_union(r, r1, r2)) {
|
||||
else if (re().is_union(r, r1, r2) || re().is_antimorov_union(r, r1, r2)) {
|
||||
m_br.mk_or(is_nullable(r1), is_nullable(r2), result);
|
||||
}
|
||||
else if (re().is_diff(r, r1, r2)) {
|
||||
|
@ -2701,6 +2722,7 @@ expr_ref seq_rewriter::is_nullable_rec(expr* r) {
|
|||
else if (re().is_star(r) ||
|
||||
re().is_opt(r) ||
|
||||
re().is_full_seq(r) ||
|
||||
re().is_epsilon(r) ||
|
||||
(re().is_loop(r, r1, lo) && lo == 0) ||
|
||||
(re().is_loop(r, r1, lo, hi) && lo == 0)) {
|
||||
result = m().mk_true();
|
||||
|
@ -2724,7 +2746,7 @@ expr_ref seq_rewriter::is_nullable_rec(expr* r) {
|
|||
result = is_nullable(r1);
|
||||
}
|
||||
else if (m().is_ite(r, cond, r1, r2)) {
|
||||
result = m().mk_ite(cond, is_nullable(r1), is_nullable(r2));
|
||||
m_br.mk_ite(cond, is_nullable(r1), is_nullable(r2), result);
|
||||
}
|
||||
else if (m_util.is_re(r, seq_sort)) {
|
||||
result = is_nullable_symbolic_regex(r, seq_sort);
|
||||
|
@ -2881,7 +2903,8 @@ br_status seq_rewriter::mk_re_reverse(expr* r, expr_ref& result) {
|
|||
br_status seq_rewriter::mk_re_derivative(expr* ele, expr* r, expr_ref& result) {
|
||||
result = mk_derivative(ele, r);
|
||||
// TBD: we may even declare BR_DONE here and potentially miss some simplifications
|
||||
return re().is_derivative(result) ? BR_DONE : BR_REWRITE_FULL;
|
||||
// return re().is_derivative(result) ? BR_DONE : BR_REWRITE_FULL;
|
||||
return BR_DONE;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -2976,29 +2999,379 @@ bool seq_rewriter::check_deriv_normal_form(expr* r, int level) {
|
|||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
Memoized, recursive implementation of the symbolic derivative such that
|
||||
the result is in normal form.
|
||||
expr_ref seq_rewriter::mk_derivative(expr* r) {
|
||||
sort* seq_sort = nullptr, * ele_sort = nullptr;
|
||||
VERIFY(m_util.is_re(r, seq_sort));
|
||||
VERIFY(m_util.is_seq(seq_sort, ele_sort));
|
||||
expr_ref v(m().mk_var(0, ele_sort), m());
|
||||
return mk_antimirov_deriv(v, r, m().mk_true());
|
||||
}
|
||||
|
||||
Functions without _rec are memoized wrappers, which call the _rec
|
||||
version if lookup fails.
|
||||
|
||||
The main logic is in mk_der_op_rec for combining normal forms.
|
||||
*/
|
||||
expr_ref seq_rewriter::mk_derivative(expr* ele, expr* r) {
|
||||
STRACE("seq_verbose", tout << "derivative: " << mk_pp(ele, m())
|
||||
<< "," << mk_pp(r, m()) << std::endl;);
|
||||
expr_ref result(m_op_cache.find(OP_RE_DERIVATIVE, ele, r), m());
|
||||
return mk_antimirov_deriv(ele, r, m().mk_true());
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_antimirov_deriv(expr* e, expr* r, expr* path) {
|
||||
// Ensure references are owned
|
||||
expr_ref _e(e, m()), _path(path, m()), _r(r, m());
|
||||
expr_ref result(m_op_cache.find(OP_RE_DERIVATIVE, e, r, path), m());
|
||||
if (!result) {
|
||||
result = mk_derivative_rec(ele, r);
|
||||
m_op_cache.insert(OP_RE_DERIVATIVE, ele, r, result);
|
||||
mk_antimirov_deriv_rec(e, r, path, result);
|
||||
m_op_cache.insert(OP_RE_DERIVATIVE, e, r, path, result);
|
||||
STRACE("seq_regex", tout << "D(" << mk_pp(e, m()) << "," << mk_pp(r, m()) << "," << mk_pp(path, m()) << ")" << std::endl;);
|
||||
STRACE("seq_regex", tout << "= " << mk_pp(result, m()) << std::endl;);
|
||||
}
|
||||
STRACE("seq_verbose", tout << "derivative result: "
|
||||
<< mk_pp(result, m()) << std::endl;);
|
||||
CASSERT("seq_regex", check_deriv_normal_form(r));
|
||||
return result;
|
||||
}
|
||||
|
||||
void seq_rewriter::mk_antimirov_deriv_rec(expr* e, expr* r, expr* path, expr_ref& result) {
|
||||
sort* seq_sort = nullptr, * ele_sort = nullptr;
|
||||
VERIFY(m_util.is_re(r, seq_sort));
|
||||
VERIFY(m_util.is_seq(seq_sort, ele_sort));
|
||||
SASSERT(ele_sort == e->get_sort());
|
||||
expr* r1 = nullptr, * r2 = nullptr, * c = nullptr;
|
||||
expr_ref c1(m());
|
||||
expr_ref c2(m());
|
||||
auto nothing = [&]() { return expr_ref(re().mk_empty(r->get_sort()), m()); };
|
||||
auto epsilon = [&]() { return expr_ref(re().mk_epsilon(seq_sort), m()); };
|
||||
auto dotstar = [&]() { return expr_ref(re().mk_full_seq(r->get_sort()), m()); };
|
||||
auto dotplus = [&]() { return expr_ref(re().mk_plus(re().mk_full_char(r->get_sort())), m()); };
|
||||
unsigned lo = 0, hi = 0;
|
||||
if (re().is_empty(r) || re().is_epsilon(r))
|
||||
// D(e,[]) = D(e,()) = []
|
||||
result = nothing();
|
||||
else if (re().is_full_seq(r) || re().is_dot_plus(r))
|
||||
// D(e,.*) = D(e,.+) = .*
|
||||
result = dotstar();
|
||||
else if (re().is_full_char(r))
|
||||
// D(e,.) = ()
|
||||
result = epsilon();
|
||||
else if (re().is_to_re(r, r1)) {
|
||||
expr_ref h(m());
|
||||
expr_ref t(m());
|
||||
// here r1 is a sequence
|
||||
if (get_head_tail(r1, h, t)) {
|
||||
if (eq_char(e, h))
|
||||
result = re().mk_to_re(t);
|
||||
else if (neq_char(e, h))
|
||||
result = nothing();
|
||||
else
|
||||
result = re().mk_ite_simplify(m().mk_eq(e, h), re().mk_to_re(t), nothing());
|
||||
}
|
||||
else {
|
||||
// observe that the precondition |r1|>0 is is implied by c1 for use of mk_seq_first
|
||||
m_br.mk_and(m().mk_not(m().mk_eq(r1, str().mk_empty(seq_sort))), m().mk_eq(mk_seq_first(r1), e), c1);
|
||||
m_br.mk_and(path, c1, c2);
|
||||
if (m().is_false(c2))
|
||||
result = nothing();
|
||||
else
|
||||
// observe that the precondition |r1|>0 is implied by c1 for use of mk_seq_rest
|
||||
result = m().mk_ite(c1, re().mk_to_re(mk_seq_rest(r1)), nothing());
|
||||
}
|
||||
}
|
||||
else if (re().is_reverse(r, r2))
|
||||
if (re().is_to_re(r2, r1)) {
|
||||
// here r1 is a sequence
|
||||
// observe that the precondition |r1|>0 of mk_seq_last is implied by c1
|
||||
m_br.mk_and(m().mk_not(m().mk_eq(r1, str().mk_empty(seq_sort))), m().mk_eq(mk_seq_last(r1), e), c1);
|
||||
m_br.mk_and(path, c1, c2);
|
||||
if (m().is_false(c2))
|
||||
result = nothing();
|
||||
else
|
||||
// observe that the precondition |r1|>0 of mk_seq_rest is implied by c1
|
||||
result = re().mk_ite_simplify(c1, re().mk_reverse(re().mk_to_re(mk_seq_butlast(r1))), nothing());
|
||||
}
|
||||
else {
|
||||
result = mk_regex_reverse(r2);
|
||||
if (result.get() == r)
|
||||
//r2 is an uninterpreted regex that is stuck
|
||||
//for example if r = (re.reverse R) where R is a regex variable then
|
||||
//here result.get() == r
|
||||
result = re().mk_derivative(e, result);
|
||||
else
|
||||
result = mk_antimirov_deriv(e, result, path);
|
||||
}
|
||||
else if (re().is_concat(r, r1, r2)) {
|
||||
expr_ref r1nullable(is_nullable(r1), m());
|
||||
c1 = mk_antimirov_deriv_concat(mk_antimirov_deriv(e, r1, path), r2);
|
||||
expr_ref r1nullable_and_path(m());
|
||||
m_br.mk_and(r1nullable, path, r1nullable_and_path);
|
||||
if (m().is_false(r1nullable_and_path))
|
||||
// D(e,r1)r2
|
||||
result = c1;
|
||||
else
|
||||
// D(e,r1)r2|(ite (r1nullable) (D(e,r2)) [])
|
||||
// observe that (mk_ite_simplify(true, D(e,r2), []) = D(e,r2)
|
||||
result = mk_antimirov_deriv_union(c1, re().mk_ite_simplify(r1nullable, mk_antimirov_deriv(e, r2, path), nothing()));
|
||||
}
|
||||
else if (m().is_ite(r, c, r1, r2)) {
|
||||
c1 = simplify_path(m().mk_and(c, path));
|
||||
c2 = simplify_path(m().mk_and(m().mk_not(c), path));
|
||||
if (m().is_false(c1))
|
||||
result = mk_antimirov_deriv(e, r2, c2);
|
||||
else if (m().is_false(c2))
|
||||
result = mk_antimirov_deriv(e, r1, c1);
|
||||
else
|
||||
result = re().mk_ite_simplify(c, mk_antimirov_deriv(e, r1, c1), mk_antimirov_deriv(e, r2, c2));
|
||||
}
|
||||
else if (re().is_range(r, r1, r2)) {
|
||||
expr_ref range(m());
|
||||
expr_ref psi(m());
|
||||
if (str().is_unit_string(r1, c1) && str().is_unit_string(r2, c2)) {
|
||||
SASSERT(u().is_char(c1));
|
||||
SASSERT(u().is_char(c2));
|
||||
// range represents c1 <= e <= c2
|
||||
range = simplify_path(m().mk_and(u().mk_le(c1, e), u().mk_le(e, c2)));
|
||||
psi = simplify_path(m().mk_and(path, range));
|
||||
if (m().is_false(psi))
|
||||
result = nothing();
|
||||
else
|
||||
// D(e,c1..c2) = if (c1<=e<=c2) then () else []
|
||||
result = re().mk_ite_simplify(range, epsilon(), nothing());
|
||||
}
|
||||
else
|
||||
result = nothing();
|
||||
}
|
||||
else if (re().is_union(r, r1, r2))
|
||||
result = mk_antimirov_deriv_union(mk_antimirov_deriv(e, r1, path), mk_antimirov_deriv(e, r2, path));
|
||||
else if (re().is_intersection(r, r1, r2))
|
||||
result = mk_antimirov_deriv_intersection(
|
||||
mk_antimirov_deriv(e, r1, path),
|
||||
mk_antimirov_deriv(e, r2, path), m().mk_true());
|
||||
else if (re().is_star(r, r1) || re().is_plus(r, r1) || (re().is_loop(r, r1, lo) && 0 <= lo && lo <= 1))
|
||||
result = mk_antimirov_deriv_concat(mk_antimirov_deriv(e, r1, path), re().mk_star(r1));
|
||||
else if (re().is_loop(r, r1, lo))
|
||||
result = mk_antimirov_deriv_concat(mk_antimirov_deriv(e, r1, path), re().mk_loop(r1, lo - 1));
|
||||
else if (re().is_loop(r, r1, lo, hi)) {
|
||||
if (lo == 0 && hi == 0 || hi < lo)
|
||||
result = nothing();
|
||||
else
|
||||
result = mk_antimirov_deriv_concat(mk_antimirov_deriv(e, r1, path), re().mk_loop(r1, (lo == 0 ? 0 : lo - 1), hi - 1));
|
||||
}
|
||||
else if (re().is_opt(r, r1))
|
||||
result = mk_antimirov_deriv(e, r1, path);
|
||||
else if (re().is_complement(r, r1))
|
||||
// D(e,~r1) = ~D(e,r1)
|
||||
result = mk_antimirov_deriv_negate(mk_antimirov_deriv(e, r1, path));
|
||||
else if (re().is_diff(r, r1, r2))
|
||||
result = mk_antimirov_deriv_intersection(
|
||||
mk_antimirov_deriv(e, r1, path),
|
||||
mk_antimirov_deriv_negate(mk_antimirov_deriv(e, r2, path)), m().mk_true());
|
||||
else if (re().is_of_pred(r, r1)) {
|
||||
array_util array(m());
|
||||
expr* args[2] = { r1, e };
|
||||
result = array.mk_select(2, args);
|
||||
// Use mk_der_cond to normalize
|
||||
result = mk_der_cond(result, e, seq_sort);
|
||||
}
|
||||
else
|
||||
// stuck cases
|
||||
result = re().mk_derivative(e, r);
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_antimirov_deriv_intersection(expr* d1, expr* d2, expr* path) {
|
||||
sort* seq_sort = nullptr, * ele_sort = nullptr;
|
||||
VERIFY(m_util.is_re(d1, seq_sort));
|
||||
VERIFY(m_util.is_seq(seq_sort, ele_sort));
|
||||
expr_ref result(m());
|
||||
expr* c, * a, * b;
|
||||
if (d1 == d2 || re().is_full_seq(d2) || re().is_empty(d1))
|
||||
result = d1;
|
||||
else if (re().is_full_seq(d1) || re().is_empty(d2))
|
||||
result = d2;
|
||||
else if (m().is_ite(d1, c, a, b)) {
|
||||
expr_ref path_and_c(simplify_path(m().mk_and(path, c)), m());
|
||||
expr_ref path_and_notc(simplify_path(m().mk_and(path, m().mk_not(c))), m());
|
||||
if (m().is_false(path_and_c))
|
||||
result = mk_antimirov_deriv_intersection(b, d2, path);
|
||||
else if (m().is_false(path_and_notc))
|
||||
result = mk_antimirov_deriv_intersection(a, d2, path);
|
||||
else
|
||||
result = m().mk_ite(c, mk_antimirov_deriv_intersection(a, d2, path_and_c),
|
||||
mk_antimirov_deriv_intersection(b, d2, path_and_notc));
|
||||
}
|
||||
else if (m().is_ite(d2))
|
||||
// swap d1 and d2
|
||||
result = mk_antimirov_deriv_intersection(d2, d1, path);
|
||||
else if (re().is_union(d1, a, b))
|
||||
// distribute intersection over the union in d1
|
||||
result = mk_antimirov_deriv_union(mk_antimirov_deriv_intersection(a, d2, path), mk_antimirov_deriv_intersection(b, d2, path));
|
||||
else if (re().is_union(d2, a, b))
|
||||
// distribute intersection over the union in d2
|
||||
result = mk_antimirov_deriv_union(mk_antimirov_deriv_intersection(d1, a, path), mk_antimirov_deriv_intersection(d1, b, path));
|
||||
else
|
||||
// in all other cases create the intersection regex
|
||||
// TODO: flatten, order and merge d1 and d2 to maintain equality under similarity
|
||||
result = (d1->get_id() <= d2->get_id() ? re().mk_inter(d1, d2) : re().mk_inter(d2, d1));
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_antimirov_deriv_concat(expr* d, expr* r) {
|
||||
expr_ref result(m());
|
||||
// Take reference count of r and d
|
||||
expr_ref _r(r, m()), _d(d, m());
|
||||
expr* c, * t, * e;
|
||||
if (m().is_ite(d, c, t, e))
|
||||
result = m().mk_ite(c, mk_antimirov_deriv_concat(t, r), mk_antimirov_deriv_concat(e, r));
|
||||
else if (re().is_union(d, t, e))
|
||||
result = re().mk_union(mk_antimirov_deriv_concat(t, r), mk_antimirov_deriv_concat(e, r));
|
||||
else
|
||||
result = mk_re_append(d, r);
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_antimirov_deriv_negate(expr* d) {
|
||||
sort* seq_sort = nullptr, * ele_sort = nullptr;
|
||||
VERIFY(m_util.is_re(d, seq_sort));
|
||||
auto nothing = [&]() { return expr_ref(re().mk_empty(d->get_sort()), m()); };
|
||||
auto epsilon = [&]() { return expr_ref(re().mk_epsilon(seq_sort), m()); };
|
||||
auto dotstar = [&]() { return expr_ref(re().mk_full_seq(d->get_sort()), m()); };
|
||||
auto dotplus = [&]() { return expr_ref(re().mk_plus(re().mk_full_char(d->get_sort())), m()); };
|
||||
expr_ref result(m());
|
||||
expr* c, * t, * e;
|
||||
if (re().is_empty(d))
|
||||
result = dotstar();
|
||||
else if (re().is_epsilon(d))
|
||||
result = dotplus();
|
||||
else if (re().is_full_seq(d))
|
||||
result = nothing();
|
||||
else if (re().is_dot_plus(d))
|
||||
result = epsilon();
|
||||
else if (m().is_ite(d, c, t, e))
|
||||
result = m().mk_ite(c, mk_antimirov_deriv_negate(t), mk_antimirov_deriv_negate(e));
|
||||
else if (re().is_union(d, t, e))
|
||||
result = re().mk_inter(mk_antimirov_deriv_negate(t), mk_antimirov_deriv_negate(e));
|
||||
else if (re().is_intersection(d, t, e))
|
||||
result = re().mk_union(mk_antimirov_deriv_negate(t), mk_antimirov_deriv_negate(e));
|
||||
else if (re().is_complement(d, t))
|
||||
result = t;
|
||||
else
|
||||
result = re().mk_complement(d);
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_antimirov_deriv_union(expr* d1, expr* d2) {
|
||||
expr_ref result(m());
|
||||
if (re().is_empty(d1) || re().is_full_seq(d2))
|
||||
result = d2;
|
||||
else if (re().is_empty(d2) || re().is_full_seq(d1))
|
||||
result = d1;
|
||||
else if (re().is_dot_plus(d1) && re().get_info(d2).min_length > 0)
|
||||
result = d1;
|
||||
else if (re().is_dot_plus(d2) && re().get_info(d1).min_length > 0)
|
||||
result = d2;
|
||||
else
|
||||
// TODO: flatten, order and merge d1 and d2 to maintain equality under similarity
|
||||
result = (d1->get_id() <= d2->get_id() ? re().mk_union(d1, d2) : re().mk_union(d2, d1));
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_regex_reverse(expr* r) {
|
||||
expr* r1 = nullptr, * r2 = nullptr, * c = nullptr;
|
||||
unsigned lo = 0, hi = 0;
|
||||
expr_ref result(m());
|
||||
if (re().is_empty(r) || re().is_range(r) || re().is_epsilon(r) || re().is_full_seq(r) ||
|
||||
re().is_full_char(r) || re().is_dot_plus(r) || re().is_of_pred(r))
|
||||
result = r;
|
||||
else if (re().is_to_re(r))
|
||||
result = re().mk_reverse(r);
|
||||
else if (re().is_reverse(r, r1))
|
||||
result = r1;
|
||||
else if (re().is_concat(r, r1, r2))
|
||||
result = mk_regex_concat(mk_regex_reverse(r2), mk_regex_reverse(r1));
|
||||
else if (m().is_ite(r, c, r1, r2))
|
||||
result = m().mk_ite(c, mk_regex_reverse(r1), mk_regex_reverse(r2));
|
||||
else if (re().is_union(r, r1, r2))
|
||||
result = re().mk_union(mk_regex_reverse(r1), mk_regex_reverse(r2));
|
||||
else if (re().is_intersection(r, r1, r2))
|
||||
result = re().mk_inter(mk_regex_reverse(r1), mk_regex_reverse(r2));
|
||||
else if (re().is_diff(r, r1, r2))
|
||||
result = re().mk_diff(mk_regex_reverse(r1), mk_regex_reverse(r2));
|
||||
else if (re().is_star(r, r1))
|
||||
result = re().mk_star(mk_regex_reverse(r1));
|
||||
else if (re().is_plus(r, r1))
|
||||
result = re().mk_plus(mk_regex_reverse(r1));
|
||||
else if (re().is_loop(r, r1, lo))
|
||||
result = re().mk_loop(mk_regex_reverse(r1), lo);
|
||||
else if (re().is_loop(r, r1, lo, hi))
|
||||
result = re().mk_loop(mk_regex_reverse(r1), lo, hi);
|
||||
else if (re().is_opt(r, r1))
|
||||
result = re().mk_opt(mk_regex_reverse(r1));
|
||||
else if (re().is_complement(r, r1))
|
||||
result = re().mk_complement(mk_regex_reverse(r1));
|
||||
else
|
||||
//stuck cases: such as r being a regex variable
|
||||
//observe that re().mk_reverse(to_re(s)) is not a stuck case
|
||||
result = re().mk_reverse(r);
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_regex_concat(expr* r, expr* s) {
|
||||
sort* seq_sort = nullptr;
|
||||
VERIFY(m_util.is_re(r, seq_sort));
|
||||
SASSERT(r->get_sort() == s->get_sort());
|
||||
expr_ref result(m());
|
||||
expr* r1, * r2;
|
||||
if (re().is_epsilon(r) || re().is_empty(s))
|
||||
result = s;
|
||||
else if (re().is_epsilon(s) || re().is_empty(r))
|
||||
result = r;
|
||||
else if (re().is_full_seq(r) && re().is_full_seq(s))
|
||||
result = r;
|
||||
else if (re().is_concat(r, r1, r2))
|
||||
//create the resulting concatenation in right-associative form
|
||||
result = mk_regex_concat(r1, mk_regex_concat(r2, s));
|
||||
else {
|
||||
//TODO: perhaps simplifiy some further cases such as .*. = ..* = .*.+ = .+.* = .+
|
||||
result = re().mk_concat(r, s);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_in_antimirov(expr* s, expr* d){
|
||||
expr_ref result(mk_in_antimirov_rec(s, d), m());
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref seq_rewriter::mk_in_antimirov_rec(expr* s, expr* d) {
|
||||
expr* c, * d1, * d2;
|
||||
expr_ref result(m());
|
||||
if (re().is_full_seq(d) || (str().min_length(s) > 0 && re().is_dot_plus(d)))
|
||||
// s in .* <==> true, also: s in .+ <==> true when |s|>0
|
||||
result = m().mk_true();
|
||||
else if (re().is_empty(d) || (str().min_length(s) > 0 && re().is_epsilon(d)))
|
||||
// s in [] <==> false, also: s in () <==> false when |s|>0
|
||||
result = m().mk_false();
|
||||
else if (m().is_ite(d, c, d1, d2))
|
||||
result = re().mk_ite_simplify(c, mk_in_antimirov_rec(s, d1), mk_in_antimirov_rec(s, d2));
|
||||
else if (re().is_union(d, d1, d2))
|
||||
m_br.mk_or(mk_in_antimirov_rec(s, d1), mk_in_antimirov_rec(s, d2), result);
|
||||
else
|
||||
result = re().mk_in_re(s, d);
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
path is typically a conjunction of (negated) character equations or constraints that can potentially be simplified
|
||||
the first element of each equation is assumed to be the element parameter, for example x = (:var 0),
|
||||
for example a constraint x='a' & x='b' is simplified to false
|
||||
*/
|
||||
expr_ref seq_rewriter::simplify_path(expr* path) {
|
||||
//TODO: more systematic simplifications
|
||||
expr_ref result(path, m());
|
||||
expr* h = nullptr, * t = nullptr, * lhs = nullptr, * rhs = nullptr, * h1 = nullptr;
|
||||
if (m().is_and(path, h, t)) {
|
||||
if (m().is_true(h))
|
||||
result = simplify_path(t);
|
||||
else if (m().is_true(t))
|
||||
result = simplify_path(h);
|
||||
else if (m().is_eq(h, lhs, rhs) || m().is_not(h, h1) && m().is_eq(h1, lhs, rhs))
|
||||
elim_condition(lhs, result);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
expr_ref seq_rewriter::mk_der_antimorov_union(expr* r1, expr* r2) {
|
||||
return mk_der_op(_OP_RE_ANTIMOROV_UNION, r1, r2);
|
||||
}
|
||||
|
@ -3016,7 +3389,7 @@ expr_ref seq_rewriter::mk_der_concat(expr* r1, expr* r2) {
|
|||
}
|
||||
|
||||
/*
|
||||
Utility functions to decide char <, ==, and <=.
|
||||
Utility functions to decide char <, ==, !=, and <=.
|
||||
Return true if deduced, false if unknown.
|
||||
*/
|
||||
bool seq_rewriter::lt_char(expr* ch1, expr* ch2) {
|
||||
|
@ -3027,6 +3400,11 @@ bool seq_rewriter::lt_char(expr* ch1, expr* ch2) {
|
|||
bool seq_rewriter::eq_char(expr* ch1, expr* ch2) {
|
||||
return ch1 == ch2;
|
||||
}
|
||||
bool seq_rewriter::neq_char(expr* ch1, expr* ch2) {
|
||||
unsigned u1, u2;
|
||||
return u().is_const_char(ch1, u1) &&
|
||||
u().is_const_char(ch2, u2) && (u1 != u2);
|
||||
}
|
||||
bool seq_rewriter::le_char(expr* ch1, expr* ch2) {
|
||||
return eq_char(ch1, ch2) || lt_char(ch1, ch2);
|
||||
}
|
||||
|
@ -3257,10 +3635,10 @@ expr_ref seq_rewriter::mk_der_op(decl_kind k, expr* a, expr* b) {
|
|||
default:
|
||||
break;
|
||||
}
|
||||
result = m_op_cache.find(k, a, b);
|
||||
result = m_op_cache.find(k, a, b, nullptr);
|
||||
if (!result) {
|
||||
result = mk_der_op_rec(k, a, b);
|
||||
m_op_cache.insert(k, a, b, result);
|
||||
m_op_cache.insert(k, a, b, nullptr, result);
|
||||
}
|
||||
CASSERT("seq_regex", check_deriv_normal_form(result));
|
||||
return result;
|
||||
|
@ -3269,7 +3647,7 @@ expr_ref seq_rewriter::mk_der_op(decl_kind k, expr* a, expr* b) {
|
|||
expr_ref seq_rewriter::mk_der_compl(expr* r) {
|
||||
STRACE("seq_verbose", tout << "mk_der_compl: " << mk_pp(r, m())
|
||||
<< std::endl;);
|
||||
expr_ref result(m_op_cache.find(OP_RE_COMPLEMENT, r, nullptr), m());
|
||||
expr_ref result(m_op_cache.find(OP_RE_COMPLEMENT, r, nullptr, nullptr), m());
|
||||
if (!result) {
|
||||
expr* c = nullptr, * r1 = nullptr, * r2 = nullptr;
|
||||
if (re().is_antimorov_union(r, r1, r2)) {
|
||||
|
@ -3285,7 +3663,7 @@ expr_ref seq_rewriter::mk_der_compl(expr* r) {
|
|||
}
|
||||
else if (BR_FAILED == mk_re_complement(r, result))
|
||||
result = re().mk_complement(r);
|
||||
m_op_cache.insert(OP_RE_COMPLEMENT, r, nullptr, result);
|
||||
m_op_cache.insert(OP_RE_COMPLEMENT, r, nullptr, nullptr, result);
|
||||
}
|
||||
CASSERT("seq_regex", check_deriv_normal_form(result));
|
||||
return result;
|
||||
|
@ -3509,7 +3887,7 @@ expr_ref seq_rewriter::mk_derivative_rec(expr* ele, expr* r) {
|
|||
// construct the term (if (r2 != () and (ele = (last r2)) then reverse(to_re (butlast r2)) else []))
|
||||
// hd = first of reverse(r2) i.e. last of r2
|
||||
// tl = rest of reverse(r2) i.e. butlast of r2
|
||||
//hd = str().mk_nth_i(r2, m_autil.mk_sub(str().mk_length(r2), m_autil.mk_int(1)));
|
||||
//hd = str().mk_nth_i(r2, m_autil.mk_sub(str().mk_length(r2), one()));
|
||||
hd = mk_seq_last(r2);
|
||||
m_br.mk_and(m().mk_not(m().mk_eq(r2, str().mk_empty(seq_sort))), m().mk_eq(hd, ele), result);
|
||||
tl = re().mk_to_re(mk_seq_butlast(r2));
|
||||
|
@ -3537,9 +3915,9 @@ expr_ref seq_rewriter::mk_derivative_rec(expr* ele, expr* r) {
|
|||
return mk_empty();
|
||||
}
|
||||
}
|
||||
expr* e1 = nullptr, *e2 = nullptr;
|
||||
expr* e1 = nullptr, * e2 = nullptr;
|
||||
if (str().is_unit(r1, e1) && str().is_unit(r2, e2)) {
|
||||
SASSERT(u().is_char(e1));
|
||||
SASSERT(u().is_char(e1));
|
||||
// Use mk_der_cond to normalize
|
||||
STRACE("seq_verbose", tout << "deriv range str" << std::endl;);
|
||||
expr_ref p1(u().mk_le(e1, ele), m());
|
||||
|
@ -3760,7 +4138,7 @@ br_status seq_rewriter::mk_str_in_regexp(expr* a, expr* b, expr_ref& result) {
|
|||
(re().is_union(b, b1, eps) && re().is_epsilon(eps)) ||
|
||||
(re().is_union(b, eps, b1) && re().is_epsilon(eps)))
|
||||
{
|
||||
result = m().mk_ite(m().mk_eq(str().mk_length(a), m_autil.mk_int(0)),
|
||||
result = m().mk_ite(m().mk_eq(str().mk_length(a), zero()),
|
||||
m().mk_true(),
|
||||
re().mk_in_re(a, b1));
|
||||
return BR_REWRITE_FULL;
|
||||
|
@ -3775,8 +4153,10 @@ br_status seq_rewriter::mk_str_in_regexp(expr* a, expr* b, expr_ref& result) {
|
|||
|
||||
expr_ref hd(m()), tl(m());
|
||||
if (get_head_tail(a, hd, tl)) {
|
||||
result = re().mk_in_re(tl, re().mk_derivative(hd, b));
|
||||
return BR_REWRITE2;
|
||||
//result = re().mk_in_re(tl, re().mk_derivative(hd, b));
|
||||
//result = re().mk_in_re(tl, mk_derivative(hd, b));
|
||||
result = mk_in_antimirov(tl, mk_antimirov_deriv(hd, b, m().mk_true()));
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
||||
if (get_head_tail_reversed(a, hd, tl)) {
|
||||
|
@ -3791,7 +4171,7 @@ br_status seq_rewriter::mk_str_in_regexp(expr* a, expr* b, expr_ref& result) {
|
|||
expr_ref len_a(str().mk_length(a), m());
|
||||
expr_ref len_tl(m_autil.mk_sub(len_a, len_hd), m());
|
||||
result = m().mk_and(m_autil.mk_ge(len_a, len_hd),
|
||||
re().mk_in_re(str().mk_substr(a, m_autil.mk_int(0), len_hd), hd),
|
||||
re().mk_in_re(str().mk_substr(a, zero(), len_hd), hd),
|
||||
re().mk_in_re(str().mk_substr(a, len_hd, len_tl), tl));
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
@ -3802,7 +4182,7 @@ br_status seq_rewriter::mk_str_in_regexp(expr* a, expr* b, expr_ref& result) {
|
|||
expr_ref len_hd(m_autil.mk_sub(len_a, len_tl), m());
|
||||
expr* s = nullptr;
|
||||
result = m().mk_and(m_autil.mk_ge(len_a, len_tl),
|
||||
re().mk_in_re(str().mk_substr(a, m_autil.mk_int(0), len_hd), hd),
|
||||
re().mk_in_re(str().mk_substr(a, zero(), len_hd), hd),
|
||||
(re().is_to_re(tl, s) ? m().mk_eq(s, str().mk_substr(a, len_hd, len_tl)) :
|
||||
re().mk_in_re(str().mk_substr(a, len_hd, len_tl), tl)));
|
||||
return BR_REWRITE_FULL;
|
||||
|
@ -3912,6 +4292,10 @@ br_status seq_rewriter::mk_re_concat(expr* a, expr* b, expr_ref& result) {
|
|||
return BR_REWRITE2;
|
||||
}
|
||||
expr* a1 = nullptr, *b1 = nullptr;
|
||||
if (re().is_to_re(a, a1) && re().is_to_re(b, b1)) {
|
||||
result = re().mk_to_re(str().mk_concat(a1, b1));
|
||||
return BR_DONE;
|
||||
}
|
||||
if (re().is_star(a, a1) && re().is_star(b, b1) && a1 == b1) {
|
||||
result = a;
|
||||
return BR_DONE;
|
||||
|
@ -5151,15 +5535,15 @@ bool seq_rewriter::reduce_eq_empty(expr* l, expr* r, expr_ref& result) {
|
|||
if (str().is_extract(r, s, offset, len)) {
|
||||
expr_ref len_s(str().mk_length(s), m());
|
||||
expr_ref_vector fmls(m());
|
||||
fmls.push_back(m_autil.mk_lt(offset, m_autil.mk_int(0)));
|
||||
fmls.push_back(m_autil.mk_lt(offset, zero()));
|
||||
fmls.push_back(m().mk_eq(s, l));
|
||||
fmls.push_back(m_autil.mk_le(len, m_autil.mk_int(0)));
|
||||
fmls.push_back(m_autil.mk_le(len, zero()));
|
||||
fmls.push_back(m_autil.mk_le(len_s, offset));
|
||||
result = m().mk_or(fmls);
|
||||
return true;
|
||||
}
|
||||
if (str().is_itos(r, s)) {
|
||||
result = m_autil.mk_lt(s, m_autil.mk_int(0));
|
||||
result = m_autil.mk_lt(s, zero());
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
@ -5275,19 +5659,20 @@ seq_rewriter::op_cache::op_cache(ast_manager& m):
|
|||
m_trail(m)
|
||||
{}
|
||||
|
||||
expr* seq_rewriter::op_cache::find(decl_kind op, expr* a, expr* b) {
|
||||
op_entry e(op, a, b, nullptr);
|
||||
expr* seq_rewriter::op_cache::find(decl_kind op, expr* a, expr* b, expr* c) {
|
||||
op_entry e(op, a, b, c, nullptr);
|
||||
m_table.find(e, e);
|
||||
|
||||
return e.r;
|
||||
}
|
||||
|
||||
void seq_rewriter::op_cache::insert(decl_kind op, expr* a, expr* b, expr* r) {
|
||||
void seq_rewriter::op_cache::insert(decl_kind op, expr* a, expr* b, expr* c, expr* r) {
|
||||
cleanup();
|
||||
if (a) m_trail.push_back(a);
|
||||
if (b) m_trail.push_back(b);
|
||||
if (c) m_trail.push_back(c);
|
||||
if (r) m_trail.push_back(r);
|
||||
m_table.insert(op_entry(op, a, b, r));
|
||||
m_table.insert(op_entry(op, a, b, c, r));
|
||||
}
|
||||
|
||||
void seq_rewriter::op_cache::cleanup() {
|
||||
|
|
|
@ -117,20 +117,20 @@ class seq_rewriter {
|
|||
class op_cache {
|
||||
struct op_entry {
|
||||
decl_kind k;
|
||||
expr* a, *b, *r;
|
||||
op_entry(decl_kind k, expr* a, expr* b, expr* r): k(k), a(a), b(b), r(r) {}
|
||||
op_entry():k(0), a(nullptr), b(nullptr), r(nullptr) {}
|
||||
expr* a, *b, *c, *r;
|
||||
op_entry(decl_kind k, expr* a, expr* b, expr* c, expr* r): k(k), a(a), b(b), c(c), r(r) {}
|
||||
op_entry():k(0), a(nullptr), b(nullptr), c(nullptr), r(nullptr) {}
|
||||
};
|
||||
|
||||
struct hash_entry {
|
||||
unsigned operator()(op_entry const& e) const {
|
||||
return mk_mix(e.k, e.a ? e.a->get_id() : 0, e.b ? e.b->get_id() : 0);
|
||||
return combine_hash(mk_mix(e.k, e.a ? e.a->get_id() : 0, e.b ? e.b->get_id() : 0), e.c ? e.c->get_id() : 0);
|
||||
}
|
||||
};
|
||||
|
||||
struct eq_entry {
|
||||
bool operator()(op_entry const& a, op_entry const& b) const {
|
||||
return a.k == b.k && a.a == b.a && a.b == b.b;
|
||||
bool operator()(op_entry const& a, op_entry const& b) const {
|
||||
return a.k == b.k && a.a == b.a && a.b == b.b && a.c == b.c;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -143,8 +143,8 @@ class seq_rewriter {
|
|||
|
||||
public:
|
||||
op_cache(ast_manager& m);
|
||||
expr* find(decl_kind op, expr* a, expr* b);
|
||||
void insert(decl_kind op, expr* a, expr* b, expr* r);
|
||||
expr* find(decl_kind op, expr* a, expr* b, expr* c);
|
||||
void insert(decl_kind op, expr* a, expr* b, expr* c, expr* r);
|
||||
};
|
||||
|
||||
seq_util m_util;
|
||||
|
@ -208,8 +208,24 @@ class seq_rewriter {
|
|||
bool check_deriv_normal_form(expr* r, int level = 3);
|
||||
#endif
|
||||
|
||||
void mk_antimirov_deriv_rec(expr* e, expr* r, expr* path, expr_ref& result);
|
||||
|
||||
expr_ref mk_antimirov_deriv(expr* e, expr* r, expr* path);
|
||||
expr_ref mk_in_antimirov_rec(expr* s, expr* d);
|
||||
expr_ref mk_in_antimirov(expr* s, expr* d);
|
||||
|
||||
expr_ref mk_antimirov_deriv_intersection(expr* d1, expr* d2, expr* path);
|
||||
expr_ref mk_antimirov_deriv_concat(expr* d, expr* r);
|
||||
expr_ref mk_antimirov_deriv_negate(expr* d);
|
||||
expr_ref mk_antimirov_deriv_union(expr* d1, expr* d2);
|
||||
expr_ref mk_regex_reverse(expr* r);
|
||||
expr_ref mk_regex_concat(expr* r1, expr* r2);
|
||||
|
||||
expr_ref simplify_path(expr* path);
|
||||
|
||||
bool lt_char(expr* ch1, expr* ch2);
|
||||
bool eq_char(expr* ch1, expr* ch2);
|
||||
bool neq_char(expr* ch1, expr* ch2);
|
||||
bool le_char(expr* ch1, expr* ch2);
|
||||
bool pred_implies(expr* a, expr* b);
|
||||
bool are_complements(expr* r1, expr* r2) const;
|
||||
|
@ -286,6 +302,8 @@ class seq_rewriter {
|
|||
expr_ref zero() { return expr_ref(m_autil.mk_int(0), m()); }
|
||||
expr_ref one() { return expr_ref(m_autil.mk_int(1), m()); }
|
||||
expr_ref minus_one() { return expr_ref(m_autil.mk_int(-1), m()); }
|
||||
expr_ref mk_sub(expr* a, rational const& n);
|
||||
expr_ref mk_sub(expr* a, unsigned n) { return mk_sub(a, rational(n)); }
|
||||
|
||||
bool is_suffix(expr* s, expr* offset, expr* len);
|
||||
bool is_prefix(expr* s, expr* offset, expr* len);
|
||||
|
@ -379,9 +397,19 @@ public:
|
|||
|
||||
void add_seqs(expr_ref_vector const& ls, expr_ref_vector const& rs, expr_ref_pair_vector& new_eqs);
|
||||
|
||||
// Expose derivative and nullability check
|
||||
/*
|
||||
create the nullability check for r
|
||||
*/
|
||||
expr_ref is_nullable(expr* r);
|
||||
/*
|
||||
make the derivative of r wrt the given element ele
|
||||
*/
|
||||
expr_ref mk_derivative(expr* ele, expr* r);
|
||||
/*
|
||||
make the derivative of r wrt the canonical variable v0 = (:var 0),
|
||||
for example mk_derivative(a+) = (if (v0 = 'a') then a* else [])
|
||||
*/
|
||||
expr_ref mk_derivative(expr* r);
|
||||
|
||||
// heuristic elimination of element from condition that comes form a derivative.
|
||||
// special case optimization for conjunctions of equalities, disequalities and ranges.
|
||||
|
|
|
@ -839,7 +839,7 @@ bool seq_util::str::is_nth_i(expr const* n, expr*& s, unsigned& idx) const {
|
|||
return arith_util(m).is_unsigned(i, idx);
|
||||
}
|
||||
|
||||
app* seq_util::str::mk_nth_i(expr* s, unsigned i) const {
|
||||
app* seq_util::str::mk_nth_c(expr* s, unsigned i) const {
|
||||
return mk_nth_i(s, arith_util(m).mk_int(i));
|
||||
}
|
||||
|
||||
|
@ -854,6 +854,48 @@ void seq_util::str::get_concat(expr* e, expr_ref_vector& es) const {
|
|||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Returns true if s is an expression of the form (l = |u|) |u|-k or (-k)+|u| or |u|+(-k).
|
||||
Also returns true and assigns k=0 and l=s if s is |u|.
|
||||
*/
|
||||
bool seq_util::str::is_len_sub(expr const* s, expr*& l, expr*& u, rational& k) const {
|
||||
expr* x;
|
||||
rational v;
|
||||
arith_util a(m);
|
||||
if (is_length(s, l)) {
|
||||
k = 0;
|
||||
return true;
|
||||
}
|
||||
else if (a.is_sub(s, l, x) && is_length(l, u) && a.is_numeral(x, v) && v.is_nonneg()) {
|
||||
k = v;
|
||||
return true;
|
||||
}
|
||||
else if (a.is_add(s, l, x) && is_length(l, u) && a.is_numeral(x, v) && v.is_nonpos()) {
|
||||
k = - v;
|
||||
return true;
|
||||
}
|
||||
else if (a.is_add(s, x, l) && is_length(l, u) && a.is_numeral(x, v) && v.is_nonpos()) {
|
||||
k = - v;
|
||||
return true;
|
||||
}
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
bool seq_util::str::is_unit_string(expr const* s, expr_ref& c) const {
|
||||
zstring z;
|
||||
expr* ch = nullptr;
|
||||
if (is_string(s, z) && z.length() == 1) {
|
||||
c = mk_char(z[0]);
|
||||
return true;
|
||||
}
|
||||
else if (is_unit(s, ch)) {
|
||||
c = ch;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void seq_util::str::get_concat_units(expr* e, expr_ref_vector& es) const {
|
||||
expr* e1, *e2;
|
||||
while (is_concat(e, e1, e2)) {
|
||||
|
@ -876,8 +918,6 @@ app* seq_util::str::mk_is_empty(expr* s) const {
|
|||
return m.mk_eq(s, mk_empty(s->get_sort()));
|
||||
}
|
||||
|
||||
|
||||
|
||||
unsigned seq_util::str::min_length(expr* s) const {
|
||||
SASSERT(u.is_seq(s));
|
||||
unsigned result = 0;
|
||||
|
@ -1065,38 +1105,71 @@ app* seq_util::rex::mk_epsilon(sort* seq_sort) {
|
|||
/*
|
||||
Produces compact view of concrete concatenations such as (abcd).
|
||||
*/
|
||||
std::ostream& seq_util::rex::pp::compact_helper_seq(std::ostream& out, expr* s) const {
|
||||
std::ostream& seq_util::rex::pp::print_seq(std::ostream& out, expr* s) const {
|
||||
SASSERT(re.u.is_seq(s));
|
||||
zstring z;
|
||||
expr* x, * j, * k, * l, * i, * x_;
|
||||
if (re.u.str.is_empty(s))
|
||||
out << "()";
|
||||
else if (re.u.str.is_unit(s))
|
||||
seq_unit(out, s);
|
||||
print_unit(out, s);
|
||||
else if (re.u.str.is_concat(s)) {
|
||||
expr_ref_vector es(re.m);
|
||||
re.u.str.get_concat(s, es);
|
||||
for (expr* e : es)
|
||||
compact_helper_seq(out, e);
|
||||
print_seq(out, e);
|
||||
}
|
||||
else if (re.u.str.is_string(s, z)) {
|
||||
for (unsigned i = 0; i < z.length(); i++)
|
||||
out << (char)z[i];
|
||||
}
|
||||
//using braces to indicate 'full' output
|
||||
//for example an uninterpreted constant X will be printed as {X}
|
||||
//while a unit sequence "X" will be printed as X
|
||||
//thus for example (concat "X" "Y" Z "W") where Z is uninterpreted is printed as XY{Z}W
|
||||
else out << "{" << mk_pp(s, re.m) << "}";
|
||||
else if (re.u.str.is_extract(s, x, j, k)) {
|
||||
rational jv, iv;
|
||||
print(out, x);
|
||||
if (arith_util(re.m).is_numeral(j, jv)) {
|
||||
if (arith_util(re.m).is_numeral(k, iv)) {
|
||||
// output X[j,k]
|
||||
out << "[" << jv.get_int32() << "," << jv.get_int32() << "]";
|
||||
}
|
||||
else if (arith_util(re.m).is_sub(k, l, i) && re.u.str.is_length(l, x_) && x == x_ &&
|
||||
arith_util(re.m).is_numeral(i, iv) && iv == jv) {
|
||||
// case X[j,|X|-j] is denoted by X[j..]
|
||||
out << "[" << jv.get_int32() << "..]";
|
||||
}
|
||||
else if (((arith_util(re.m).is_add(k, l, i) && re.u.str.is_length(l, x_)) ||
|
||||
(arith_util(re.m).is_add(k, i, l) && re.u.str.is_length(l, x_))) && x == x_ &&
|
||||
arith_util(re.m).is_numeral(i, iv) && iv.get_int32() + jv.get_int32() == 0) {
|
||||
// case X[j,|X|-j] is denoted by X[j..]
|
||||
out << "[" << jv.get_int32() << "..]";
|
||||
}
|
||||
else {
|
||||
out << "[" << jv.get_int32() << ",";
|
||||
print(out, k);
|
||||
out << "]";
|
||||
}
|
||||
}
|
||||
else {
|
||||
out << "[";
|
||||
print(out, j);
|
||||
out << ",";
|
||||
print(out, k);
|
||||
out << "]";
|
||||
}
|
||||
}
|
||||
else
|
||||
out << mk_pp(s, re.m);
|
||||
return out;
|
||||
}
|
||||
|
||||
/*
|
||||
Produces output such as [a-z] for a range.
|
||||
*/
|
||||
std::ostream& seq_util::rex::pp::compact_helper_range(std::ostream& out, expr* s1, expr* s2) const {
|
||||
std::ostream& seq_util::rex::pp::print_range(std::ostream& out, expr* s1, expr* s2) const {
|
||||
out << "[";
|
||||
seq_unit(out, s1) << "-";
|
||||
seq_unit(out, s2) << "]";
|
||||
print_unit(out, s1);
|
||||
out << "-";
|
||||
print_unit(out, s2);
|
||||
out << "]";
|
||||
return out;
|
||||
}
|
||||
|
||||
|
@ -1111,8 +1184,8 @@ bool seq_util::rex::pp::can_skip_parenth(expr* r) const {
|
|||
/*
|
||||
Specialize output for a unit sequence converting to visible ASCII characters if possible.
|
||||
*/
|
||||
std::ostream& seq_util::rex::pp::seq_unit(std::ostream& out, expr* s) const {
|
||||
expr* e;
|
||||
std::ostream& seq_util::rex::pp::print_unit(std::ostream& out, expr* s) const {
|
||||
expr* e, * i;
|
||||
unsigned n = 0;
|
||||
if ((re.u.str.is_unit(s, e) && re.u.is_const_char(e, n)) || re.u.is_const_char(s, n)) {
|
||||
char c = (char)n;
|
||||
|
@ -1122,22 +1195,21 @@ std::ostream& seq_util::rex::pp::seq_unit(std::ostream& out, expr* s) const {
|
|||
out << "\\r";
|
||||
else if (c == '\f')
|
||||
out << "\\f";
|
||||
else if (c == ' ')
|
||||
out << "\\s";
|
||||
else if (c == '(' || c == ')' || c == '{' || c == '}' || c == '[' || c == ']' || c == '.' || c == '\\')
|
||||
out << "\\" << c;
|
||||
else if (32 < n && n < 127) {
|
||||
else if (32 <= n && n < 127 && n != '\"' && n != ' '
|
||||
&& n != '\\' && n != '\'' && n != '?' && n != '.' && n != '(' && n != ')' && n != '[' && n != ']'
|
||||
&& n != '{' && n != '}' && n != '&') {
|
||||
if (html_encode) {
|
||||
if (c == '<')
|
||||
out << "<";
|
||||
else if (c == '>')
|
||||
out << ">";
|
||||
else if (c == '&')
|
||||
out << "&";
|
||||
else if (c == '\"')
|
||||
out << """;
|
||||
//else if (c == '&')
|
||||
// out << "&";
|
||||
//else if (c == '\"')
|
||||
// out << """;
|
||||
else
|
||||
out << "\\x" << std::hex << n;
|
||||
//out << "\\x" << std::hex << n;
|
||||
out << c;
|
||||
}
|
||||
else
|
||||
out << c;
|
||||
|
@ -1151,92 +1223,188 @@ std::ostream& seq_util::rex::pp::seq_unit(std::ostream& out, expr* s) const {
|
|||
else
|
||||
out << "\\u" << std::hex << n;
|
||||
}
|
||||
else if (re.u.str.is_nth_i(s, e, i)) {
|
||||
print(out, e);
|
||||
out << "[" << mk_pp(i, re.m) << "]";
|
||||
}
|
||||
else if (re.m.is_value(e))
|
||||
out << mk_pp(e, re.m);
|
||||
else if (is_app(e)) {
|
||||
out << "(" << to_app(e)->get_decl()->get_name().str();
|
||||
for (expr * arg : *to_app(e))
|
||||
print(out << " ", arg);
|
||||
out << ")";
|
||||
}
|
||||
else
|
||||
out << "{" << mk_pp(s, re.m) << "}";
|
||||
out << mk_pp(s, re.m);
|
||||
return out;
|
||||
}
|
||||
|
||||
/*
|
||||
Pretty prints the regex r into the out stream
|
||||
Pretty prints the regex r into the ostream out
|
||||
*/
|
||||
std::ostream& seq_util::rex::pp::display(std::ostream& out) const {
|
||||
std::ostream& seq_util::rex::pp::print(std::ostream& out, expr* e) const {
|
||||
expr* r1 = nullptr, * r2 = nullptr, * s = nullptr, * s2 = nullptr;
|
||||
unsigned lo = 0, hi = 0;
|
||||
rational v;
|
||||
if (re.u.is_char(e))
|
||||
return seq_unit(out, e);
|
||||
print_unit(out, e);
|
||||
else if (re.u.is_seq(e))
|
||||
return compact_helper_seq(out, e);
|
||||
print_seq(out, e);
|
||||
else if (re.is_full_char(e))
|
||||
return out << ".";
|
||||
out << ".";
|
||||
else if (re.is_full_seq(e))
|
||||
return out << ".*";
|
||||
out << ".*";
|
||||
else if (re.is_to_re(e, s))
|
||||
return compact_helper_seq(out, s);
|
||||
else if (re.is_range(e, s, s2))
|
||||
return compact_helper_range(out, s, s2);
|
||||
print_seq(out, s);
|
||||
else if (re.is_range(e, s, s2))
|
||||
print_range(out, s, s2);
|
||||
else if (re.is_epsilon(e))
|
||||
return out << "()";
|
||||
// ε = epsilon
|
||||
out << (html_encode ? "ε" : "()");
|
||||
else if (re.is_empty(e))
|
||||
return out << "[]";
|
||||
else if (re.is_concat(e, r1, r2))
|
||||
return out << pp(re, r1) << pp(re, r2);
|
||||
else if (re.is_union(e, r1, r2))
|
||||
return out << "(" << pp(re, r1) << "|" << pp(re, r2) << ")";
|
||||
else if (re.is_intersection(e, r1, r2))
|
||||
return out << "(" << pp(re, r1) << "&" /*(html_encode ? ")&(" : ")&(")*/ << pp(re, r2) << ")";
|
||||
// ∅ = emptyset
|
||||
out << (html_encode ? "∅" : "[]");
|
||||
else if (re.is_concat(e, r1, r2)) {
|
||||
print(out, r1);
|
||||
print(out, r2);
|
||||
}
|
||||
else if (re.is_antimorov_union(e, r1, r2) || re.is_union(e, r1, r2)) {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << (html_encode ? "⋃" : "|");
|
||||
print(out, r2);
|
||||
out << ")";
|
||||
}
|
||||
else if (re.is_intersection(e, r1, r2))
|
||||
{
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << (html_encode ? "⋂" : "&");
|
||||
print(out, r2);
|
||||
out << ")";
|
||||
}
|
||||
else if (re.is_complement(e, r1)) {
|
||||
out << "~";
|
||||
if (can_skip_parenth(r1))
|
||||
return out << "~" << pp(re, r1);
|
||||
else
|
||||
return out << "~(" << pp(re, r1) << ")";
|
||||
print(out, r1);
|
||||
else {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << ")";
|
||||
}
|
||||
}
|
||||
else if (re.is_plus(e, r1)) {
|
||||
if (can_skip_parenth(r1))
|
||||
return out << pp(re, r1) << "+";
|
||||
else
|
||||
return out << "(" << pp(re, r1) << ")+";
|
||||
if (can_skip_parenth(r1)) {
|
||||
print(out, r1);
|
||||
out << "+";
|
||||
}
|
||||
else {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << ")+";
|
||||
}
|
||||
}
|
||||
else if (re.is_star(e, r1)) {
|
||||
if (can_skip_parenth(r1))
|
||||
return out << pp(re, r1) << "*";
|
||||
else
|
||||
return out << "(" << pp(re, r1) << ")*";
|
||||
if (can_skip_parenth(r1)) {
|
||||
print(out, r1);
|
||||
out << "*";
|
||||
}
|
||||
else {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << ")*";
|
||||
}
|
||||
}
|
||||
else if (re.is_loop(e, r1, lo)) {
|
||||
if (can_skip_parenth(r1))
|
||||
return out << pp(re, r1) << "{" << lo << ",}";
|
||||
else
|
||||
return out << "(" << pp(re, r1) << "){" << lo << ",}";
|
||||
if (can_skip_parenth(r1)) {
|
||||
print(out, r1);
|
||||
out << "{" << lo << ",}";
|
||||
}
|
||||
else
|
||||
{
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << "){" << lo << ",}";
|
||||
}
|
||||
}
|
||||
else if (re.is_loop(e, r1, lo, hi)) {
|
||||
if (can_skip_parenth(r1)) {
|
||||
print(out, r1);
|
||||
if (lo == hi)
|
||||
return out << pp(re, r1) << "{" << lo << "}";
|
||||
else
|
||||
return out << pp(re, r1) << "{" << lo << "," << hi << "}";
|
||||
out << "{" << lo << "}";
|
||||
else
|
||||
out << "{" << lo << "," << hi << "}";
|
||||
}
|
||||
else {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
if (lo == hi)
|
||||
return out << "(" << pp(re, r1) << "){" << lo << "}";
|
||||
out << "){" << lo << "}";
|
||||
else
|
||||
return out << "(" << pp(re, r1) << "){" << lo << "," << hi << "}";
|
||||
out << "){" << lo << "," << hi << "}";
|
||||
}
|
||||
}
|
||||
else if (re.is_diff(e, r1, r2))
|
||||
return out << "(" << pp(re, r1) << ")\\(" << pp(re, r2) << ")";
|
||||
else if (re.m.is_ite(e, s, r1, r2))
|
||||
return out << "if(" << mk_pp(s, re.m) << "," << pp(re, r1) << "," << pp(re, r2) << ")";
|
||||
else if (re.is_opt(e, r1)) {
|
||||
if (can_skip_parenth(r1))
|
||||
return out << pp(re, r1) << "?";
|
||||
else
|
||||
return out << "(" << pp(re, r1) << ")?";
|
||||
else if (re.is_diff(e, r1, r2)) {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << ")\\(";
|
||||
print(out, r2);
|
||||
out << ")";
|
||||
}
|
||||
else if (re.m.is_ite(e, s, r1, r2)) {
|
||||
out << (html_encode ? "(𝐢𝐟 " : "(if ");
|
||||
print(out, s);
|
||||
out << (html_encode ? " 𝐭𝗵𝐞𝐧 " : " then ");
|
||||
print(out, r1);
|
||||
out << (html_encode ? " 𝐞𝐥𝘀𝐞 " : " else ");
|
||||
print(out, r2);
|
||||
out << ")";
|
||||
}
|
||||
else if (re.is_opt(e, r1)) {
|
||||
if (can_skip_parenth(r1)) {
|
||||
print(out, r1);
|
||||
out << "?";
|
||||
}
|
||||
else {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << ")?";
|
||||
}
|
||||
}
|
||||
else if (re.is_reverse(e, r1)) {
|
||||
out << "(reverse ";
|
||||
print(out, r1);
|
||||
out << ")";
|
||||
}
|
||||
else if (re.m.is_eq(e, r1, r2)) {
|
||||
out << "(";
|
||||
print(out, r1);
|
||||
out << "=";
|
||||
print(out, r2);
|
||||
out << ")";
|
||||
}
|
||||
else if (re.m.is_not(e, r1)) {
|
||||
out << "!";
|
||||
print(out, r1);
|
||||
}
|
||||
else if (re.m.is_value(e))
|
||||
out << mk_pp(e, re.m);
|
||||
else if (is_app(e)) {
|
||||
out << "(" << to_app(e)->get_decl()->get_name().str();
|
||||
for (expr* arg : *to_app(e))
|
||||
print(out << " ", arg);
|
||||
out << ")";
|
||||
}
|
||||
else if (re.is_reverse(e, r1))
|
||||
return out << "reverse(" << pp(re, r1) << ")";
|
||||
else
|
||||
// Else: derivative or is_of_pred
|
||||
return out << "{" << mk_pp(e, re.m) << "}";
|
||||
// for all remaining cases use the default pretty printer
|
||||
out << mk_pp(e, re.m);
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& seq_util::rex::pp::display(std::ostream& out) const {
|
||||
print(out, ex);
|
||||
return out;
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -1244,7 +1412,16 @@ std::ostream& seq_util::rex::pp::display(std::ostream& out) const {
|
|||
*/
|
||||
std::string seq_util::rex::to_str(expr* r) const {
|
||||
std::ostringstream out;
|
||||
out << pp(u.re, r);
|
||||
pp(u.re, r, false).display(out);
|
||||
return out.str();
|
||||
}
|
||||
|
||||
/*
|
||||
Pretty prints the regex r into the output string that is htmlencoded
|
||||
*/
|
||||
std::string seq_util::rex::to_strh(expr* r) const {
|
||||
std::ostringstream out;
|
||||
pp(u.re, r, true).display(out);
|
||||
return out.str();
|
||||
}
|
||||
|
||||
|
@ -1290,7 +1467,7 @@ seq_util::rex::info seq_util::rex::get_info_rec(expr* e) const {
|
|||
else
|
||||
result = mk_info_rec(to_app(e));
|
||||
m_infos.setx(e->get_id(), result, invalid_info);
|
||||
STRACE("re_info", tout << "compute_info(" << pp(u.re, e) << ")=" << result << std::endl;);
|
||||
STRACE("re_info", tout << "compute_info(" << pp(u.re, e, false) << ")=" << result << std::endl;);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
|
|
@ -286,7 +286,7 @@ public:
|
|||
app* mk_at(expr* s, expr* i) const { expr* es[2] = { s, i }; return m.mk_app(m_fid, OP_SEQ_AT, 2, es); }
|
||||
app* mk_nth(expr* s, expr* i) const { expr* es[2] = { s, i }; return m.mk_app(m_fid, OP_SEQ_NTH, 2, es); }
|
||||
app* mk_nth_i(expr* s, expr* i) const { expr* es[2] = { s, i }; return m.mk_app(m_fid, OP_SEQ_NTH_I, 2, es); }
|
||||
app* mk_nth_i(expr* s, unsigned i) const;
|
||||
app* mk_nth_c(expr* s, unsigned i) const;
|
||||
|
||||
app* mk_substr(expr* a, expr* b, expr* c) const { expr* es[3] = { a, b, c }; return m.mk_app(m_fid, OP_SEQ_EXTRACT, 3, es); }
|
||||
app* mk_contains(expr* a, expr* b) const { expr* es[2] = { a, b }; return m.mk_app(m_fid, OP_SEQ_CONTAINS, 2, es); }
|
||||
|
@ -350,6 +350,13 @@ public:
|
|||
bool is_from_code(expr const* n) const { return is_app_of(n, m_fid, OP_STRING_FROM_CODE); }
|
||||
bool is_to_code(expr const* n) const { return is_app_of(n, m_fid, OP_STRING_TO_CODE); }
|
||||
|
||||
bool is_len_sub(expr const* n, expr*& l, expr*& u, rational& k) const;
|
||||
|
||||
/*
|
||||
tests if s is a single character string(c) or a unit (c)
|
||||
*/
|
||||
bool is_unit_string(expr const* s, expr_ref& c) const;
|
||||
|
||||
bool is_string_term(expr const * n) const {
|
||||
return u.is_string(n->get_sort());
|
||||
}
|
||||
|
@ -530,7 +537,20 @@ public:
|
|||
bool is_loop(expr const* n) const { return is_app_of(n, m_fid, OP_RE_LOOP); }
|
||||
bool is_empty(expr const* n) const { return is_app_of(n, m_fid, OP_RE_EMPTY_SET); }
|
||||
bool is_full_char(expr const* n) const { return is_app_of(n, m_fid, OP_RE_FULL_CHAR_SET); }
|
||||
bool is_full_seq(expr const* n) const { return is_app_of(n, m_fid, OP_RE_FULL_SEQ_SET); }
|
||||
bool is_full_seq(expr const* n) const {
|
||||
expr* s;
|
||||
return is_app_of(n, m_fid, OP_RE_FULL_SEQ_SET) || (is_star(n, s) && is_full_char(s));
|
||||
}
|
||||
bool is_dot_plus(expr const* n) const {
|
||||
expr* s, * t;
|
||||
if (is_plus(n, s) && is_full_char(s))
|
||||
return true;
|
||||
if (is_concat(n, s, t)) {
|
||||
if ((is_full_char(s) && is_full_seq(t)) || (is_full_char(t) && is_full_seq(s)))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
bool is_of_pred(expr const* n) const { return is_app_of(n, m_fid, OP_RE_OF_PRED); }
|
||||
bool is_reverse(expr const* n) const { return is_app_of(n, m_fid, OP_RE_REVERSE); }
|
||||
bool is_derivative(expr const* n) const { return is_app_of(n, m_fid, OP_RE_DERIVATIVE); }
|
||||
|
@ -559,18 +579,32 @@ public:
|
|||
app* mk_epsilon(sort* seq_sort);
|
||||
info get_info(expr* r) const;
|
||||
std::string to_str(expr* r) const;
|
||||
std::string to_strh(expr* r) const;
|
||||
|
||||
expr_ref mk_ite_simplify(expr* c, expr* t, expr* e)
|
||||
{
|
||||
expr_ref result(m);
|
||||
if (m.is_true(c) || t == e)
|
||||
result = t;
|
||||
else if (m.is_false(c))
|
||||
result = e;
|
||||
else
|
||||
result = m.mk_ite(c, t, e);
|
||||
return result;
|
||||
}
|
||||
|
||||
class pp {
|
||||
seq_util::rex& re;
|
||||
expr* e;
|
||||
expr* ex;
|
||||
bool html_encode;
|
||||
bool can_skip_parenth(expr* r) const;
|
||||
std::ostream& seq_unit(std::ostream& out, expr* s) const;
|
||||
std::ostream& compact_helper_seq(std::ostream& out, expr* s) const;
|
||||
std::ostream& compact_helper_range(std::ostream& out, expr* s1, expr* s2) const;
|
||||
std::ostream& print_unit(std::ostream& out, expr* s) const;
|
||||
std::ostream& print_seq(std::ostream& out, expr* s) const;
|
||||
std::ostream& print_range(std::ostream& out, expr* s1, expr* s2) const;
|
||||
std::ostream& print(std::ostream& out, expr* e) const;
|
||||
|
||||
public:
|
||||
pp(seq_util::rex& r, expr* e, bool html = false) : re(r), e(e), html_encode(html) {}
|
||||
pp(seq_util::rex& re, expr* ex, bool html) : re(re), ex(ex), html_encode(html) {}
|
||||
std::ostream& display(std::ostream&) const;
|
||||
};
|
||||
};
|
||||
|
|
|
@ -12,6 +12,7 @@ Abstract:
|
|||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2020-5-22
|
||||
Margus Veanes 2021
|
||||
|
||||
--*/
|
||||
|
||||
|
@ -253,10 +254,8 @@ namespace smt {
|
|||
* (accept s (i + 1) (derivative s[i] r)
|
||||
*
|
||||
* Acceptance of a derivative is unfolded into a disjunction over
|
||||
* all derivatives. Effectively, this implements the following rule,
|
||||
* but all in one step:
|
||||
* (accept s i (ite c r1 r2)) =>
|
||||
* c & (accept s i r1) \/ ~c & (accept s i r2)
|
||||
* all derivatives. Effectively, this implements the following rule:
|
||||
* (accept s i (ite c r1 r2)) => (ite c (accept s i r1) (accept s i r2))
|
||||
*/
|
||||
void seq_regex::propagate_accept(literal lit) {
|
||||
SASSERT(!lit.sign());
|
||||
|
@ -302,6 +301,7 @@ namespace smt {
|
|||
unsigned min_len = re().min_length(r);
|
||||
unsigned min_len_plus_i = u().max_plus(min_len, idx);
|
||||
literal len_s_ge_min = th.m_ax.mk_ge(th.mk_len(s), min_len_plus_i);
|
||||
// Acc(s,i,r) ==> |s| >= i + minlength(r)
|
||||
th.propagate_lit(nullptr, 1, &lit, len_s_ge_min);
|
||||
// Axiom equivalent to the above: th.add_axiom(~lit, len_s_ge_min);
|
||||
|
||||
|
@ -316,6 +316,8 @@ namespace smt {
|
|||
STRACE("seq_regex_brief", tout
|
||||
<< " (Warning: min_length returned 0 for"
|
||||
<< " non-nullable regex)";);
|
||||
// since nullable(r) = false:
|
||||
// Acc(s,i,r) ==> |s|>i
|
||||
th.propagate_lit(nullptr, 1, &lit, ~len_s_le_i);
|
||||
}
|
||||
else if (!m.is_true(is_nullable)) {
|
||||
|
@ -327,7 +329,9 @@ namespace smt {
|
|||
<< " (Warning: is_nullable did not simplify)";);
|
||||
literal is_nullable_lit = th.mk_literal(is_nullable);
|
||||
ctx.mark_as_relevant(is_nullable_lit);
|
||||
// Acc(s,i,r) & |s|<=i ==> nullable(r)
|
||||
th.add_axiom(~lit, ~len_s_le_i, is_nullable_lit);
|
||||
//TODO: what if is_nullable contains an in_re
|
||||
if (str().is_in_re(is_nullable))
|
||||
th.add_unhandled_expr(is_nullable);
|
||||
}
|
||||
|
@ -335,14 +339,19 @@ namespace smt {
|
|||
|
||||
// Rule 3: derivative unfolding
|
||||
literal_vector accept_next;
|
||||
expr_ref hd = th.mk_nth(s, i);
|
||||
expr_ref s_i = th.mk_nth(s, i);
|
||||
expr_ref deriv(m);
|
||||
deriv = derivative_wrapper(hd, r);
|
||||
deriv = mk_derivative_wrapper(s_i, r);
|
||||
STRACE("seq_regex", tout
|
||||
<< "mk_derivative_wrapper: " << re().to_str(deriv) << std::endl;);
|
||||
expr_ref accept_deriv(m);
|
||||
accept_deriv = mk_deriv_accept(s, idx + 1, deriv);
|
||||
accept_next.push_back(~lit);
|
||||
accept_next.push_back(len_s_le_i);
|
||||
accept_next.push_back(th.mk_literal(accept_deriv));
|
||||
// Acc(s, i, r) => (|s|<=i or Acc(s, i+1, D(s_i,r)))
|
||||
// where Acc(s, i+1, ite(c, t, f)) = ite(c, Acc(s, i+1, t), Acc(s, i+1, t))
|
||||
// and Acc(s, i+1, r U s) = Acc(s, i+1, r) or Acc(s, i+1, s)
|
||||
th.add_axiom(accept_next);
|
||||
}
|
||||
|
||||
|
@ -418,20 +427,21 @@ namespace smt {
|
|||
/*
|
||||
Wrapper around calls to is_nullable from the seq rewriter.
|
||||
|
||||
Note: the nullable wrapper and derivative wrapper actually use
|
||||
TODO: clean up the following:
|
||||
Note: the is_nullable_wrapper and mk_derivative_wrapper actually use
|
||||
different sequence rewriters; these are at:
|
||||
m_seq_rewrite
|
||||
(returned by seq_rw())
|
||||
th.m_rewrite.m_imp->m_cfg.m_seq_rw
|
||||
(private, can't be accessed directly)
|
||||
As a result operations are cached separately for the nullable
|
||||
and derivative calls. TBD if caching them using the same rewriter
|
||||
makes any difference.
|
||||
and derivative calls.
|
||||
*/
|
||||
expr_ref seq_regex::is_nullable_wrapper(expr* r) {
|
||||
STRACE("seq_regex", tout << "nullable: " << mk_pp(r, m) << std::endl;);
|
||||
|
||||
expr_ref result = seq_rw().is_nullable(r);
|
||||
//TODO: rewrite seems unnecessary here
|
||||
rewrite(result);
|
||||
|
||||
STRACE("seq_regex", tout << "nullable result: " << mk_pp(result, m) << std::endl;);
|
||||
|
@ -442,39 +452,28 @@ namespace smt {
|
|||
}
|
||||
|
||||
/*
|
||||
Wrapper around the regex symbolic derivative from the seq rewriter.
|
||||
Ensures that the derivative is written in a normalized BDD form
|
||||
with optimizations for if-then-else expressions involving the head.
|
||||
|
||||
Note: the nullable wrapper and derivative wrapper actually use
|
||||
different sequence rewriters; these are at:
|
||||
m_seq_rewrite
|
||||
(returned by seq_rw())
|
||||
th.m_rewrite.m_imp->m_cfg.m_seq_rw
|
||||
(private, can't be accessed directly)
|
||||
As a result operations are cached separately for the nullable
|
||||
and derivative calls. TBD if caching them using the same rewriter
|
||||
makes any difference.
|
||||
First creates a derivatrive of r wrt x=(:var 0) and then replaces x by ele.
|
||||
This will create a cached entry for the generic derivative of r that is independent of ele.
|
||||
*/
|
||||
expr_ref seq_regex::derivative_wrapper(expr* hd, expr* r) {
|
||||
STRACE("seq_regex", tout << "derivative(" << mk_pp(hd, m) << "): " << mk_pp(r, m) << std::endl;);
|
||||
expr_ref seq_regex::mk_derivative_wrapper(expr* ele, expr* r) {
|
||||
STRACE("seq_regex", tout << "derivative(" << mk_pp(ele, m) << "): " << mk_pp(r, m) << std::endl;);
|
||||
|
||||
// Use canonical variable for head
|
||||
expr_ref hd_canon(m.mk_var(0, hd->get_sort()), m);
|
||||
expr_ref result(re().mk_derivative(hd_canon, r), m);
|
||||
rewrite(result);
|
||||
// Uses canonical variable (:var 0) for the derivative element
|
||||
expr_ref der(seq_rw().mk_derivative(r), m);
|
||||
|
||||
// Substitute with real head
|
||||
// Substitute (:var 0) with the actual element
|
||||
var_subst subst(m);
|
||||
expr_ref_vector sub(m);
|
||||
sub.push_back(hd);
|
||||
result = subst(result, sub);
|
||||
sub.push_back(ele);
|
||||
der = subst(der, sub);
|
||||
|
||||
STRACE("seq_regex", tout << "derivative result: " << mk_pp(result, m) << std::endl;);
|
||||
STRACE("seq_regex", tout << "derivative result: " << mk_pp(der, m) << std::endl;);
|
||||
STRACE("seq_regex_brief", tout << "d(" << state_str(r) << ")="
|
||||
<< state_str(result) << " ";);
|
||||
<< state_str(der) << " ";);
|
||||
|
||||
return result;
|
||||
//TODO: simplify der further, if ele implies further simplifications
|
||||
//e.g. if ele='b' then de(ite (x='a') t f) simplifies to t
|
||||
return der;
|
||||
}
|
||||
|
||||
void seq_regex::propagate_eq(expr* r1, expr* r2) {
|
||||
|
@ -557,7 +556,7 @@ namespace smt {
|
|||
literal null_lit = th.mk_literal(is_nullable);
|
||||
expr_ref hd = mk_first(r, n);
|
||||
expr_ref d(m);
|
||||
d = derivative_wrapper(hd, r);
|
||||
d = mk_derivative_wrapper(hd, r);
|
||||
|
||||
literal_vector lits;
|
||||
lits.push_back(~lit);
|
||||
|
@ -584,11 +583,10 @@ namespace smt {
|
|||
}
|
||||
|
||||
/*
|
||||
Given a string s, index i, and a derivative regex d, return an
|
||||
Given a string s, index i, and a derivative r, return an
|
||||
expression that is equivalent to
|
||||
accept s i r
|
||||
but which pushes accept s i r into the leaves (next derivatives to
|
||||
explore).
|
||||
but which pushes accept s i r into the leaves
|
||||
|
||||
Input r is of type regex; output is of type bool.
|
||||
|
||||
|
@ -600,14 +598,18 @@ namespace smt {
|
|||
expr_ref seq_regex::mk_deriv_accept(expr* s, unsigned i, expr* r) {
|
||||
vector<expr*> to_visit;
|
||||
to_visit.push_back(r);
|
||||
obj_map<expr, expr*> re_to_bool;
|
||||
obj_map<expr, expr*> re_to_accept;
|
||||
expr_ref_vector _temp_bool_owner(m); // temp owner for bools we create
|
||||
|
||||
// DFS
|
||||
bool s_is_longer_than_i = str().min_length(s) > i;
|
||||
expr* i_int = a().mk_int(i);
|
||||
_temp_bool_owner.push_back(i_int);
|
||||
|
||||
// DFS, avoids duplicating derivative construction that has already been done
|
||||
while (to_visit.size() > 0) {
|
||||
expr* e = to_visit.back();
|
||||
expr* econd = nullptr, *e1 = nullptr, *e2 = nullptr;
|
||||
if (!re_to_bool.contains(e)) {
|
||||
if (!re_to_accept.contains(e)) {
|
||||
// First visit: add children
|
||||
STRACE("seq_regex_verbose", tout << "1";);
|
||||
if (m.is_ite(e, econd, e1, e2) ||
|
||||
|
@ -616,36 +618,40 @@ namespace smt {
|
|||
to_visit.push_back(e2);
|
||||
}
|
||||
// Mark first visit by adding nullptr to the map
|
||||
re_to_bool.insert(e, nullptr);
|
||||
re_to_accept.insert(e, nullptr);
|
||||
}
|
||||
else if (re_to_bool.find(e) == nullptr) {
|
||||
else if (re_to_accept.find(e) == nullptr) {
|
||||
// Second visit: set value
|
||||
STRACE("seq_regex_verbose", tout << "2";);
|
||||
to_visit.pop_back();
|
||||
if (m.is_ite(e, econd, e1, e2)) {
|
||||
expr* b1 = re_to_bool.find(e1);
|
||||
expr* b2 = re_to_bool.find(e2);
|
||||
expr* b = m.mk_ite(econd, b1, b2);
|
||||
expr* b1 = re_to_accept.find(e1);
|
||||
expr* b2 = re_to_accept.find(e2);
|
||||
expr* b = m.is_true(econd) || b1 == b2 ? b1 : m.is_false(econd) ? b2 : m.mk_ite(econd, b1, b2);
|
||||
_temp_bool_owner.push_back(b);
|
||||
re_to_bool.find(e) = b;
|
||||
re_to_accept.find(e) = b;
|
||||
}
|
||||
else if (re().is_empty(e) || (s_is_longer_than_i && re().is_epsilon(e)))
|
||||
{
|
||||
// s[i..] in [] <==> false, also: s[i..] in () <==> false when |s|>i
|
||||
re_to_accept.find(e) = m.mk_false();
|
||||
}
|
||||
else if (re().is_full_seq(e) || (s_is_longer_than_i && re().is_dot_plus(e)))
|
||||
{
|
||||
// s[i..] in .* <==> true, also: s[i..] in .+ <==> true when |s|>i
|
||||
re_to_accept.find(e) = m.mk_true();
|
||||
}
|
||||
/*
|
||||
else if (re().is_empty(e))
|
||||
{
|
||||
re_to_bool.find(e) = m.mk_false();
|
||||
}
|
||||
else if (re().is_epsilon(e))
|
||||
{
|
||||
expr* iplus1 = a().mk_int(i);
|
||||
expr* one = a().mk_int(1);
|
||||
_temp_bool_owner.push_back(iplus1);
|
||||
_temp_bool_owner.push_back(one);
|
||||
//the substring starting after position iplus1 must be empty
|
||||
expr* s_end = str().mk_substr(s, iplus1, one);
|
||||
//the substring starting after position i must be empty
|
||||
expr* s_end = str().mk_substr(s, i_int, one);
|
||||
expr* s_end_is_epsilon = m.mk_eq(s_end, str().mk_empty(m.get_sort(s)));
|
||||
|
||||
_temp_bool_owner.push_back(s_end_is_epsilon);
|
||||
re_to_bool.find(e) = s_end_is_epsilon;
|
||||
re_to_accept.find(e) = s_end_is_epsilon;
|
||||
|
||||
STRACE("seq_regex_verbose", tout
|
||||
<< "added empty sequence leaf: "
|
||||
|
@ -653,18 +659,16 @@ namespace smt {
|
|||
}
|
||||
*/
|
||||
else if (re().is_union(e, e1, e2)) {
|
||||
expr* b1 = re_to_bool.find(e1);
|
||||
expr* b2 = re_to_bool.find(e2);
|
||||
expr* b = m.mk_or(b1, b2);
|
||||
expr* b1 = re_to_accept.find(e1);
|
||||
expr* b2 = re_to_accept.find(e2);
|
||||
expr* b = m.is_false(b1) || b1 == b2 ? b2 : m.is_false(b2) ? b1 : m.mk_or(b1, b2);
|
||||
_temp_bool_owner.push_back(b);
|
||||
re_to_bool.find(e) = b;
|
||||
re_to_accept.find(e) = b;
|
||||
}
|
||||
else {
|
||||
expr* iplus1 = a().mk_int(i);
|
||||
_temp_bool_owner.push_back(iplus1);
|
||||
expr_ref acc_leaf = sk().mk_accept(s, iplus1, e);
|
||||
expr_ref acc_leaf = sk().mk_accept(s, i_int, e);
|
||||
_temp_bool_owner.push_back(acc_leaf);
|
||||
re_to_bool.find(e) = acc_leaf;
|
||||
re_to_accept.find(e) = acc_leaf;
|
||||
|
||||
STRACE("seq_regex_verbose", tout
|
||||
<< "mk_deriv_accept: added accept leaf: "
|
||||
|
@ -680,59 +684,44 @@ namespace smt {
|
|||
|
||||
// Finalize
|
||||
expr_ref result(m);
|
||||
result = re_to_bool.find(r); // Assigns ownership of all exprs in
|
||||
// re_to_bool for after this completes
|
||||
result = re_to_accept.find(r); // Assigns ownership of all exprs in
|
||||
// re_to_accept for after this completes
|
||||
rewrite(result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
Return a list of all leaves in the derivative of a regex r,
|
||||
Return a list of all target regexes in the derivative of a regex r,
|
||||
ignoring the conditions along each path.
|
||||
|
||||
Warning: Although the derivative
|
||||
normal form tries to eliminate unsat condition paths, one cannot
|
||||
assume that the path to each leaf is satisfiable in general
|
||||
(e.g. when regexes are created using re.pred).
|
||||
So not all results may correspond to satisfiable predicates.
|
||||
It is OK to rely on the results being satisfiable for completeness,
|
||||
but not soundness.
|
||||
The derivative construction uses (:var 0) and tries
|
||||
to eliminate unsat condition paths but it does not perform
|
||||
full satisfiability checks and it is not guaranteed
|
||||
that all targets are actually reachable
|
||||
*/
|
||||
void seq_regex::get_all_derivatives(expr* r, expr_ref_vector& results) {
|
||||
// Get derivative
|
||||
sort* seq_sort = nullptr;
|
||||
VERIFY(u().is_re(r, seq_sort));
|
||||
expr_ref n(m.mk_fresh_const("re.char", seq_sort), m);
|
||||
expr_ref hd = mk_first(r, n);
|
||||
expr_ref d(m);
|
||||
d = derivative_wrapper(hd, r);
|
||||
void seq_regex::get_derivative_targets(expr* r, expr_ref_vector& targets) {
|
||||
// constructs the derivative wrt (:var 0)
|
||||
expr_ref d(seq_rw().mk_derivative(r), m);
|
||||
|
||||
// DFS
|
||||
vector<expr*> to_visit;
|
||||
to_visit.push_back(d);
|
||||
obj_map<expr, bool> visited; // set<expr> (bool is used as a unit type)
|
||||
while (to_visit.size() > 0) {
|
||||
expr* e = to_visit.back();
|
||||
to_visit.pop_back();
|
||||
if (visited.contains(e)) continue;
|
||||
visited.insert(e, true);
|
||||
expr* econd = nullptr, *e1 = nullptr, *e2 = nullptr;
|
||||
if (m.is_ite(e, econd, e1, e2) ||
|
||||
re().is_union(e, e1, e2)) {
|
||||
to_visit.push_back(e1);
|
||||
to_visit.push_back(e2);
|
||||
}
|
||||
else if (!re().is_empty(e)) {
|
||||
results.push_back(e);
|
||||
STRACE("seq_regex_verbose", tout
|
||||
<< "get_all_derivatives: added deriv: "
|
||||
<< mk_pp(e, m) << std::endl;);
|
||||
// use DFS to collect all the targets (leaf regexes) in d.
|
||||
expr* _1 = nullptr, * e1 = nullptr, * e2 = nullptr;
|
||||
obj_hashtable<expr>::entry* _2 = nullptr;
|
||||
vector<expr*> workset;
|
||||
workset.push_back(d);
|
||||
obj_hashtable<expr> done;
|
||||
done.insert(d);
|
||||
while (workset.size() > 0) {
|
||||
expr* e = workset.back();
|
||||
workset.pop_back();
|
||||
if (m.is_ite(e, _1, e1, e2) || re().is_union(e, e1, e2)) {
|
||||
if (done.insert_if_not_there_core(e1, _2))
|
||||
workset.push_back(e1);
|
||||
if (done.insert_if_not_there_core(e2, _2))
|
||||
workset.push_back(e2);
|
||||
}
|
||||
else if (!re().is_empty(e))
|
||||
targets.push_back(e);
|
||||
}
|
||||
|
||||
STRACE("seq_regex", tout << "Number of derivatives: "
|
||||
<< results.size() << std::endl;);
|
||||
STRACE("seq_regex_brief", tout << "#derivs=" << results.size() << " ";);
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -800,7 +789,7 @@ namespace smt {
|
|||
th.add_axiom(~lit, ~th.mk_literal(is_nullable));
|
||||
expr_ref hd = mk_first(r, n);
|
||||
expr_ref d(m);
|
||||
d = derivative_wrapper(hd, r);
|
||||
d = mk_derivative_wrapper(hd, r);
|
||||
literal_vector lits;
|
||||
expr_ref_pair_vector cofactors(m);
|
||||
get_cofactors(d, cofactors);
|
||||
|
@ -884,7 +873,7 @@ namespace smt {
|
|||
|
||||
STRACE("state_graph",
|
||||
if (!m_state_graph.is_seen(r_id))
|
||||
tout << std::endl << "state(" << r_id << ") = " << seq_util::rex::pp(re(), r) << std::endl << "info(" << r_id << ") = " << re().get_info(r) << std::endl;);
|
||||
tout << std::endl << "state(" << r_id << ") = " << re().to_str(r) << std::endl << "info(" << r_id << ") = " << re().get_info(r) << std::endl;);
|
||||
// Add state
|
||||
m_state_graph.add_state(r_id);
|
||||
STRACE("seq_regex", tout << "Updating state graph for regex "
|
||||
|
@ -900,14 +889,14 @@ namespace smt {
|
|||
expr_ref_vector derivatives(m);
|
||||
STRACE("seq_regex_verbose", tout
|
||||
<< "getting all derivs: " << r_id << " " << std::endl;);
|
||||
get_all_derivatives(r, derivatives);
|
||||
get_derivative_targets(r, derivatives);
|
||||
for (auto const& dr: derivatives) {
|
||||
unsigned dr_id = get_state_id(dr);
|
||||
STRACE("seq_regex_verbose", tout
|
||||
<< std::endl << " traversing deriv: " << dr_id << " ";);
|
||||
STRACE("state_graph",
|
||||
if (!m_state_graph.is_seen(dr_id))
|
||||
tout << "state(" << dr_id << ") = " << seq_util::rex::pp(re(), dr) << std::endl << "info(" << dr_id << ") = " << re().get_info(dr) << std::endl;);
|
||||
tout << "state(" << dr_id << ") = " << re().to_str(dr) << std::endl << "info(" << dr_id << ") = " << re().get_info(dr) << std::endl;);
|
||||
// Add state
|
||||
m_state_graph.add_state(dr_id);
|
||||
bool maybecycle = can_be_in_cycle(r, dr);
|
||||
|
|
|
@ -158,12 +158,12 @@ namespace smt {
|
|||
expr_ref symmetric_diff(expr* r1, expr* r2);
|
||||
|
||||
expr_ref is_nullable_wrapper(expr* r);
|
||||
expr_ref derivative_wrapper(expr* hd, expr* r);
|
||||
expr_ref mk_derivative_wrapper(expr* hd, expr* r);
|
||||
|
||||
// Various support for unfolding derivative expressions that are
|
||||
// returned by derivative_wrapper
|
||||
expr_ref mk_deriv_accept(expr* s, unsigned i, expr* r);
|
||||
void get_all_derivatives(expr* r, expr_ref_vector& results);
|
||||
void get_derivative_targets(expr* r, expr_ref_vector& targets);
|
||||
void get_cofactors(expr* r, expr_ref_pair_vector& result);
|
||||
void get_cofactors_rec(expr* r, expr_ref_vector& conds,
|
||||
expr_ref_pair_vector& result);
|
||||
|
|
Loading…
Reference in a new issue