3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 11:25:51 +00:00

code review (#98)

* streamline type conversions

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* nits

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* updates

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* na

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use fixed array allocation for sum

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* use fixed array allocation for sum

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* revert creation time allocation

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* fix assertion

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* separate grobner_core

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* grobner_core simplifications

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2019-12-14 19:02:25 -08:00 committed by Lev Nachmanson
parent 9661f75246
commit 14094bb052
12 changed files with 685 additions and 717 deletions

View file

@ -19,6 +19,7 @@
--*/
#pragma once
#include <map>
#include <set>
#include "util/map.h"
#include "math/lp/nex.h"
namespace nla {
@ -59,7 +60,7 @@ class nex_creator {
public:
static std::string ch(unsigned j) {
std::stringstream s;
s << "v" << j;
s << "v" << j;
return s.str();
}
@ -71,51 +72,76 @@ public:
unsigned get_number_of_vars() const {
return m_active_vars_weights.size();
}
void set_var_weight(unsigned j, unsigned weight) {
m_active_vars_weights[j] = weight;
}
private:
svector<unsigned>& active_vars_weights() { return m_active_vars_weights;}
const svector<unsigned>& active_vars_weights() const { return m_active_vars_weights;}
svector<unsigned>& active_vars_weights() { return m_active_vars_weights; }
const svector<unsigned>& active_vars_weights() const { return m_active_vars_weights; }
nex_mul* mk_mul(const vector<nex_pow>& v) {
auto r = alloc(nex_mul, rational::zero(), v);
add_to_allocated(r);
return r;
}
void mul_args() { }
template <typename K>
void mul_args(K e) {
m_mk_mul *= e;
}
template <typename K, typename ...Args>
void mul_args(K e, Args ... es) {
m_mk_mul *= e;
mul_args(es...);
}
template <typename T>
void add_sum(T) { }
template <typename T, typename K, typename ...Args>
void add_sum(T& r, K e, Args ... es) {
r += e;
add_sum(r, es ...);
}
public:
nex* simplify(nex* e);
bool gt(lpvar j, lpvar k) const{
bool gt(lpvar j, lpvar k) const {
unsigned wj = m_active_vars_weights[j];
unsigned wk = m_active_vars_weights[k];
return wj != wk ? wj > wk : j > k;
}
void simplify_children_of_mul(vector<nex_pow>& children, rational&);
// just compare the underlying expressions
bool gt_on_nex_pow(const nex_pow & a, const nex_pow& b) const {
return gt(a.e(), b.e());
}
void simplify_children_of_mul(vector<nex_pow> & children, rational&);
nex * clone(const nex* a) {
nex* clone(const nex* a) {
switch (a->type()) {
case expr_type::VAR:
case expr_type::VAR:
return mk_var(to_var(a)->var());
case expr_type::SCALAR:
case expr_type::SCALAR:
return mk_scalar(to_scalar(a)->value());
case expr_type::MUL: {
auto m = to_mul(a);
auto r = mk_mul();
for (const auto& p : m->children()) {
r->add_child_in_power(clone(p.e()), p.pow());
mul_factory mf(*this);
for (const auto& p : a->to_mul()) {
mf *= nex_pow(clone(p.e()), p.pow());
}
r->coeff() = m->coeff();
return r;
mf *= a->to_mul().coeff();
return mf.mk();
}
case expr_type::SUM: {
auto r = mk_sum();
for (nex * e : *to_sum(a)) {
r->add_child(clone(e));
sum_factory sf(*this);
for (nex const* e : a->to_sum()) {
sf += clone(e);
}
return r;
return sf.mk();
}
default:
UNREACHABLE();
@ -126,86 +152,110 @@ public:
const std::unordered_map<lpvar, occ>& occurences_map() const { return m_occurences_map; }
std::unordered_map<lpvar, occ>& occurences_map() { return m_occurences_map; }
const std::unordered_map<lpvar, unsigned> & powers() const { return m_powers; }
std::unordered_map<lpvar, unsigned> & powers() { return m_powers; }
const std::unordered_map<lpvar, unsigned>& powers() const { return m_powers; }
std::unordered_map<lpvar, unsigned>& powers() { return m_powers; }
void add_to_allocated(nex* r) { m_allocated.push_back(r); }
// NSB: we can use region allocation, but still need to invoke destructor
// because of 'rational' (and m_children in nex_mul unless we get rid of this)
void pop(unsigned sz) {
for (unsigned j = sz; j < m_allocated.size(); j ++)
delete m_allocated[j];
for (unsigned j = sz; j < m_allocated.size(); j++)
dealloc(m_allocated[j]);
m_allocated.resize(sz);
}
void clear() {
for (auto e: m_allocated)
delete e;
for (auto e : m_allocated)
dealloc(e);
m_allocated.clear();
}
nex_creator() : m_mk_mul(*this) {}
~nex_creator() {
clear();
}
unsigned size() const { return m_allocated.size(); }
class mul_factory {
nex_creator& c;
rational m_coeff;
vector<nex_pow> m_args;
public:
mul_factory(nex_creator& c) :c(c), m_coeff(1) {}
void reset() { m_coeff = rational::one(); m_args.reset(); }
void operator*=(rational const& coeff) { m_coeff *= coeff; }
void operator*=(nex_pow const& p) { m_args.push_back(p); }
void operator*=(nex const* n) { m_args.push_back(nex_pow(n, 1)); }
bool empty() const { return m_args.empty(); }
nex_mul* mk() {
auto r = alloc(nex_mul, m_coeff, m_args);
c.add_to_allocated(r);
return r;
}
nex* mk_reduced() {
if (m_args.empty()) return c.mk_scalar(m_coeff);
if (m_coeff.is_one() && m_args.size() == 1 && m_args[0].pow() == 1) return m_args[0].e();
return mk();
}
};
class sum_factory {
nex_creator& c;
ptr_vector<nex> m_args;
public:
sum_factory(nex_creator& c) :c(c) {}
void reset() { m_args.reset(); }
void operator+=(nex const* n) { m_args.push_back(const_cast<nex*>(n)); }
void operator+=(nex* n) { m_args.push_back(n); }
bool empty() const { return m_args.empty(); }
nex_sum* mk() { return c.mk_sum(m_args); }
};
mul_factory m_mk_mul;
nex_sum* mk_sum() {
auto r = new nex_sum();
add_to_allocated(r);
return r;
}
template <typename T>
void add_children(T) { }
template <typename T, typename K, typename ...Args>
void add_children(T r, K e, Args ... es) {
r->add_child(e);
add_children(r, es ...);
ptr_vector<nex> v0;
return mk_sum(v0);
}
nex_sum* mk_sum(const ptr_vector<nex>& v) {
auto r = new nex_sum(v);
nex_sum* mk_sum(const ptr_vector<nex>& v) {
auto r = alloc(nex_sum, v);
add_to_allocated(r);
return r;
}
nex_mul* mk_mul(const vector<nex_pow>& v) {
auto r = new nex_mul();
add_to_allocated(r);
r->children() = v;
return r;
}
template <typename K, typename...Args>
nex_sum* mk_sum(K e, Args... es) {
auto r = new nex_sum();
add_to_allocated(r);
r->add_child(e);
add_children(r, es...);
return r;
sum_factory sf(*this);
sf += e;
add_sum(sf, es...);
return sf.mk();
}
nex_var* mk_var(lpvar j) {
auto r = new nex_var(j);
auto r = alloc(nex_var, j);
add_to_allocated(r);
return r;
}
nex_mul* mk_mul() {
auto r = new nex_mul();
auto r = alloc(nex_mul);
add_to_allocated(r);
return r;
}
template <typename K, typename...Args>
nex_mul* mk_mul(K e, Args... es) {
auto r = new nex_mul();
add_to_allocated(r);
add_children(r, e, es...);
return r;
m_mk_mul.reset();
m_mk_mul *= e;
mul_args(es...);
return m_mk_mul.mk();
}
nex_scalar* mk_scalar(const rational& v) {
auto r = new nex_scalar(v);
auto r = alloc(nex_scalar, v);
add_to_allocated(r);
return r;
}
@ -227,30 +277,31 @@ public:
void mul_to_powers(vector<nex_pow>& children);
void sort_join_sum(ptr_vector<nex> & children);
bool fill_join_map_for_sum(ptr_vector<nex> & children,
std::map<nex*, rational, nex_lt>& map,
std::unordered_set<nex*>& existing_nex,
void sort_join_sum(nex_sum & sum);
bool fill_join_map_for_sum(nex_sum & sum,
std::map<nex const*, rational, nex_lt>& map,
std::unordered_set<nex const*>& existing_nex,
rational& common_scalar);
bool register_in_join_map(std::map<nex*, rational, nex_lt>&, nex*, const rational&) const;
bool register_in_join_map(std::map<nex const*, rational, nex_lt>&, nex const*, const rational&) const;
void simplify_children_of_sum(ptr_vector<nex> & children);
void simplify_children_of_sum(nex_sum & sum);
bool eat_scalar_pow(rational& r, const nex_pow& p, unsigned);
bool children_are_simplified(const vector<nex_pow>& children) const;
bool gt(const nex* a, const nex* b) const;
bool gt_nex_powers(const vector<nex_pow>&, const nex* b) const;
bool gt_on_powers_mul(const vector<nex_pow>&, const nex_mul& b) const;
bool gt(const nex& a, const nex& b) const;
bool gt(const nex* a, const nex* b) const { return gt(*a, *b); }
template <typename T>
bool gt_on_powers_mul_same_degree(const T&, const nex_mul& b) const;
bool gt_for_sort_join_sum(const nex* a, const nex* b) const;
bool gt_on_mul_mul(const nex_mul& a, const nex_mul& b) const;
bool gt_on_var_nex(const nex_var* a, const nex* b) const;
bool gt_on_mul_nex(const nex_mul* a, const nex* b) const;
bool gt_on_sum_sum(const nex_sum* a, const nex_sum* b) const;
void process_map_pair(nex *e, const rational& coeff, ptr_vector<nex> & children, std::unordered_set<nex*>&);
bool gt_on_mul_mul(const nex_mul& a, const nex_mul& b) const;
bool gt_on_sum_sum(const nex_sum& a, const nex_sum& b) const;
bool gt_on_var_nex(const nex_var& a, const nex& b) const;
bool gt_on_mul_nex(nex_mul const&, const nex& b) const;
bool gt_on_nex_pow(const nex_pow& a, const nex_pow& b) const {
return (a.pow() > b.pow()) || (a.pow() == b.pow() && gt(a.e(), b.e()));
}
void process_map_pair(nex*e, const rational& coeff, nex_sum & sum, std::unordered_set<nex const*>&);
#ifdef Z3DEBUG
static
bool equal(const nex*, const nex* );