3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 10:25:18 +00:00

Removed dead code

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2012-12-11 18:00:09 -08:00
parent bee783fdd1
commit 13dda76ddb
2 changed files with 0 additions and 689 deletions

View file

@ -1,535 +0,0 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
strategic_solver.h
Abstract:
Strategies -> Solver
Author:
Leonardo (leonardo) 2011-05-19
Notes:
--*/
#if 0
#include"strategic_solver.h"
#include"scoped_timer.h"
#include"ast_smt2_pp.h"
// minimum verbosity level for portfolio verbose messages
#define PS_VB_LVL 15
strategic_solver::ctx::ctx(ast_manager & m):
m_assertions(m),
m_assertion_names(m) {
}
strategic_solver::strategic_solver():
m_manager(0),
m_force_tactic(false),
m_inc_mode(false),
m_check_sat_executed(false),
m_inc_solver(0),
m_inc_solver_timeout(UINT_MAX),
m_inc_unknown_behavior(IUB_USE_TACTIC_IF_QF),
m_default_fct(0),
m_curr_tactic(0),
m_proof(0),
m_core(0),
m_callback(0) {
m_use_inc_solver_results = false;
DEBUG_CODE(m_num_scopes = 0;);
m_produce_proofs = false;
m_produce_models = false;
m_produce_unsat_cores = false;
m_auto_config = true;
}
strategic_solver::~strategic_solver() {
SASSERT(!m_curr_tactic);
dictionary<tactic_factory*>::iterator it = m_logic2fct.begin();
dictionary<tactic_factory*>::iterator end = m_logic2fct.end();
for (; it != end; ++it) {
dealloc(it->m_value);
}
if (m_proof)
m().dec_ref(m_proof);
if (m_core)
m().dec_ref(m_core);
}
bool strategic_solver::has_quantifiers() const {
unsigned sz = get_num_assertions();
for (unsigned i = 0; i < sz; i++) {
if (::has_quantifiers(get_assertion(i)))
return true;
}
return false;
}
/**
\brief Return true if a tactic should be used when the incremental solver returns unknown.
*/
bool strategic_solver::use_tactic_when_undef() const {
switch (m_inc_unknown_behavior) {
case IUB_RETURN_UNDEF: return false;
case IUB_USE_TACTIC_IF_QF: return !has_quantifiers();
case IUB_USE_TACTIC: return true;
default:
UNREACHABLE();
return false;
}
}
void strategic_solver::set_inc_solver(solver * s) {
SASSERT(m_inc_solver == 0);
SASSERT(m_num_scopes == 0);
m_inc_solver = s;
if (m_callback)
m_inc_solver->set_progress_callback(m_callback);
}
void strategic_solver::updt_params(params_ref const & p) {
if (m_inc_solver)
m_inc_solver->updt_params(p);
m_params = p;
m_auto_config = p.get_bool("auto_config", true);
}
void strategic_solver::collect_param_descrs(param_descrs & r) {
if (m_inc_solver)
m_inc_solver->collect_param_descrs(r);
}
/**
\brief Set a timeout for each check_sat query that is processed by the inc_solver.
timeout == UINT_MAX means infinite
After the timeout a strategy is used.
*/
void strategic_solver::set_inc_solver_timeout(unsigned timeout) {
m_inc_solver_timeout = timeout;
}
/**
\brief Set the default tactic factory.
It is used if there is no tactic for a given logic.
*/
void strategic_solver::set_default_tactic(tactic_factory * fct) {
m_default_fct = fct;
}
/**
\brief Set a tactic factory for a given logic.
*/
void strategic_solver::set_tactic_for(symbol const & logic, tactic_factory * fct) {
tactic_factory * old_fct;
if (m_logic2fct.find(logic, old_fct)) {
dealloc(old_fct);
}
m_logic2fct.insert(logic, fct);
}
void strategic_solver::init(ast_manager & m, symbol const & logic) {
m_manager = &m;
m_logic = logic;
if (m_inc_mode) {
SASSERT(m_inc_solver);
m_inc_solver->init(m, logic);
}
m_ctx = alloc(ctx, m);
TRACE("strategic_solver", tout << "strategic_solver was initialized.\n";);
}
unsigned strategic_solver::get_num_assertions() const {
if (m_ctx == 0)
return 0;
return m_ctx->m_assertions.size();
}
expr * strategic_solver::get_assertion(unsigned idx) const {
SASSERT(m_ctx);
return m_ctx->m_assertions.get(idx);
}
expr * strategic_solver::get_assertion_name(unsigned idx) const {
SASSERT(m_ctx);
SASSERT(m_produce_unsat_cores);
return m_ctx->m_assertion_names.get(idx);
}
void strategic_solver::set_produce_proofs(bool f) {
m_produce_proofs = f;
// do not need to propagate to inc_solver since flag cannot be changed after initialization
}
void strategic_solver::set_produce_models(bool f) {
m_produce_models = f;
if (m_inc_solver)
m_inc_solver->set_produce_models(f);
}
void strategic_solver::set_produce_unsat_cores(bool f) {
m_produce_unsat_cores = f;
// do not need to propagate to inc_solver since flag cannot be changed after initialization
}
// delayed inc solver initialization
void strategic_solver::init_inc_solver() {
if (m_inc_mode)
return; // solver was already initialized
if (!m_inc_solver)
return; // inc solver was not installed
m_inc_mode = true;
m_inc_solver->set_produce_proofs(m_produce_proofs);
m_inc_solver->set_produce_models(m_produce_models);
m_inc_solver->set_produce_unsat_cores(m_produce_unsat_cores);
m_inc_solver->init(m(), m_logic);
unsigned sz = get_num_assertions();
if (m_produce_unsat_cores) {
SASSERT(m_ctx->m_assertions.size() == m_ctx->m_assertion_names.size());
for (unsigned i = 0; i < sz; i++) {
m_inc_solver->assert_expr(get_assertion(i), get_assertion_name(i));
}
}
else {
for (unsigned i = 0; i < sz; i++) {
m_inc_solver->assert_expr(get_assertion(i));
}
}
}
void strategic_solver::collect_statistics(statistics & st) const {
if (m_use_inc_solver_results) {
SASSERT(m_inc_solver);
m_inc_solver->collect_statistics(st);
}
else {
if (m_curr_tactic)
m_curr_tactic->collect_statistics(st); // m_curr_tactic is still being executed.
else
st.copy(m_stats);
}
}
void strategic_solver::reset() {
m_ctx = 0;
m_logic = symbol::null;
m_inc_mode = false;
m_check_sat_executed = false;
if (m_inc_solver)
m_inc_solver->reset();
SASSERT(!m_curr_tactic);
m_use_inc_solver_results = false;
reset_results();
}
void strategic_solver::reset_results() {
m_use_inc_solver_results = false;
m_model = 0;
if (m_proof) {
m().dec_ref(m_proof);
m_proof = 0;
}
if (m_core) {
m().dec_ref(m_core);
m_core = 0;
}
m_reason_unknown.clear();
m_stats.reset();
}
void strategic_solver::assert_expr(expr * t) {
if (m_check_sat_executed && !m_inc_mode) {
// a check sat was already executed --> switch to incremental mode
init_inc_solver();
SASSERT(m_inc_solver == 0 || m_inc_mode);
}
if (m_inc_mode) {
SASSERT(m_inc_solver);
m_inc_solver->assert_expr(t);
}
SASSERT(m_ctx);
m_ctx->m_assertions.push_back(t);
if (m_produce_unsat_cores)
m_ctx->m_assertion_names.push_back(0);
}
void strategic_solver::assert_expr(expr * t, expr * a) {
if (m_check_sat_executed && !m_inc_mode) {
// a check sat was already executed --> switch to incremental mode
init_inc_solver();
SASSERT(m_inc_solver == 0 || m_inc_mode);
}
if (m_inc_mode) {
SASSERT(m_inc_solver);
m_inc_solver->assert_expr(t, a);
}
SASSERT(m_ctx);
m_ctx->m_assertions.push_back(t);
if (m_produce_unsat_cores)
m_ctx->m_assertion_names.push_back(a);
}
void strategic_solver::push() {
DEBUG_CODE(m_num_scopes++;);
init_inc_solver();
if (m_inc_solver)
m_inc_solver->push();
m_ctx->m_scopes.push_back(m_ctx->m_assertions.size());
}
void strategic_solver::pop(unsigned n) {
DEBUG_CODE({
SASSERT(n <= m_num_scopes);
m_num_scopes -= n;
});
init_inc_solver();
if (m_inc_solver)
m_inc_solver->pop(n);
SASSERT(m_ctx);
unsigned new_lvl = m_ctx->m_scopes.size() - n;
unsigned old_sz = m_ctx->m_scopes[new_lvl];
m_ctx->m_assertions.shrink(old_sz);
if (m_produce_unsat_cores)
m_ctx->m_assertion_names.shrink(old_sz);
m_ctx->m_scopes.shrink(new_lvl);
}
unsigned strategic_solver::get_scope_level() const {
if (m_ctx == 0)
return 0;
return m_ctx->m_scopes.size();
}
struct aux_timeout_eh : public event_handler {
solver * m_solver;
volatile bool m_canceled;
aux_timeout_eh(solver * s):m_solver(s), m_canceled(false) {}
virtual void operator()() {
m_solver->cancel();
m_canceled = true;
}
};
struct strategic_solver::mk_tactic {
strategic_solver * m_solver;
mk_tactic(strategic_solver * s, tactic_factory * f, params_ref const & p):m_solver(s) {
ast_manager & m = s->m();
tactic * tct = (*f)(m, p);
tct->set_logic(s->m_logic);
if (s->m_callback)
tct->set_progress_callback(s->m_callback);
#pragma omp critical (strategic_solver)
{
s->m_curr_tactic = tct;
}
}
~mk_tactic() {
#pragma omp critical (strategic_solver)
{
m_solver->m_curr_tactic = 0;
}
}
};
tactic_factory * strategic_solver::get_tactic_factory() const {
tactic_factory * f = 0;
if (m_logic2fct.find(m_logic, f))
return f;
return m_default_fct.get();
}
lbool strategic_solver::check_sat_with_assumptions(unsigned num_assumptions, expr * const * assumptions) {
if (!m_inc_solver) {
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "incremental solver was not installed, returning unknown...\n";);
m_use_inc_solver_results = false;
m_reason_unknown = "incomplete";
return l_undef;
}
init_inc_solver();
m_use_inc_solver_results = true;
TRACE("strategic_solver", tout << "invoking inc_solver with " << num_assumptions << " assumptions\n";);
return m_inc_solver->check_sat(num_assumptions, assumptions);
}
lbool strategic_solver::check_sat(unsigned num_assumptions, expr * const * assumptions) {
TRACE("strategic_solver", tout << "assumptions at strategic_solver:\n";
for (unsigned i = 0; i < num_assumptions; i++) {
tout << mk_ismt2_pp(assumptions[i], m()) << "\n";
}
tout << "m_produce_unsat_cores: " << m_produce_unsat_cores << ", m_inc_mode: " << m_inc_mode << "\n";);
reset_results();
m_check_sat_executed = true;
if (num_assumptions > 0 || // assumptions were provided
(!m_auto_config && !m_force_tactic) // auto config and force_tactic are turned off
) {
// must use incremental solver
return check_sat_with_assumptions(num_assumptions, assumptions);
}
tactic_factory * factory = get_tactic_factory();
if (factory == 0)
init_inc_solver(); // try to switch to incremental solver
if (m_inc_mode) {
SASSERT(m_inc_solver);
unsigned timeout = m_inc_solver_timeout;
if (factory == 0)
timeout = UINT_MAX; // there is no tactic available
if (timeout == UINT_MAX) {
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "using incremental solver (without a timeout).\n";);
m_use_inc_solver_results = true;
lbool r = m_inc_solver->check_sat(0, 0);
if (r != l_undef || factory == 0 || !use_tactic_when_undef()) {
m_use_inc_solver_results = true;
return r;
}
}
else {
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "using incremental solver (with timeout).\n";);
SASSERT(factory != 0);
aux_timeout_eh eh(m_inc_solver.get());
lbool r;
{
scoped_timer timer(m_inc_solver_timeout, &eh);
r = m_inc_solver->check_sat(0, 0);
}
if ((r != l_undef || !use_tactic_when_undef()) && !eh.m_canceled) {
m_use_inc_solver_results = true;
return r;
}
}
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "incremental solver failed, trying tactic.\n";);
}
m_use_inc_solver_results = false;
if (factory == 0) {
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "there is no tactic available for the current logic.\n";);
m_reason_unknown = "incomplete";
return l_undef;
}
goal_ref g = alloc(goal, m(), m_produce_proofs, m_produce_models, m_produce_unsat_cores);
unsigned sz = get_num_assertions();
if (m_produce_unsat_cores) {
SASSERT(m_ctx->m_assertions.size() == m_ctx->m_assertion_names.size());
for (unsigned i = 0; i < sz; i++)
g->assert_expr(get_assertion(i), get_assertion_name(i));
}
else {
for (unsigned i = 0; i < sz; i++)
g->assert_expr(get_assertion(i));
}
expr_dependency_ref core(m());
TRACE("strategic_solver", tout << "using goal...\n"; g->display_with_dependencies(tout););
mk_tactic tct_maker(this, factory, m_params);
SASSERT(m_curr_tactic);
proof_ref pr(m());
lbool r = ::check_sat(*(m_curr_tactic.get()), g, m_model, pr, core, m_reason_unknown);
m_curr_tactic->collect_statistics(m_stats);
if (pr) {
m_proof = pr;
m().inc_ref(m_proof);
}
if (core) {
m_core = core;
m().inc_ref(m_core);
}
return r;
}
void strategic_solver::set_cancel(bool f) {
if (m_inc_solver)
m_inc_solver->set_cancel(f);
#pragma omp critical (strategic_solver)
{
if (m_curr_tactic)
m_curr_tactic->set_cancel(f);
}
}
void strategic_solver::get_unsat_core(ptr_vector<expr> & r) {
TRACE("strategic_solver", tout << "get_unsat_core, m_use_inc_solver_results: " << m_use_inc_solver_results << "\n";);
if (m_use_inc_solver_results) {
SASSERT(m_inc_solver);
m_inc_solver->get_unsat_core(r);
}
else {
m().linearize(m_core, r);
}
}
void strategic_solver::get_model(model_ref & m) {
if (m_use_inc_solver_results) {
SASSERT(m_inc_solver);
m_inc_solver->get_model(m);
}
else {
m = m_model;
}
}
proof * strategic_solver::get_proof() {
if (m_use_inc_solver_results) {
SASSERT(m_inc_solver);
return m_inc_solver->get_proof();
}
else {
return m_proof;
}
}
std::string strategic_solver::reason_unknown() const {
if (m_use_inc_solver_results) {
SASSERT(m_inc_solver);
return m_inc_solver->reason_unknown();
}
return m_reason_unknown;
}
void strategic_solver::get_labels(svector<symbol> & r) {
if (m_use_inc_solver_results) {
SASSERT(m_inc_solver);
m_inc_solver->get_labels(r);
}
}
void strategic_solver::set_progress_callback(progress_callback * callback) {
m_callback = callback;
if (m_inc_solver)
m_inc_solver->set_progress_callback(callback);
}
void strategic_solver::display(std::ostream & out) const {
if (m_manager) {
unsigned num = get_num_assertions();
out << "(solver";
for (unsigned i = 0; i < num; i++) {
out << "\n " << mk_ismt2_pp(get_assertion(i), m(), 2);
}
out << ")";
}
else {
out << "(solver)";
}
}
#endif

View file

@ -1,154 +0,0 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
strategic_solver.h
Abstract:
Strategies -> Solver
Author:
Leonardo (leonardo) 2011-05-19
Notes:
--*/
#ifndef _STRATEGIC_SOLVER_H_
#define _STRATEGIC_SOLVER_H_
#include"solver.h"
#include"tactic.h"
class progress_callback;
/**
\brief Implementation of the solver API that supports:
- a different tactic for each logic
- a general purpose tactic
- a default incremental solver
The strategic solver has two modes:
- non-incremental
- incremental
In non-incremental mode, tactics are used.
In incremental model, the incremental (general purpose) solver is used.
A timeout for the incremental solver can be specified.
If the timeout is reached, then the strategic_solver tries to solve the problem using tactics.
The strategic_solver switches to incremental when:
- push is used
- assertions are peformed after a check_sat
It goes back to non_incremental mode when:
- reset is invoked.
*/
class strategic_solver : public solver {
public:
// Behavior when the incremental solver returns unknown.
enum inc_unknown_behavior {
IUB_RETURN_UNDEF, // just return unknown
IUB_USE_TACTIC_IF_QF, // invoke tactic if problem is quantifier free
IUB_USE_TACTIC // invoke tactic
};
private:
ast_manager * m_manager;
params_ref m_params;
symbol m_logic;
bool m_force_tactic; // use tactics even when auto_config = false
bool m_inc_mode;
bool m_check_sat_executed;
scoped_ptr<solver_factory> m_inc_solver_factory;
ref<solver> m_inc_solver;
unsigned m_inc_solver_timeout;
inc_unknown_behavior m_inc_unknown_behavior;
scoped_ptr<tactic_factory> m_default_fct;
dictionary<tactic_factory*> m_logic2fct;
ref<tactic> m_curr_tactic;
bool m_use_inc_solver_results;
model_ref m_model;
proof * m_proof;
expr_dependency * m_core;
std::string m_reason_unknown;
statistics m_stats;
struct ctx {
expr_ref_vector m_assertions;
expr_ref_vector m_assertion_names;
unsigned_vector m_scopes;
ctx(ast_manager & m);
};
scoped_ptr<ctx> m_ctx;
#ifdef Z3DEBUG
unsigned m_num_scopes;
#endif
bool m_produce_proofs;
bool m_produce_models;
bool m_produce_unsat_cores;
bool m_auto_config;
progress_callback * m_callback;
void reset_results();
void init_inc_solver();
tactic_factory * get_tactic_factory() const;
lbool check_sat_with_assumptions(unsigned num_assumptions, expr * const * assumptions);
struct mk_tactic;
bool has_quantifiers() const;
bool use_tactic_when_undef() const;
public:
strategic_solver(ast_manager & m, bool produce_proofs, bool produce_models, bool produce_unsat_cores, symbol const & logic);
~strategic_solver();
ast_manager & m() const { SASSERT(m_manager); return *m_manager; }
void set_inc_solver_factory(solver_factory * s);
void set_inc_solver_timeout(unsigned timeout);
void set_default_tactic(tactic_factory * fct);
void set_tactic_for(symbol const & logic, tactic_factory * fct);
void set_inc_unknown_behavior(inc_unknown_behavior b) { m_inc_unknown_behavior = b; }
void force_tactic(bool f) { m_force_tactic = f; }
virtual void updt_params(params_ref const & p);
virtual void collect_param_descrs(param_descrs & r);
virtual void set_produce_proofs(bool f);
virtual void set_produce_models(bool f);
virtual void set_produce_unsat_cores(bool f);
unsigned get_num_assertions() const;
expr * get_assertion(unsigned idx) const;
expr * get_assertion_name(unsigned idx) const;
virtual void display(std::ostream & out) const;
virtual void init(ast_manager & m, symbol const & logic);
virtual void collect_statistics(statistics & st) const;
virtual void reset();
virtual void assert_expr(expr * t);
virtual void assert_expr(expr * t, expr * a);
virtual void push();
virtual void pop(unsigned n);
virtual unsigned get_scope_level() const;
virtual lbool check_sat(unsigned num_assumptions, expr * const * assumptions);
virtual void get_unsat_core(ptr_vector<expr> & r);
virtual void get_model(model_ref & m);
virtual proof * get_proof();
virtual std::string reason_unknown() const;
virtual void get_labels(svector<symbol> & r);
virtual void set_cancel(bool f);
virtual void set_progress_callback(progress_callback * callback);
};
#endif