mirror of
https://github.com/Z3Prover/z3
synced 2025-04-24 01:25:31 +00:00
na
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
a2aa1170f9
commit
12fe964ea5
2 changed files with 70 additions and 40 deletions
|
@ -30,23 +30,10 @@ namespace polysat {
|
|||
lbool op_constraint::eval(pdd const& p, pdd const& q, pdd const& r) const {
|
||||
switch (m_op) {
|
||||
case code::lshr_op:
|
||||
if (q.is_val() && r.is_val()) {
|
||||
auto& m = p.manager();
|
||||
if (q.val() >= m.power_of_2())
|
||||
return r.is_zero() ? l_true : l_false;
|
||||
if (p.is_val()) {
|
||||
pdd rr = p * m.mk_val(rational::power_of_two(q.val().get_unsigned()));
|
||||
return rr == r ? l_true : l_false;
|
||||
}
|
||||
// other cases when we know lower
|
||||
// bound of q, e.g, q = 2^k*q1 + q2, where q2 is a constant.
|
||||
}
|
||||
break;
|
||||
return eval_lshr(p, q, r);
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return l_undef;
|
||||
return l_undef;
|
||||
}
|
||||
}
|
||||
|
||||
bool op_constraint::is_always_false(bool is_positive, pdd const& p, pdd const& q, pdd const& r) const {
|
||||
|
@ -73,13 +60,28 @@ namespace polysat {
|
|||
}
|
||||
}
|
||||
|
||||
std::ostream& op_constraint::display(std::ostream& out) const {
|
||||
switch (m_op) {
|
||||
case code::lshr_op:
|
||||
return out << r() << " == " << p() << " << " << q();
|
||||
std::ostream& operator<<(std::ostream & out, op_constraint::code c) {
|
||||
switch (c) {
|
||||
case op_constraint::code::ashr_op:
|
||||
return out << ">>a";
|
||||
case op_constraint::code::lshr_op:
|
||||
return out << ">>";
|
||||
case op_constraint::code::shl_op:
|
||||
return out << "<<";
|
||||
case op_constraint::code::and_op:
|
||||
return out << "&";
|
||||
case op_constraint::code::or_op:
|
||||
return out << "|";
|
||||
case op_constraint::code::xor_op:
|
||||
return out << "^";
|
||||
default:
|
||||
return out;
|
||||
}
|
||||
return out << "?";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& op_constraint::display(std::ostream& out) const {
|
||||
return out << r() << " " << m_op << " " << p() << " << " << q();
|
||||
}
|
||||
|
||||
bool op_constraint::is_always_false(bool is_positive) const {
|
||||
|
@ -94,26 +96,16 @@ namespace polysat {
|
|||
return is_always_true(is_positive, p().subst_val(a), q().subst_val(a), r().subst_val(a));
|
||||
}
|
||||
|
||||
/**
|
||||
* Enforce basic axioms, such as:
|
||||
*
|
||||
* r = p >> q & q >= k -> r[i] = 0 for i > K - k
|
||||
* r = p >> q & q >= K -> r = 0
|
||||
* r = p >> q & q = k -> r[i] = p[i+k] for k + i < K
|
||||
* r = p >> q & q >= k -> r <= 2^{K-k-1}
|
||||
* r = p >> q => r <= p
|
||||
* r = p >> q & q != 0 => r < p
|
||||
* r = p >> q & q = 0 => r = p
|
||||
*
|
||||
* when q is a constant, several axioms can be enforced at activation time.
|
||||
*
|
||||
* Enforce also inferences and bounds
|
||||
*
|
||||
* We can assume that op_constraint is only asserted positive.
|
||||
*/
|
||||
void op_constraint::narrow(solver& s, bool is_positive) {
|
||||
SASSERT(is_positive);
|
||||
NOT_IMPLEMENTED_YET();
|
||||
switch (m_op) {
|
||||
case code::lshr_op:
|
||||
narrow_lshr(s);
|
||||
break;
|
||||
default:
|
||||
NOT_IMPLEMENTED_YET();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
unsigned op_constraint::hash() const {
|
||||
|
@ -127,4 +119,39 @@ namespace polysat {
|
|||
return m_op == o.m_op && p() == o.p() && q() == o.q() && r() == o.r();
|
||||
}
|
||||
|
||||
/**
|
||||
* Enforce basic axioms, such as:
|
||||
*
|
||||
* r = p >> q & q >= k -> r[i] = 0 for i > K - k
|
||||
* r = p >> q & q >= K -> r = 0
|
||||
* r = p >> q & q = k -> r[i] = p[i+k] for k + i < K
|
||||
* r = p >> q & q >= k -> r <= 2^{K-k-1}
|
||||
* r = p >> q => r <= p
|
||||
* r = p >> q & q != 0 => r < p
|
||||
* r = p >> q & q = 0 => r = p
|
||||
*
|
||||
* when q is a constant, several axioms can be enforced at activation time.
|
||||
*
|
||||
* Enforce also inferences and bounds
|
||||
*
|
||||
* We can assume that op_constraint is only asserted positive.
|
||||
*/
|
||||
void op_constraint::narrow_lshr(solver& s) {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
}
|
||||
|
||||
lbool op_constraint::eval_lshr(pdd const& p, pdd const& q, pdd const& r) const {
|
||||
if (q.is_val() && r.is_val()) {
|
||||
auto& m = p.manager();
|
||||
if (q.val() >= m.power_of_2())
|
||||
return r.is_zero() ? l_true : l_false;
|
||||
if (p.is_val()) {
|
||||
pdd rr = p * m.mk_val(rational::power_of_two(q.val().get_unsigned()));
|
||||
return rr == r ? l_true : l_false;
|
||||
}
|
||||
// other cases when we know lower
|
||||
// bound of q, e.g, q = 2^k*q1 + q2, where q2 is a constant.
|
||||
}
|
||||
return l_undef;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -40,6 +40,9 @@ namespace polysat {
|
|||
bool is_always_true(bool is_positive, pdd const& p, pdd const& q, pdd const& r) const;
|
||||
lbool eval(pdd const& p, pdd const& q, pdd const& r) const;
|
||||
|
||||
void narrow_lshr(solver& s);
|
||||
lbool eval_lshr(pdd const& p, pdd const& q, pdd const& r) const;
|
||||
|
||||
public:
|
||||
~op_constraint() override {}
|
||||
pdd const& p() const { return m_p; }
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue