3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 01:25:31 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2021-12-15 09:32:09 -08:00
parent a2aa1170f9
commit 12fe964ea5
2 changed files with 70 additions and 40 deletions

View file

@ -30,23 +30,10 @@ namespace polysat {
lbool op_constraint::eval(pdd const& p, pdd const& q, pdd const& r) const {
switch (m_op) {
case code::lshr_op:
if (q.is_val() && r.is_val()) {
auto& m = p.manager();
if (q.val() >= m.power_of_2())
return r.is_zero() ? l_true : l_false;
if (p.is_val()) {
pdd rr = p * m.mk_val(rational::power_of_two(q.val().get_unsigned()));
return rr == r ? l_true : l_false;
}
// other cases when we know lower
// bound of q, e.g, q = 2^k*q1 + q2, where q2 is a constant.
}
break;
return eval_lshr(p, q, r);
default:
break;
}
return l_undef;
return l_undef;
}
}
bool op_constraint::is_always_false(bool is_positive, pdd const& p, pdd const& q, pdd const& r) const {
@ -73,13 +60,28 @@ namespace polysat {
}
}
std::ostream& op_constraint::display(std::ostream& out) const {
switch (m_op) {
case code::lshr_op:
return out << r() << " == " << p() << " << " << q();
std::ostream& operator<<(std::ostream & out, op_constraint::code c) {
switch (c) {
case op_constraint::code::ashr_op:
return out << ">>a";
case op_constraint::code::lshr_op:
return out << ">>";
case op_constraint::code::shl_op:
return out << "<<";
case op_constraint::code::and_op:
return out << "&";
case op_constraint::code::or_op:
return out << "|";
case op_constraint::code::xor_op:
return out << "^";
default:
return out;
}
return out << "?";
}
return out;
}
std::ostream& op_constraint::display(std::ostream& out) const {
return out << r() << " " << m_op << " " << p() << " << " << q();
}
bool op_constraint::is_always_false(bool is_positive) const {
@ -94,26 +96,16 @@ namespace polysat {
return is_always_true(is_positive, p().subst_val(a), q().subst_val(a), r().subst_val(a));
}
/**
* Enforce basic axioms, such as:
*
* r = p >> q & q >= k -> r[i] = 0 for i > K - k
* r = p >> q & q >= K -> r = 0
* r = p >> q & q = k -> r[i] = p[i+k] for k + i < K
* r = p >> q & q >= k -> r <= 2^{K-k-1}
* r = p >> q => r <= p
* r = p >> q & q != 0 => r < p
* r = p >> q & q = 0 => r = p
*
* when q is a constant, several axioms can be enforced at activation time.
*
* Enforce also inferences and bounds
*
* We can assume that op_constraint is only asserted positive.
*/
void op_constraint::narrow(solver& s, bool is_positive) {
SASSERT(is_positive);
NOT_IMPLEMENTED_YET();
switch (m_op) {
case code::lshr_op:
narrow_lshr(s);
break;
default:
NOT_IMPLEMENTED_YET();
break;
}
}
unsigned op_constraint::hash() const {
@ -127,4 +119,39 @@ namespace polysat {
return m_op == o.m_op && p() == o.p() && q() == o.q() && r() == o.r();
}
/**
* Enforce basic axioms, such as:
*
* r = p >> q & q >= k -> r[i] = 0 for i > K - k
* r = p >> q & q >= K -> r = 0
* r = p >> q & q = k -> r[i] = p[i+k] for k + i < K
* r = p >> q & q >= k -> r <= 2^{K-k-1}
* r = p >> q => r <= p
* r = p >> q & q != 0 => r < p
* r = p >> q & q = 0 => r = p
*
* when q is a constant, several axioms can be enforced at activation time.
*
* Enforce also inferences and bounds
*
* We can assume that op_constraint is only asserted positive.
*/
void op_constraint::narrow_lshr(solver& s) {
NOT_IMPLEMENTED_YET();
}
lbool op_constraint::eval_lshr(pdd const& p, pdd const& q, pdd const& r) const {
if (q.is_val() && r.is_val()) {
auto& m = p.manager();
if (q.val() >= m.power_of_2())
return r.is_zero() ? l_true : l_false;
if (p.is_val()) {
pdd rr = p * m.mk_val(rational::power_of_two(q.val().get_unsigned()));
return rr == r ? l_true : l_false;
}
// other cases when we know lower
// bound of q, e.g, q = 2^k*q1 + q2, where q2 is a constant.
}
return l_undef;
}
}

View file

@ -40,6 +40,9 @@ namespace polysat {
bool is_always_true(bool is_positive, pdd const& p, pdd const& q, pdd const& r) const;
lbool eval(pdd const& p, pdd const& q, pdd const& r) const;
void narrow_lshr(solver& s);
lbool eval_lshr(pdd const& p, pdd const& q, pdd const& r) const;
public:
~op_constraint() override {}
pdd const& p() const { return m_p; }