mirror of
https://github.com/Z3Prover/z3
synced 2025-08-17 16:52:15 +00:00
Implement proposed smtlib2 bitvector overflow predicates (#6715)
* Logical names for function declarations in c++ Currently, for example, the function declaration symbol member for checking whether multiplication *does not* overflow is called `m_bv_smul_ovfl`. Since we are introducing the upcoming smtlib2 symbols that check that multpliciation *does* overflow, the not overflow check symbols are renamed to `m_bv_smul_no_ovfl` etc. * Implement smtlib overflow preds for multiplication Smtlib2 is being extended to include overflow predicates for bit vectors (see https://groups.google.com/u/1/g/smt-lib/c/J4D99wT0aKI). This commit introduces the predicates `bvumulo` and `bvsmulo` that return `true` if the unsigned multiplication overflows or the signed multiplication underflows or overflows, respectively. * Move mul overflow predicates to BV logic * Add a todo on illogical argument order * Implement mk_unary_pred for bv * Implement bvnego * Implement bvuaddo * Implement bvsaddo * Implement bvusubo * Implement bvssubo * Implement bvsdivo
This commit is contained in:
parent
62e1ec0698
commit
12e45c9d17
4 changed files with 222 additions and 7 deletions
|
@ -93,6 +93,10 @@ br_status bv_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * cons
|
|||
case OP_BNEG:
|
||||
SASSERT(num_args == 1);
|
||||
return mk_uminus(args[0], result);
|
||||
case OP_BNEG_OVFL:
|
||||
SASSERT(num_args == 1);
|
||||
return mk_bvneg_overflow(args[0], result);
|
||||
|
||||
case OP_BSHL:
|
||||
SASSERT(num_args == 2);
|
||||
return mk_bv_shl(args[0], args[1], result);
|
||||
|
@ -199,6 +203,20 @@ br_status bv_rewriter::mk_app_core(func_decl * f, unsigned num_args, expr * cons
|
|||
return mk_bvsmul_no_overflow(num_args, args, false, result);
|
||||
case OP_BUMUL_NO_OVFL:
|
||||
return mk_bvumul_no_overflow(num_args, args, result);
|
||||
case OP_BSMUL_OVFL:
|
||||
return mk_bvsmul_overflow(num_args, args, result);
|
||||
case OP_BUMUL_OVFL:
|
||||
return mk_bvumul_overflow(num_args, args, result);
|
||||
case OP_BSDIV_OVFL:
|
||||
return mk_bvsdiv_overflow(num_args, args, result);
|
||||
case OP_BUADD_OVFL:
|
||||
return mk_bvuadd_overflow(num_args, args, result);
|
||||
case OP_BSADD_OVFL:
|
||||
return mk_bvsadd_over_underflow(num_args, args, result);
|
||||
case OP_BUSUB_OVFL:
|
||||
return mk_bvusub_underflow(num_args, args, result);
|
||||
case OP_BSSUB_OVFL:
|
||||
return mk_bvssub_overflow(num_args, args, result);
|
||||
default:
|
||||
return BR_FAILED;
|
||||
}
|
||||
|
@ -2921,6 +2939,21 @@ br_status bv_rewriter::mk_distinct(unsigned num_args, expr * const * args, expr_
|
|||
return BR_DONE;
|
||||
}
|
||||
|
||||
br_status bv_rewriter::mk_bvsmul_overflow(unsigned num, expr * const * args, expr_ref & result) {
|
||||
SASSERT(num == 2);
|
||||
result = m.mk_or(
|
||||
m.mk_not(m_util.mk_bvsmul_no_ovfl(args[0], args[1])),
|
||||
m.mk_not(m_util.mk_bvsmul_no_udfl(args[0], args[1]))
|
||||
);
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
||||
br_status bv_rewriter::mk_bvumul_overflow(unsigned num, expr * const * args, expr_ref & result) {
|
||||
SASSERT(num == 2);
|
||||
result = m.mk_not(m_util.mk_bvumul_no_ovfl(args[0], args[1]));
|
||||
return BR_REWRITE2;
|
||||
}
|
||||
|
||||
br_status bv_rewriter::mk_bvsmul_no_overflow(unsigned num, expr * const * args, bool is_overflow, expr_ref & result) {
|
||||
SASSERT(num == 2);
|
||||
unsigned bv_sz;
|
||||
|
@ -2980,5 +3013,95 @@ br_status bv_rewriter::mk_bvumul_no_overflow(unsigned num, expr * const * args,
|
|||
return BR_FAILED;
|
||||
}
|
||||
|
||||
br_status bv_rewriter::mk_bvneg_overflow(expr * const arg, expr_ref & result) {
|
||||
unsigned int sz = get_bv_size(arg);
|
||||
auto maxUnsigned = mk_numeral(rational::power_of_two(sz)-1, sz);
|
||||
result = m.mk_eq(arg, maxUnsigned);
|
||||
return BR_REWRITE3;
|
||||
}
|
||||
|
||||
br_status bv_rewriter::mk_bvuadd_overflow(unsigned num, expr * const * args, expr_ref & result) {
|
||||
SASSERT(num == 2);
|
||||
SASSERT(get_bv_size(args[0]) == get_bv_size(args[1]));
|
||||
unsigned sz = get_bv_size(args[0]);
|
||||
auto a1 = mk_zero_extend(1, args[0]);
|
||||
auto a2 = mk_zero_extend(1, args[1]);
|
||||
auto r = mk_bv_add(a1, a2);
|
||||
auto extract = m_mk_extract(sz, sz, r);
|
||||
result = m.mk_eq(extract, mk_one(1));
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
||||
br_status bv_rewriter::mk_bvsadd_overflow(unsigned num, expr * const * args, expr_ref & result) {
|
||||
SASSERT(num == 2);
|
||||
SASSERT(get_bv_size(args[0]) == get_bv_size(args[1]));
|
||||
unsigned sz = get_bv_size(args[0]);
|
||||
auto zero = mk_zero(sz);
|
||||
auto r = mk_bv_add(args[0], args[1]);
|
||||
auto l1 = m_util.mk_slt(zero, args[0]);
|
||||
auto l2 = m_util.mk_slt(zero, args[1]);
|
||||
auto args_pos = m.mk_and(l1, l2);
|
||||
auto non_pos_sum = m_util.mk_sle(r, zero);
|
||||
result = m.mk_and(args_pos, non_pos_sum);
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
||||
br_status bv_rewriter::mk_bvsadd_underflow(unsigned num, expr * const * args, expr_ref & result) {
|
||||
SASSERT(num == 2);
|
||||
SASSERT(get_bv_size(args[0]) == get_bv_size(args[1]));
|
||||
unsigned sz = get_bv_size(args[0]);
|
||||
auto zero = mk_zero(sz);
|
||||
auto r = mk_bv_add(args[0], args[1]);
|
||||
auto l1 = m_util.mk_slt(args[0], zero);
|
||||
auto l2 = m_util.mk_slt(args[1], zero);
|
||||
auto args_neg = m.mk_and(l1, l2);
|
||||
expr_ref non_neg_sum{m};
|
||||
auto res_rewrite = mk_sge(r, zero, non_neg_sum);
|
||||
SASSERT(res_rewrite != BR_FAILED); (void)res_rewrite;
|
||||
result = m.mk_and(args_neg, non_neg_sum);
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
||||
br_status bv_rewriter::mk_bvsadd_over_underflow(unsigned num, expr * const * args, expr_ref & result) {
|
||||
SASSERT(num == 2);
|
||||
SASSERT(get_bv_size(args[0]) == get_bv_size(args[1]));
|
||||
expr_ref l1{m};
|
||||
expr_ref l2{m};
|
||||
(void)mk_bvsadd_overflow(2, args, l1);
|
||||
(void)mk_bvsadd_underflow(2, args, l2);
|
||||
result = m.mk_or(l1, l2);
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
||||
br_status bv_rewriter::mk_bvusub_underflow(unsigned num, expr * const * args, expr_ref & result) {
|
||||
SASSERT(num == 2);
|
||||
SASSERT(get_bv_size(args[0]) == get_bv_size(args[1]));
|
||||
br_status status = mk_ult(args[0], args[1], result);
|
||||
SASSERT(status != BR_FAILED);
|
||||
return status;
|
||||
}
|
||||
|
||||
br_status bv_rewriter::mk_bvssub_overflow(unsigned num, expr * const * args, expr_ref & result) {
|
||||
SASSERT(num == 2);
|
||||
SASSERT(get_bv_size(args[0]) == get_bv_size(args[1]));
|
||||
auto sz = get_bv_size(args[0]);
|
||||
auto minSigned = mk_numeral(-rational::power_of_two(sz-1), sz);
|
||||
expr_ref bvsaddo {m};
|
||||
expr * args2[2] = { args[0], m_util.mk_bv_neg(args[1]) };
|
||||
auto bvsaddo_stat = mk_bvsadd_overflow(2, args2, bvsaddo);
|
||||
SASSERT(bvsaddo_stat != BR_FAILED); (void)bvsaddo_stat;
|
||||
auto first_arg_ge_zero = m_util.mk_sle(mk_zero(sz), args[0]);
|
||||
result = m.mk_ite(m.mk_eq(args[1], minSigned), first_arg_ge_zero, bvsaddo);
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
br_status bv_rewriter::mk_bvsdiv_overflow(unsigned num, expr * const * args, expr_ref & result) {
|
||||
SASSERT(num == 2);
|
||||
SASSERT(get_bv_size(args[0]) == get_bv_size(args[1]));
|
||||
auto sz = get_bv_size(args[1]);
|
||||
auto minSigned = mk_numeral(-rational::power_of_two(sz-1), sz);
|
||||
auto minusOne = mk_numeral(rational::power_of_two(sz) - 1, sz);
|
||||
result = m.mk_and(m.mk_eq(args[0], minSigned), m.mk_eq(args[1], minusOne));
|
||||
return BR_REWRITE_FULL;
|
||||
}
|
||||
|
||||
template class poly_rewriter<bv_rewriter_core>;
|
||||
|
|
|
@ -139,6 +139,22 @@ class bv_rewriter : public poly_rewriter<bv_rewriter_core> {
|
|||
br_status mk_mkbv(unsigned num, expr * const * args, expr_ref & result);
|
||||
br_status mk_bvsmul_no_overflow(unsigned num, expr * const * args, bool is_overflow, expr_ref & result);
|
||||
br_status mk_bvumul_no_overflow(unsigned num, expr * const * args, expr_ref & result);
|
||||
|
||||
br_status mk_bvsmul_overflow(unsigned num, expr * const * args, expr_ref & result);
|
||||
br_status mk_bvumul_overflow(unsigned num, expr * const * args, expr_ref & result);
|
||||
|
||||
br_status mk_bvsdiv_overflow(unsigned num, expr * const * args, expr_ref & result);
|
||||
|
||||
br_status mk_bvneg_overflow(expr * const arg, expr_ref & result);
|
||||
|
||||
br_status mk_bvuadd_overflow(unsigned num, expr * const * args, expr_ref & result);
|
||||
br_status mk_bvsadd_overflow(unsigned num, expr * const * args, expr_ref & result);
|
||||
br_status mk_bvsadd_underflow(unsigned num, expr * const * args, expr_ref & result);
|
||||
br_status mk_bvsadd_over_underflow(unsigned num, expr * const * args, expr_ref & result);
|
||||
|
||||
br_status mk_bvusub_underflow(unsigned num, expr * const * args, expr_ref & result);
|
||||
br_status mk_bvssub_overflow(unsigned num, expr * const * args, expr_ref & result);
|
||||
|
||||
bool is_minus_one_times_t(expr * arg);
|
||||
void mk_t1_add_t2_eq_c(expr * t1, expr * t2, expr * c, expr_ref & result);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue