mirror of
https://github.com/Z3Prover/z3
synced 2025-07-18 02:16:40 +00:00
debug refactor of smon
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
9411911cf3
commit
11e3e1b463
3 changed files with 42 additions and 28 deletions
|
@ -24,9 +24,11 @@
|
|||
|
||||
namespace nla {
|
||||
|
||||
// The order lemma is
|
||||
// a > b && c > 0 => ac > bc
|
||||
void order::order_lemma() {
|
||||
TRACE("nla_solver", );
|
||||
const auto& rm_ref = c().m_to_refine;
|
||||
const auto& rm_ref = c().m_to_refine; // todo : run on the rooted subset or m_to_refine
|
||||
unsigned start = random();
|
||||
unsigned sz = rm_ref.size();
|
||||
for (unsigned i = 0; i < sz && !done(); ++i) {
|
||||
|
@ -35,11 +37,15 @@ void order::order_lemma() {
|
|||
}
|
||||
}
|
||||
|
||||
// The order lemma is
|
||||
// a > b && c > 0 => ac > bc
|
||||
// Consider here some binary factorizations of m=ac and
|
||||
// try create order lemmas with either factor playing the role of c.
|
||||
void order::order_lemma_on_rmonomial(const monomial& m) {
|
||||
TRACE("nla_solver_details",
|
||||
tout << "m = " << pp_mon(c(), m););
|
||||
|
||||
for (auto ac : factorization_factory_imp(m, c())) {
|
||||
for (auto ac : factorization_factory_imp(m, _())) {
|
||||
if (ac.size() != 2)
|
||||
continue;
|
||||
if (ac.is_mon())
|
||||
|
@ -50,17 +56,22 @@ void order::order_lemma_on_rmonomial(const monomial& m) {
|
|||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Here ac is a monomial of size 2
|
||||
// Trying to get an order lemma is
|
||||
// a > b && c > 0 => ac > bc,
|
||||
// with either variable of ac playing the role of c
|
||||
void order::order_lemma_on_binomial(const monomial& ac) {
|
||||
TRACE("nla_solver", tout << pp_mon(c(), ac););
|
||||
SASSERT(!check_monomial(ac) && ac.size() == 2);
|
||||
const rational mult_val = vvr(ac.vars()[0]) * vvr(ac.vars()[1]);
|
||||
const rational acv = vvr(ac);
|
||||
bool gt = acv > mult_val;
|
||||
for (unsigned k = 0; k < 2; k++) {
|
||||
order_lemma_on_binomial_k(ac, k == 1, gt);
|
||||
order_lemma_on_factor_binomial_explore(ac, k == 1);
|
||||
}
|
||||
bool k = false;
|
||||
do {
|
||||
order_lemma_on_binomial_k(ac, k, gt);
|
||||
order_lemma_on_factor_binomial_explore(ac, k);
|
||||
k = !k;
|
||||
} while (k);
|
||||
}
|
||||
|
||||
void order::order_lemma_on_binomial_k(const monomial& m, bool k, bool gt) {
|
||||
|
@ -86,12 +97,14 @@ void order::order_lemma_on_binomial_sign(const monomial& xy, lpvar x, lpvar y, i
|
|||
mk_ineq(xy.var(), - vvr(x), y, sign == 1 ? llc::LE : llc::GE);
|
||||
TRACE("nla_solver", print_lemma(tout););
|
||||
}
|
||||
|
||||
void order::order_lemma_on_factor_binomial_explore(const monomial& m1, bool k) {
|
||||
SASSERT(m1.size() == 2);
|
||||
lpvar c = m1.vars()[k];
|
||||
for (monomial const& m2 : _().m_emons.get_factors_of(c)) {
|
||||
order_lemma_on_factor_binomial_rm(m1, k, m2);
|
||||
// m's size is 2 and m = m[k]a[!k] if k is false and m = m[!k]a[k] if k is true
|
||||
// We look for monomials of form m[k]d and see if we can create an order lemma for
|
||||
// m and m[k]d
|
||||
void order::order_lemma_on_factor_binomial_explore(const monomial& m, bool k) {
|
||||
SASSERT(m.size() == 2);
|
||||
lpvar c = m.vars()[k];
|
||||
for (monomial const& m2 : _().m_emons.get_products_of(c)) {
|
||||
order_lemma_on_factor_binomial_rm(m, k, m2);
|
||||
if (done()) {
|
||||
break;
|
||||
}
|
||||
|
@ -99,6 +112,7 @@ void order::order_lemma_on_factor_binomial_explore(const monomial& m1, bool k) {
|
|||
}
|
||||
|
||||
void order::order_lemma_on_factor_binomial_rm(const monomial& ac, bool k, const monomial& bd) {
|
||||
TRACE("nla_solver", tout << "bd=" << pp_mon(_(), bd) << "\n";);
|
||||
factor d(_().m_evars.find(ac.vars()[k]).var(), factor_type::VAR);
|
||||
factor b;
|
||||
if (c().divide(bd, d, b)) {
|
||||
|
@ -208,7 +222,7 @@ bool order::order_lemma_on_ac_explore(const monomial& rm, const factorization& a
|
|||
}
|
||||
}
|
||||
else {
|
||||
for (monomial const& bc : _().m_emons.get_factors_of(c.var())) {
|
||||
for (monomial const& bc : _().m_emons.get_products_of(c.var())) {
|
||||
if (order_lemma_on_ac_and_bc(rm , ac, k, bc)) {
|
||||
return true;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue