mirror of
https://github.com/Z3Prover/z3
synced 2025-04-24 01:25:31 +00:00
bapa
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
a27f083177
commit
1123b47fb7
13 changed files with 613 additions and 4 deletions
|
@ -46,6 +46,7 @@ z3_add_component(smt
|
|||
smt_value_sort.cpp
|
||||
smt2_extra_cmds.cpp
|
||||
theory_arith.cpp
|
||||
theory_array_bapa.cpp
|
||||
theory_array_base.cpp
|
||||
theory_array.cpp
|
||||
theory_array_full.cpp
|
||||
|
|
|
@ -388,9 +388,9 @@ namespace smt {
|
|||
r = assert_delayed_axioms();
|
||||
}
|
||||
}
|
||||
TRACE("array", tout << "m_found_unsupported_op: " << m_found_unsupported_op << " " << r << "\n";);
|
||||
if (r == FC_DONE && m_found_unsupported_op && !get_context().get_fparams().m_array_fake_support)
|
||||
r = FC_GIVEUP;
|
||||
CTRACE("array", r != FC_DONE || m_found_unsupported_op, tout << r << "\n";);
|
||||
return r;
|
||||
}
|
||||
|
||||
|
|
476
src/smt/theory_array_bapa.cpp
Normal file
476
src/smt/theory_array_bapa.cpp
Normal file
|
@ -0,0 +1,476 @@
|
|||
/**
|
||||
|
||||
Size(S, n), Size(T, m)
|
||||
S, T are intersecting. n != m or S != T
|
||||
D ---------------------------------------------------------
|
||||
Size(S, n) => Size(S\T, k1), Size(S n T, k2), n = k1 + k2
|
||||
Size(T, m) => Size(T\S, k3), SIze(S n T, k2), m = k2 + k3
|
||||
|
||||
Size(S, n)
|
||||
P --------------------
|
||||
Size(S, n) => n >= 0
|
||||
|
||||
Size(S, n), is infinite domain
|
||||
B ------------------------------
|
||||
Size(S, n) => default(S) = false
|
||||
|
||||
Size(S, n), Size(S, m)
|
||||
F --------------------------------
|
||||
Size(S, n), Size(S, m) => n = m
|
||||
|
||||
Fixing values during final check:
|
||||
Size(S, n)
|
||||
V -------------------
|
||||
assume value(n) = n
|
||||
|
||||
Size(S, n), S[i1], ..., S[ik]
|
||||
O -------------------------------
|
||||
~distinct(i1, ... ik) or n >= k
|
||||
|
||||
Size(S,n)
|
||||
Ak --------------------------------------------------
|
||||
S[i1] & .. & S[ik] & distinct(i1, .., ik) or n < k
|
||||
|
||||
Q: Is this sufficient? Axiom A1 could be adjusted to add new elements i' until there are k witnesses for Size(S, k).
|
||||
This is quite bad when k is very large. Instead rely on stably infiniteness or other domain properties of the theories.
|
||||
|
||||
When A is finite domain, or there are quantifiers there could be constraints that force domain sizes so domain sizes may have
|
||||
to be enforced. A succinct way would be through domain comprehension assertions. Thus, if we have
|
||||
S[i1],.., S[ik], !S[j1],...,!S[jl] asserted on integer domain i, then
|
||||
|
||||
Finite domains:
|
||||
|
||||
Size(S, n), is finite domain
|
||||
----------------------------
|
||||
S <= |A|
|
||||
|
||||
Size(S, n), !S[i1], .... !S[ik], S is finite domain
|
||||
----------------------------------------------------------
|
||||
default(S) = false or ~distinct(i1,..,ik) or |A| - k <= n
|
||||
|
||||
|
||||
~Size(S, m) is negative on all occurrences, S is finite domain
|
||||
---------------------------------------------------------------
|
||||
Size(S, n) n fresh.
|
||||
|
||||
*/
|
||||
|
||||
#include "ast/ast_util.h"
|
||||
#include "ast/ast_pp.h"
|
||||
#include "ast/rewriter/array_rewriter.h"
|
||||
#include "smt/smt_context.h"
|
||||
#include "smt/smt_arith_value.h"
|
||||
#include "smt/theory_array_full.h"
|
||||
#include "smt/theory_array_bapa.h"
|
||||
|
||||
namespace smt {
|
||||
|
||||
class theory_array_bapa::imp {
|
||||
struct sz_info {
|
||||
bool m_is_leaf; // has it been split into disjoint subsets already?
|
||||
rational m_value; // set to >= integer if fixed in final check, otherwise -1
|
||||
literal m_literal; // literal that enforces value is set.
|
||||
obj_map<enode, expr*> m_selects;
|
||||
sz_info(): m_is_leaf(true), m_value(rational::minus_one()), m_literal(null_literal) {}
|
||||
};
|
||||
|
||||
typedef std::pair<func_decl*, func_decl*> func_decls;
|
||||
|
||||
ast_manager& m;
|
||||
theory_array_full& th;
|
||||
arith_util m_arith;
|
||||
array_util m_autil;
|
||||
array_rewriter m_rw;
|
||||
arith_value m_arith_value;
|
||||
ast_ref_vector m_pinned;
|
||||
obj_map<app, sz_info*> m_sizeof;
|
||||
obj_map<sort, func_decls> m_index_skolems;
|
||||
unsigned m_max_set_enumeration;
|
||||
|
||||
context& ctx() { return th.get_context(); }
|
||||
|
||||
void reset() {
|
||||
for (auto& kv : m_sizeof) {
|
||||
dealloc(kv.m_value);
|
||||
}
|
||||
}
|
||||
|
||||
bool is_true(expr* e) { return is_true(ctx().get_literal(e)); }
|
||||
bool is_true(enode* e) { return is_true(e->get_owner()); }
|
||||
bool is_true(literal l) { return ctx().is_relevant(l) && ctx().get_assignment(l) == l_true; }
|
||||
bool is_leaf(sz_info& i) const { return i.m_is_leaf; }
|
||||
bool is_leaf(sz_info* i) const { return is_leaf(*i); }
|
||||
enode* get_root(expr* e) { return ctx().get_enode(e)->get_root(); }
|
||||
bool is_select(enode* n) { return th.is_select(n); }
|
||||
app_ref mk_select(expr* a, expr* i) { expr* args[2] = { a, i }; return app_ref(m_autil.mk_select(2, args), m); }
|
||||
literal get_literal(expr* e) { return ctx().get_literal(e); }
|
||||
literal mk_literal(expr* e) { if (!ctx().e_internalized(e)) ctx().internalize(e, false); ctx().mark_as_relevant(e); return get_literal(e); }
|
||||
literal mk_eq(expr* a, expr* b) { return th.mk_eq(a, b, false); }
|
||||
void mk_th_axiom(literal l1, literal l2) {
|
||||
literal lits[2] = { l1, l2 };
|
||||
mk_th_axiom(2, lits);
|
||||
}
|
||||
void mk_th_axiom(literal l1, literal l2, literal l3) {
|
||||
literal lits[3] = { l1, l2, l3 };
|
||||
mk_th_axiom(3, lits);
|
||||
}
|
||||
void mk_th_axiom(unsigned n, literal* lits) {
|
||||
TRACE("array", ctx().display_literals_verbose(tout, n, lits) << "\n";);
|
||||
ctx().mk_th_axiom(th.get_id(), n, lits);
|
||||
}
|
||||
|
||||
void update_indices() {
|
||||
for (auto const& kv : m_sizeof) {
|
||||
app* k = kv.m_key;
|
||||
sz_info& v = *kv.m_value;
|
||||
v.m_selects.reset();
|
||||
if (is_true(k) && is_leaf(v)) {
|
||||
expr* set = k->get_arg(0);
|
||||
for (enode* parent : enode::parents(get_root(set))) {
|
||||
if (is_select(parent) && is_true(parent)) {
|
||||
v.m_selects.insert(parent->get_arg(1)->get_root(), parent->get_owner());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
F: Size(S, k1) & Size(S, k2) => k1 = k2
|
||||
*/
|
||||
lbool ensure_functional() {
|
||||
lbool result = l_true;
|
||||
obj_map<enode, app*> parents;
|
||||
for (auto const& kv : m_sizeof) {
|
||||
app* sz1 = kv.m_key;
|
||||
if (!is_true(sz1)) {
|
||||
continue;
|
||||
}
|
||||
enode* r = get_root(sz1->get_arg(0));
|
||||
app* sz2 = nullptr;
|
||||
if (parents.find(r, sz2)) {
|
||||
expr* k1 = sz1->get_arg(1);
|
||||
expr* k2 = sz2->get_arg(1);
|
||||
if (get_root(k1) != get_root(k2)) {
|
||||
mk_th_axiom(~get_literal(sz1), ~get_literal(sz2), mk_eq(k1, k2));
|
||||
result = l_false;
|
||||
}
|
||||
}
|
||||
else {
|
||||
parents.insert(r, sz1);
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
Enforce D
|
||||
*/
|
||||
lbool ensure_disjoint() {
|
||||
auto i = m_sizeof.begin(), end = m_sizeof.end();
|
||||
for (; i != end; ++i) {
|
||||
auto& kv = *i;
|
||||
if (!kv.m_value->m_is_leaf) {
|
||||
continue;
|
||||
}
|
||||
for (auto j = i; ++j != end; ) {
|
||||
if (j->m_value->m_is_leaf && !ensure_disjoint(i->m_key, j->m_key)) {
|
||||
return l_false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return l_true;
|
||||
}
|
||||
|
||||
lbool ensure_disjoint(app* sz1, app* sz2) {
|
||||
sz_info& i1 = *m_sizeof[sz1];
|
||||
sz_info& i2 = *m_sizeof[sz2];
|
||||
SASSERT(i1.m_is_leaf);
|
||||
SASSERT(i2.m_is_leaf);
|
||||
expr* s = sz1->get_arg(0);
|
||||
expr* t = sz2->get_arg(0);
|
||||
enode* r1 = get_root(s);
|
||||
enode* r2 = get_root(t);
|
||||
if (r1 == r2) {
|
||||
return l_true;
|
||||
}
|
||||
if (!ctx().is_diseq(r1, r2) && ctx().assume_eq(r1, r2)) {
|
||||
return l_false;
|
||||
}
|
||||
if (do_intersect(i1.m_selects, i2.m_selects)) {
|
||||
add_disjoint(sz1, sz2);
|
||||
return l_false;
|
||||
}
|
||||
return l_true;
|
||||
}
|
||||
|
||||
bool do_intersect(obj_map<enode, expr*> const& s, obj_map<enode, expr*> const& t) const {
|
||||
if (s.size() > t.size()) {
|
||||
return do_intersect(t, s);
|
||||
}
|
||||
for (auto const& idx : s)
|
||||
if (t.contains(idx.m_key))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
void add_disjoint(app* sz1, app* sz2) {
|
||||
sz_info& i1 = *m_sizeof[sz1];
|
||||
sz_info& i2 = *m_sizeof[sz2];
|
||||
SASSERT(i1.m_is_leaf);
|
||||
SASSERT(i2.m_is_leaf);
|
||||
expr* t = sz1->get_arg(0);
|
||||
expr* s = sz2->get_arg(0);
|
||||
expr_ref tms = mk_subtract(t, s);
|
||||
expr_ref smt = mk_subtract(s, t);
|
||||
expr_ref tns = mk_intersect(t, s);
|
||||
ctx().push_trail(value_trail<context, bool>(i1.m_is_leaf, false));
|
||||
ctx().push_trail(value_trail<context, bool>(i2.m_is_leaf, false));
|
||||
expr_ref k1(m), k2(m), k3(m);
|
||||
expr_ref sz_tms(m), sz_tns(m), sz_smt(m);
|
||||
k1 = m.mk_fresh_const("K", m_arith.mk_int());
|
||||
k2 = m.mk_fresh_const("K", m_arith.mk_int());
|
||||
k3 = m.mk_fresh_const("K", m_arith.mk_int());
|
||||
sz_tms = m_autil.mk_has_size(tms, k1);
|
||||
sz_tns = m_autil.mk_has_size(tns, k2);
|
||||
sz_smt = m_autil.mk_has_size(smt, k3);
|
||||
propagate(sz1, sz_tms);
|
||||
propagate(sz1, sz_tns);
|
||||
propagate(sz2, sz_smt);
|
||||
propagate(sz2, sz_tns);
|
||||
propagate(sz1, mk_eq(k1 + k2, sz1->get_arg(1)));
|
||||
propagate(sz2, mk_eq(k3 + k2, sz2->get_arg(1)));
|
||||
}
|
||||
|
||||
expr_ref mk_subtract(expr* t, expr* s) {
|
||||
return m_rw.mk_set_difference(t, s);
|
||||
}
|
||||
|
||||
expr_ref mk_intersect(expr* t, expr* s) {
|
||||
return m_rw.mk_set_intersect(t, s);
|
||||
}
|
||||
|
||||
void propagate(expr* assumption, expr* conseq) {
|
||||
propagate(assumption, mk_literal(conseq));
|
||||
}
|
||||
|
||||
void propagate(expr* assumption, literal conseq) {
|
||||
mk_th_axiom(~mk_literal(assumption), conseq);
|
||||
}
|
||||
|
||||
/**
|
||||
Enforce V
|
||||
*/
|
||||
lbool ensure_values_assigned() {
|
||||
lbool result = l_true;
|
||||
for (auto const& kv : m_sizeof) {
|
||||
app* k = kv.m_key;
|
||||
sz_info& i = *kv.m_value;
|
||||
if (is_leaf(kv.m_value) && (i.m_literal == null_literal || !is_true(i.m_literal))) {
|
||||
rational value;
|
||||
if (!m_arith_value.get_value(k->get_arg(1), value)) {
|
||||
return l_undef;
|
||||
}
|
||||
literal lit = mk_eq(k->get_arg(1), m_arith.mk_int(value));
|
||||
ctx().mark_as_relevant(lit);
|
||||
ctx().set_true_first_flag(lit.var());
|
||||
ctx().push_trail(value_trail<context, literal>(i.m_literal, lit));
|
||||
i.m_value = value;
|
||||
result = l_false;
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
Enforce Ak, k <= m_max_set_enumeration
|
||||
*/
|
||||
lbool ensure_non_empty() {
|
||||
for (auto const& kv : m_sizeof) {
|
||||
sz_info& i = *kv.m_value;
|
||||
app* sz = kv.m_key;
|
||||
if (is_true(sz) && is_leaf(i) && i.m_selects.size() < i.m_value && i.m_selects.size() < m_max_set_enumeration) {
|
||||
expr* a = sz->get_arg(0);
|
||||
expr_ref le(m_arith.mk_le(sz->get_arg(1), m_arith.mk_int(0)), m);
|
||||
literal le_lit = mk_literal(le);
|
||||
literal sz_lit = mk_literal(sz);
|
||||
for (unsigned k = 0; k < m_max_set_enumeration && rational(k) < i.m_value; ++k) {
|
||||
expr_ref idx = mk_index_skolem(sz, a, k);
|
||||
app_ref sel(mk_select(a, idx));
|
||||
mk_th_axiom(~sz_lit, le_lit, mk_literal(sel));
|
||||
}
|
||||
return l_false;
|
||||
}
|
||||
}
|
||||
return l_true;
|
||||
}
|
||||
|
||||
// create skolem function that is injective on integers (ensures uniqueness).
|
||||
expr_ref mk_index_skolem(app* sz, expr* a, unsigned n) {
|
||||
func_decls fg;
|
||||
sort* s = m.get_sort(a);
|
||||
if (!m_index_skolems.find(s, fg)) {
|
||||
sort* idx_sort = get_array_domain(s, 0);
|
||||
sort* dom1[2] = { s, m_arith.mk_int() };
|
||||
sort* dom2[1] = { idx_sort };
|
||||
func_decl* f = m.mk_fresh_func_decl("to-index", "", 2, dom1, idx_sort);
|
||||
func_decl* g = m.mk_fresh_func_decl("from-index", "", 1, dom2, m_arith.mk_int());
|
||||
fg = std::make_pair(f, g);
|
||||
m_index_skolems.insert(s, fg);
|
||||
m_pinned.push_back(f);
|
||||
m_pinned.push_back(g);
|
||||
m_pinned.push_back(s);
|
||||
}
|
||||
expr_ref nV(m_arith.mk_int(n), m);
|
||||
expr_ref result(m.mk_app(fg.first, a, nV), m);
|
||||
expr_ref le(m_arith.mk_le(sz->get_arg(1), nV), m);
|
||||
// set-has-size(a, k) => k <= n or g(f(a,n)) = n
|
||||
mk_th_axiom(~mk_literal(sz), mk_literal(le), mk_eq(nV, m.mk_app(fg.second, result)));
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Enforce O
|
||||
*/
|
||||
lbool ensure_no_overflow() {
|
||||
for (auto const& kv : m_sizeof) {
|
||||
if (is_true(kv.m_key) && is_leaf(kv.m_value)) {
|
||||
lbool r = ensure_no_overflow(kv.m_key, *kv.m_value);
|
||||
if (r != l_true) return r;
|
||||
}
|
||||
}
|
||||
return l_true;
|
||||
}
|
||||
|
||||
lbool ensure_no_overflow(app* sz, sz_info& info) {
|
||||
SASSERT(!info.m_value.is_neg());
|
||||
if (info.m_value < info.m_selects.size()) {
|
||||
for (auto i = info.m_selects.begin(), e = info.m_selects.end(); i != e; ++i) {
|
||||
for (auto j = i; ++j != e; ) {
|
||||
if (ctx().assume_eq(i->m_key, j->m_key)) {
|
||||
return l_false;
|
||||
}
|
||||
}
|
||||
}
|
||||
// if all is exhausted, then add axiom: set-has-size(s, n) & s[indices] & all-diff(indices) => n >= |indices|
|
||||
literal_vector lits;
|
||||
lits.push_back(~mk_literal(sz));
|
||||
for (auto const& kv : info.m_selects) {
|
||||
lits.push_back(~mk_literal(kv.m_value));
|
||||
}
|
||||
if (info.m_selects.size() > 1) {
|
||||
ptr_vector<expr> args;
|
||||
for (auto const& kv : info.m_selects) {
|
||||
args.push_back(kv.m_key->get_owner());
|
||||
}
|
||||
expr_ref diff(m.mk_distinct(args.size(), args.c_ptr()), m);
|
||||
lits.push_back(~mk_literal(diff));
|
||||
}
|
||||
expr_ref ge(m_arith.mk_ge(sz->get_arg(1), m_arith.mk_int(info.m_selects.size())), m);
|
||||
lits.push_back(mk_literal(ge));
|
||||
mk_th_axiom(lits.size(), lits.c_ptr());
|
||||
return l_false;
|
||||
}
|
||||
return l_true;
|
||||
}
|
||||
|
||||
class remove_sz : public trail<context> {
|
||||
obj_map<app, sz_info*> & m_table;
|
||||
app* m_obj;
|
||||
public:
|
||||
remove_sz(obj_map<app, sz_info*>& tab, app* t): m_table(tab), m_obj(t) {}
|
||||
~remove_sz() override {}
|
||||
void undo(context& ctx) override { dealloc(m_table[m_obj]); m_table.remove(m_obj); }
|
||||
};
|
||||
|
||||
std::ostream& display(std::ostream& out) {
|
||||
for (auto const& kv : m_sizeof) {
|
||||
display(out << mk_pp(kv.m_key, m) << ": ", *kv.m_value);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& display(std::ostream& out, sz_info& sz) {
|
||||
return out << (sz.m_is_leaf ? "leaf": "") << " value: " << sz.m_value << " selects: " << sz.m_selects.size() << "\n";
|
||||
}
|
||||
|
||||
public:
|
||||
imp(theory_array_full& th):
|
||||
m(th.get_manager()),
|
||||
th(th),
|
||||
m_rw(m),
|
||||
m_arith(m),
|
||||
m_autil(m),
|
||||
m_arith_value(m),
|
||||
m_pinned(m)
|
||||
{
|
||||
context& ctx = th.get_context();
|
||||
m_arith_value.init(&ctx);
|
||||
m_max_set_enumeration = 100;
|
||||
}
|
||||
|
||||
~imp() {
|
||||
reset();
|
||||
}
|
||||
|
||||
/**
|
||||
* Size(S, n) => n >= 0, default(S) = false
|
||||
*/
|
||||
void internalize_size(app* term) {
|
||||
SASSERT(ctx().e_internalized(term));
|
||||
literal lit = mk_literal(term);
|
||||
expr* s = term->get_arg(0);
|
||||
expr* n = term->get_arg(1);
|
||||
mk_th_axiom(~lit, mk_literal(m_arith.mk_ge(n, m_arith.mk_int(0))));
|
||||
sort_size const& sz = m.get_sort(s)->get_num_elements();
|
||||
if (sz.is_infinite()) {
|
||||
mk_th_axiom(~lit, mk_eq(th.mk_default(s), m.mk_false()));
|
||||
}
|
||||
else {
|
||||
warning_msg("correct handling of finite domains is TBD");
|
||||
// add upper bound on size of set.
|
||||
// add case where default(S) = true, and add negative elements.
|
||||
}
|
||||
m_sizeof.insert(term, alloc(sz_info));
|
||||
ctx().push_trail(remove_sz(m_sizeof, term));
|
||||
}
|
||||
|
||||
final_check_status final_check() {
|
||||
lbool r = ensure_functional();
|
||||
if (r == l_true) update_indices();
|
||||
if (r == l_true) r = ensure_disjoint();
|
||||
if (r == l_true) r = ensure_values_assigned();
|
||||
if (r == l_true) r = ensure_non_empty();
|
||||
if (r == l_true) r = ensure_no_overflow();
|
||||
CTRACE("array", r != l_true, display(tout););
|
||||
switch (r) {
|
||||
case l_true:
|
||||
return FC_DONE;
|
||||
case l_false:
|
||||
return FC_CONTINUE;
|
||||
case l_undef:
|
||||
return FC_GIVEUP;
|
||||
}
|
||||
return FC_GIVEUP;
|
||||
}
|
||||
|
||||
void init_model() {
|
||||
for (auto const& kv : m_sizeof) {
|
||||
sz_info& i = *kv.m_value;
|
||||
app* sz = kv.m_key;
|
||||
if (is_true(sz) && is_leaf(i) && rational(i.m_selects.size()) != i.m_value) {
|
||||
warning_msg("models for BAPA is TBD");
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
theory_array_bapa::theory_array_bapa(theory_array_full& th) { m_imp = alloc(imp, th); }
|
||||
theory_array_bapa::~theory_array_bapa() { dealloc(m_imp); }
|
||||
void theory_array_bapa::internalize_size(app* term) { m_imp->internalize_size(term); }
|
||||
final_check_status theory_array_bapa::final_check() { return m_imp->final_check(); }
|
||||
void theory_array_bapa::init_model() { m_imp->init_model(); }
|
||||
}
|
43
src/smt/theory_array_bapa.h
Normal file
43
src/smt/theory_array_bapa.h
Normal file
|
@ -0,0 +1,43 @@
|
|||
/*++
|
||||
Copyright (c) 2006 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
theory_array_bapa.h
|
||||
|
||||
Abstract:
|
||||
|
||||
<abstract>
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner 2019-04-13
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
#ifndef THEORY_ARRAY_BAPA_H_
|
||||
#define THEORY_ARRAY_BAPA_H_
|
||||
|
||||
#include "ast/ast.h"
|
||||
#include "smt/smt_theory.h"
|
||||
|
||||
namespace smt {
|
||||
|
||||
class theory_array_full;
|
||||
|
||||
class theory_array_bapa {
|
||||
class imp;
|
||||
imp* m_imp;
|
||||
public:
|
||||
theory_array_bapa(theory_array_full& th);
|
||||
~theory_array_bapa();
|
||||
void internalize_size(app* term);
|
||||
final_check_status final_check();
|
||||
void init_model();
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
#endif /* THEORY_ARRAY_BAPA_H_ */
|
||||
|
|
@ -602,6 +602,7 @@ namespace smt {
|
|||
collect_defaults();
|
||||
collect_selects();
|
||||
propagate_selects();
|
||||
if (m_bapa) m_bapa->init_model();
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -20,12 +20,14 @@ Revision History:
|
|||
#define THEORY_ARRAY_BASE_H_
|
||||
|
||||
#include "smt/smt_theory.h"
|
||||
#include "smt/theory_array_bapa.h"
|
||||
#include "ast/array_decl_plugin.h"
|
||||
#include "smt/proto_model/array_factory.h"
|
||||
|
||||
namespace smt {
|
||||
|
||||
class theory_array_base : public theory {
|
||||
friend class theory_array_bapa;
|
||||
protected:
|
||||
bool m_found_unsupported_op;
|
||||
|
||||
|
@ -40,6 +42,7 @@ namespace smt {
|
|||
bool is_as_array(app const * n) const { return n->is_app_of(get_id(), OP_AS_ARRAY); }
|
||||
bool is_array_sort(sort const* s) const { return s->is_sort_of(get_id(), ARRAY_SORT); }
|
||||
bool is_array_sort(app const* n) const { return is_array_sort(get_manager().get_sort(n)); }
|
||||
bool is_set_has_size(app const* n) const { return n->is_app_of(get_id(), OP_SET_HAS_SIZE); }
|
||||
|
||||
bool is_store(enode const * n) const { return is_store(n->get_owner()); }
|
||||
bool is_map(enode const* n) const { return is_map(n->get_owner()); }
|
||||
|
@ -48,6 +51,7 @@ namespace smt {
|
|||
bool is_as_array(enode const * n) const { return is_as_array(n->get_owner()); }
|
||||
bool is_default(enode const* n) const { return is_default(n->get_owner()); }
|
||||
bool is_array_sort(enode const* n) const { return is_array_sort(n->get_owner()); }
|
||||
bool is_set_has_size(enode const* n) const { return is_set_has_size(n->get_owner()); }
|
||||
|
||||
|
||||
app * mk_select(unsigned num_args, expr * const * args);
|
||||
|
@ -60,6 +64,7 @@ namespace smt {
|
|||
ptr_vector<enode> m_axiom1_todo;
|
||||
enode_pair_vector m_axiom2_todo;
|
||||
enode_pair_vector m_extensionality_todo;
|
||||
scoped_ptr<theory_array_bapa> m_bapa;
|
||||
|
||||
void assert_axiom(unsigned num_lits, literal * lits);
|
||||
void assert_axiom(literal l1, literal l2);
|
||||
|
|
|
@ -250,7 +250,7 @@ namespace smt {
|
|||
return theory_array::internalize_term(n);
|
||||
}
|
||||
|
||||
if (!is_const(n) && !is_default(n) && !is_map(n) && !is_as_array(n)) {
|
||||
if (!is_const(n) && !is_default(n) && !is_map(n) && !is_as_array(n) && !is_set_has_size(n)) {
|
||||
if (!is_array_ext(n))
|
||||
found_unsupported_op(n);
|
||||
return false;
|
||||
|
@ -274,6 +274,12 @@ namespace smt {
|
|||
mk_var(arg0);
|
||||
}
|
||||
}
|
||||
else if (is_set_has_size(n)) {
|
||||
if (!m_bapa) {
|
||||
m_bapa = alloc(theory_array_bapa, *this);
|
||||
}
|
||||
m_bapa->internalize_size(n);
|
||||
}
|
||||
|
||||
enode* node = ctx.get_enode(n);
|
||||
if (!is_attached_to_var(node)) {
|
||||
|
@ -748,6 +754,10 @@ namespace smt {
|
|||
assert_axiom(eq);
|
||||
r = FC_CONTINUE;
|
||||
}
|
||||
if (r == FC_DONE && m_bapa) {
|
||||
r = m_bapa->final_check();
|
||||
}
|
||||
|
||||
if (r == FC_DONE && m_found_unsupported_op)
|
||||
r = FC_GIVEUP;
|
||||
return r;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue