3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-30 04:15:51 +00:00

update proof formats for new core

- update proof format for quantifier instantiation to track original literals
- update proof replay tools with ability to extract proof object

The formats and features are subject to heavy revisions.

Example
```
(set-option :sat.euf true)
(set-option :sat.smt.proof eufproof.smt2)
(declare-fun f (Int) Int)
(declare-const x Int)
(assert (or (= (f (f (f x))) x) (= (f (f x)) x)))
(assert (not (= (f (f (f (f (f (f x)))))) x)))
(check-sat)
```

eufproof.smt2 is:
```
(declare-fun x () Int)
(declare-fun f (Int) Int)
(define-const $24 Int (f x))
(define-const $25 Int (f $24))
(define-const $26 Int (f $25))
(define-const $27 Bool (= $26 x))
(define-const $28 Bool (= $25 x))
(assume $27 $28)
(define-const $30 Int (f $26))
(define-const $31 Int (f $30))
(define-const $32 Int (f $31))
(define-const $33 Bool (= $32 x))
(assume (not $33))
(declare-fun rup () Proof)
(infer (not $33) rup)
(declare-fun euf (Bool Bool Proof Proof Proof Proof) Proof)
(declare-fun cc (Bool) Proof)
(define-const $42 Bool (= $32 $30))
(define-const $43 Proof (cc $42))
(define-const $40 Bool (= $31 $24))
(define-const $41 Proof (cc $40))
(define-const $38 Bool (= $30 $25))
(define-const $39 Proof (cc $38))
(define-const $36 Bool (= $24 $26))
(define-const $37 Proof (cc $36))
(define-const $34 Bool (not $33))
(define-const $44 Proof (euf $34 $28 $37 $39 $41 $43))
(infer (not $28) $33 $44)
(infer (not $28) rup)
(infer $27 rup)
(declare-fun euf (Bool Bool Proof Proof Proof) Proof)
(define-const $49 Bool (= $32 $26))
(define-const $50 Proof (cc $49))
(define-const $47 Bool (= $31 $25))
(define-const $48 Proof (cc $47))
(define-const $45 Bool (= $24 $30))
(define-const $46 Proof (cc $45))
(define-const $51 Proof (euf $34 $27 $46 $48 $50))
(infer $33 $51)
(infer rup)
```

Example of inspecting proof from Python:

```
from z3 import *

def parse(file):
    s = Solver()
    set_option("solver.proof.save", True)
    set_option("solver.proof.check", False)
    s.from_file(file)
    for step in s.proof().children():
        print(step)

parse("../eufproof.smt2")
```

Proof checking (self-validation) is on by default.
Proof saving is off by default.

You can use the proof logs and the proof terms to retrieve quantifier instantiations from the new core.

The self-checker contains a few built-in tuned checkers but falls back to self-checking inferred clauses using SMT.
This commit is contained in:
Nikolaj Bjorner 2022-09-28 10:40:43 -07:00
parent 9782d4a730
commit 107981f099
40 changed files with 295 additions and 153 deletions

View file

@ -251,6 +251,17 @@ namespace arith {
if (hi_sup != end) mk_bound_axiom(b, *hi_sup);
}
void solver::add_farkas_clause(sat::literal l1, sat::literal l2) {
arith_proof_hint* bound_params = nullptr;
if (ctx.use_drat()) {
m_arith_hint.set_type(ctx, hint_type::farkas_h);
m_arith_hint.add_lit(rational(1), ~l1);
m_arith_hint.add_lit(rational(1), ~l2);
bound_params = m_arith_hint.mk(ctx);
}
add_clause(l1, l2, bound_params);
}
void solver::mk_bound_axiom(api_bound& b1, api_bound& b2) {
literal l1(b1.get_lit());
literal l2(b2.get_lit());
@ -263,55 +274,45 @@ namespace arith {
if (k1 == k2 && kind1 == kind2) return;
SASSERT(k1 != k2 || kind1 != kind2);
auto bin_clause = [&](sat::literal l1, sat::literal l2) {
arith_proof_hint* bound_params = nullptr;
if (ctx.use_drat()) {
m_arith_hint.set_type(ctx, hint_type::farkas_h);
m_arith_hint.add_lit(rational(1), ~l1);
m_arith_hint.add_lit(rational(1), ~l2);
bound_params = m_arith_hint.mk(ctx);
}
add_clause(l1, l2, bound_params);
};
if (kind1 == lp_api::lower_t) {
if (kind2 == lp_api::lower_t) {
if (k2 <= k1)
bin_clause(~l1, l2);
add_farkas_clause(~l1, l2);
else
bin_clause(l1, ~l2);
add_farkas_clause(l1, ~l2);
}
else if (k1 <= k2)
// k1 <= k2, k1 <= x or x <= k2
bin_clause(l1, l2);
add_farkas_clause(l1, l2);
else {
// k1 > hi_inf, k1 <= x => ~(x <= hi_inf)
bin_clause(~l1, ~l2);
add_farkas_clause(~l1, ~l2);
if (v_is_int && k1 == k2 + rational(1))
// k1 <= x or x <= k1-1
bin_clause(l1, l2);
add_farkas_clause(l1, l2);
}
}
else if (kind2 == lp_api::lower_t) {
if (k1 >= k2)
// k1 >= lo_inf, k1 >= x or lo_inf <= x
bin_clause(l1, l2);
add_farkas_clause(l1, l2);
else {
// k1 < k2, k2 <= x => ~(x <= k1)
bin_clause(~l1, ~l2);
add_farkas_clause(~l1, ~l2);
if (v_is_int && k1 == k2 - rational(1))
// x <= k1 or k1+l <= x
bin_clause(l1, l2);
add_farkas_clause(l1, l2);
}
}
else {
// kind1 == A_UPPER, kind2 == A_UPPER
if (k1 >= k2)
// k1 >= k2, x <= k2 => x <= k1
bin_clause(l1, ~l2);
add_farkas_clause(l1, ~l2);
else
// k1 <= hi_sup , x <= k1 => x <= hi_sup
bin_clause(~l1, l2);
add_farkas_clause(~l1, l2);
}
}
@ -421,9 +422,9 @@ namespace arith {
ge = mk_literal(a.mk_ge(diff, zero));
}
++m_stats.m_assert_diseq;
add_clause(~eq, le);
add_clause(~eq, ge);
add_clause(~le, ~ge, eq);
add_farkas_clause(~eq, le);
add_farkas_clause(~eq, ge);
add_clause(~le, ~ge, eq, explain_triangle_eq(le, ge, eq));
}