3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-04 13:21:22 +00:00

a small example passing with cheap eqs

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2020-06-05 13:22:09 -07:00
parent 54921d08dc
commit 0ff18dd5a7

View file

@ -10,19 +10,20 @@ namespace lp {
template <typename T> template <typename T>
class lp_bound_propagator { class lp_bound_propagator {
struct impq_eq { bool operator()(const impq& a, const impq& b) const {return a == b;}}; struct impq_eq { bool operator()(const impq& a, const impq& b) const {return a == b;}};
// Pairs (row,x), (row,y) such that there is the
// row is x - y = c, where c is a constant form a tree. // vertex represents a pair (row,x) or (row,y) for an offset row.
// The edges of the tree are of the form ((row,x), (row, y)) as from above, // The set of all pair are organised in a tree.
// or ((row, x), (other_row, x)) where the "other_row" is an offset row too. // The edges of the tree are of the form ((row,x), (row, y)) for an offset row,
// or ((row, u), (other_row, v)) where the "other_row" is an offset row too,
// and u, v reference the same column
class vertex { class vertex {
unsigned m_row; unsigned m_row;
unsigned m_index_in_row; // in the row unsigned m_index_in_row; // in the row
bool m_sign; // true if the vertex plays the role of y svector<unsigned> m_children; // point to m_vertices
vector<unsigned> m_children; // point to m_vertices
impq m_offset; // offset from parent (parent - child = offset) impq m_offset; // offset from parent (parent - child = offset)
unsigned m_id; // the index in m_vertices unsigned m_id; // the index in m_vertices
unsigned m_parent; unsigned m_parent;
unsigned m_level; // the number of hops from the root to reach the vertex, unsigned m_level; // the distance in hops to the root;
// it is handy to find the common ancestor // it is handy to find the common ancestor
public: public:
vertex() {} vertex() {}
@ -42,15 +43,22 @@ class lp_bound_propagator {
unsigned row() const { return m_row; } unsigned row() const { return m_row; }
unsigned parent() const { return m_parent; } unsigned parent() const { return m_parent; }
unsigned level() const { return m_level; } unsigned level() const { return m_level; }
const impq& offset() const { return m_offset; }
void add_child(vertex& child) { void add_child(vertex& child) {
child.m_parent = m_id; child.m_parent = m_id;
m_children.push_back(child.m_id); m_children.push_back(child.m_id);
child.m_level = m_level + 1; child.m_level = m_level + 1;
} }
const svector<unsigned> & children() const { return m_children; }
std::ostream& print(std::ostream & out) const { std::ostream& print(std::ostream & out) const {
out << "row = " << m_row << ", m_index_in_row = " << m_index_in_row << ", parent = " << (int)m_parent << " , offset = " << m_offset << ", id = " << m_id << ", level = " << m_level << "\n";; out << "row = " << m_row << ", m_index_in_row = " << m_index_in_row << ", parent = " << (int)m_parent << " , offset = " << m_offset << ", id = " << m_id << ", level = " << m_level << "\n";;
return out; return out;
} }
#ifdef Z3DEBUG
bool operator==(const vertex& o) const {
return m_row == o.m_row && m_index_in_row == o.m_index_in_row;
}
#endif
}; };
hashtable<unsigned, u_hash, u_eq> m_visited_rows; hashtable<unsigned, u_hash, u_eq> m_visited_rows;
hashtable<unsigned, u_hash, u_eq> m_visited_columns; hashtable<unsigned, u_hash, u_eq> m_visited_columns;
@ -132,23 +140,23 @@ public:
impq(0), // offset impq(0), // offset
0 // id 0 // id
); );
push_to_verts(xv); push_vertex(xv);
vertex yv(row_index, vertex yv(row_index,
y, // index in row y, // index in row
offset, offset,
1 // id 1 // id
); );
push_to_verts(yv); push_vertex(yv);
xv.add_child(yv); xv.add_child(yv);
TRACE("cheap_eq", print_tree(tout);); TRACE("cheap_eq", print_tree(tout););
SASSERT(tree_is_correct()); SASSERT(tree_is_correct());
} }
bool is_offset_row(unsigned row_index, bool is_offset_row(unsigned row_index,
unsigned & x_index, unsigned & x_index,
lpvar & y_index, lpvar & y_index,
impq& offset) const { impq& offset) const {
x_index = y_index = UINT_MAX; x_index = y_index = UINT_MAX;
const auto & row = lp().get_row(row_index); const auto & row = lp().get_row(row_index);
for (unsigned k = 0; k < row.size(); k++) { for (unsigned k = 0; k < row.size(); k++) {
const auto& c = row[k]; const auto& c = row[k];
@ -172,17 +180,14 @@ public:
return true; return true;
} }
void add_eq(lpvar j, lpvar k) { void check_for_eq_and_add_to_offset_table(const vertex& v) {
NOT_IMPLEMENTED_YET(); unsigned k; // the other vertex index
} if (m_offsets_to_verts.find(v.offset(), k)) {
if (k != v.id())
void check_for_eq_and_add_to_offset_table(lpvar j, const impq & offset) { report_eq(k, v.id());
lpvar k;
if (m_offsets_to_verts.find(offset, k)) {
SASSERT(j != k);
add_eq(j, k);
} else { } else {
m_offsets_to_verts.insert(offset, j); TRACE("cheap_eq", tout << "registered offset " << v.offset() << " to " << v.id() << "\n";);
m_offsets_to_verts.insert(v.offset(), v.id());
} }
} }
@ -197,9 +202,8 @@ public:
// we have v_i and v_j, indices of vertices at the same offsets // we have v_i and v_j, indices of vertices at the same offsets
void report_eq(unsigned v_i, unsigned v_j) { void report_eq(unsigned v_i, unsigned v_j) {
SASSERT(v_i != v_j); SASSERT(v_i != v_j);
const vertex& u = m_vertices[v_i]; TRACE("cheap_eq", tout << "v_i = " << v_i << ", v_j = " << v_j << "\nu = ";
const vertex& v = m_vertices[v_j]; m_vertices[v_i].print(tout) << "\nv = "; m_vertices[v_j].print(tout) <<"\n";);
TRACE("cheap_eq", tout << "v_i = " << v_i << ", v_j = " << v_j << "\nu = "; u.print(tout) << "\nv = "; v.print(tout) <<"\n";);
svector<unsigned> path; svector<unsigned> path;
find_path_on_tree(path, v_i, v_j); find_path_on_tree(path, v_i, v_j);
TRACE("cheap_eq", tout << "path = \n"; TRACE("cheap_eq", tout << "path = \n";
@ -209,10 +213,46 @@ public:
} }
display_row_of_vertex(v_j, tout); display_row_of_vertex(v_j, tout);
); );
NOT_IMPLEMENTED_YET(); lp::explanation exp = get_explanation_from_path(v_i, path, v_j);
unsigned i_e = lp().adjust_column_index_to_term_index(get_column(m_vertices[v_i]));
unsigned j_e = lp().adjust_column_index_to_term_index(get_column(m_vertices[v_j]));
m_imp.add_eq(i_e, j_e, exp);
}
explanation get_explanation_from_path(unsigned v_i,
const svector<unsigned>& path,
unsigned v_j) const {
explanation ex;
unsigned row = m_vertices[v_i].row();
unsigned prev_row = row;
explain_fixed_in_row(row, ex);
for (unsigned k : path) {
row = m_vertices[k].row();
if (row == prev_row)
continue;
prev_row = row;
explain_fixed_in_row(row, ex);
}
row = m_vertices[v_j].row();
if (prev_row != row)
explain_fixed_in_row(row, ex);
return ex;
} }
void explain_fixed_in_row(unsigned row, explanation& ex) const {
constraint_index lc, uc;
for (const auto & c : lp().get_row(row)) {
lpvar j = c.var();
if (lp().is_fixed(j)) {
lp().get_bound_constraint_witnesses_for_column(j, lc, uc);
ex.push_back(lc);
ex.push_back(uc);
}
}
}
std::ostream& display_row_of_vertex(unsigned k, std::ostream& out) const { std::ostream& display_row_of_vertex(unsigned k, std::ostream& out) const {
m_vertices[k].print(out);
return lp().get_int_solver()->display_row_info(out,m_vertices[k].row() ); return lp().get_int_solver()->display_row_info(out,m_vertices[k].row() );
} }
// the path will not include the start and the end // the path will not include the start and the end
@ -268,77 +308,77 @@ public:
return true; return true;
} }
// offset is measured from the initial vertex in the search // // offset is measured from the initial vertex in the search
void search_for_collision(const vertex& v, const impq& offset) { // void search_for_collision(const vertex& v, const impq& offset) {
TRACE("cheap_eq", tout << "v_i = " ; v.print(tout) << "\noffset = " << offset << "\n";); // TRACE("cheap_eq", tout << "v_i = " ; v.print(tout) << "\noffset = " << offset << "\n";);
unsigned registered_vert; // unsigned registered_vert;
if (m_offsets_to_verts.find(offset, registered_vert)) { // if (m_offsets_to_verts.find(offset, registered_vert)) {
if (registered_vert != v.id()) // if (registered_vert != v.id())
report_eq(registered_vert, v.id()); // report_eq(registered_vert, v.id());
} else { // } else {
m_offsets_to_verts.insert(offset, v.id()); // m_offsets_to_verts.insert(offset, v.id());
} // }
lpvar j = get_column(v); // lpvar j = get_column(v);
if (m_visited_columns.contains(j)) // if (m_visited_columns.contains(j))
return; // return;
m_visited_columns.insert(j); // m_visited_columns.insert(j);
for (const auto & c : lp().get_column(j)) { // for (const auto & c : lp().get_column(j)) {
if (m_visited_rows.contains(c.var())) // if (m_visited_rows.contains(c.var()))
continue; // continue;
m_visited_rows.insert(c.var()); // m_visited_rows.insert(c.var());
unsigned x_index, y_index; // unsigned x_index, y_index;
impq row_offset; // impq row_offset;
if (!is_offset_row(c.var(), x_index, y_index, row_offset)) // if (!is_offset_row(c.var(), x_index, y_index, row_offset))
return; // return;
add_column_edge(v.id(), c.var(), x_index); // TRACE("cheap_eq", lp().get_int_solver()->display_row_info(tout, c.var()););
add_row_edge(offset, v.row(), x_index, y_index, row_offset); // if (lp().get_row(c.var())[x_index].var() == j) { // conected to x
} // add_column_edge(v.id(), c.var(), x_index);
} // add_row_edge(offset, c.var(), x_index, y_index, row_offset);
// } else { // connected to y
// add_column_edge(v.id(), c.var(), y_index);
// add_row_edge(offset
// }
// }
// }
// row[x_index] gives x, and row[y_index] gives y // row[x_index] gives x, and row[y_index] gives y
// offset is accumulated during the recursion // offset is accumulated during the recursion
// edge_offset is the one in x - y = edge_offset // edge_offset is the one in x - y = edge_offset
// The parent is taken from m_vertices.back() // The parent is taken from m_vertices.back()
void add_row_edge(const impq& offset, // void add_row_edge(const impq& offset,
unsigned row_index, // unsigned row_index,
unsigned x_index, // unsigned x_index,
unsigned y_index, // unsigned y_index,
const impq& row_offset) { // const impq& row_offset) {
TRACE("cheap_eq", tout << "offset = " << offset << // TRACE("cheap_eq", tout << "offset = " << offset <<
" , row_index = " << row_index << ", x_index = " << x_index << ", y_index = " << y_index << ", row_offset = " << row_offset << "\n"; ); // " , row_index = " << row_index << ", x_index = " << x_index << ", y_index = " << y_index << ", row_offset = " << row_offset << "\n"; );
unsigned parent_id = m_vertices.size() - 1; // unsigned parent_id = m_vertices.size() - 1;
vertex xv(row_index, x_index, offset, parent_id + 1); // vertex xv(row_index, x_index, offset, parent_id + 1);
if (parent_id != UINT_MAX) { // if (parent_id != UINT_MAX) {
m_vertices[parent_id].add_child(xv); // m_vertices[parent_id].add_child(xv);
} // }
push_to_verts(xv); // push_vertex(xv);
vertex yv(row_index, y_index, offset + row_offset, parent_id + 2); // vertex yv(row_index, y_index, offset + row_offset, parent_id + 2);
xv.add_child(yv); // xv.add_child(yv);
push_to_verts(yv); // push_vertex(yv);
TRACE("cheap_eq", print_tree(tout);); // TRACE("cheap_eq", print_tree(tout););
m_visited_rows.insert(row_index); // m_visited_rows.insert(row_index);
search_for_collision(xv, offset); // search_for_collision(xv, offset);
TRACE("cheap_eq", print_tree(tout);); // TRACE("cheap_eq", print_tree(tout););
SASSERT(tree_is_correct()); // SASSERT(tree_is_correct());
search_for_collision(yv, offset + row_offset); // search_for_collision(yv, offset + row_offset);
SASSERT(tree_is_correct()); // SASSERT(tree_is_correct());
} // }
void push_to_verts(const vertex& v) { void push_vertex(const vertex& v) {
TRACE("cheap_eq", tout << "v = "; v.print(tout);); TRACE("cheap_eq", tout << "v = "; v.print(tout););
SASSERT(!m_vertices.contains(v));
m_vertices.push_back(v); m_vertices.push_back(v);
} }
void add_column_edge(unsigned parent, unsigned row_index, unsigned index_in_row) {
TRACE("cheap_eq", tout << "parent=" << parent << ", row_index = " << row_index << "\n";);
vertex v(row_index, index_in_row, impq(0), m_vertices.size());
m_vertices[parent].add_child(v);
push_to_verts(v);
TRACE("cheap_eq", tout << "tree = "; print_tree(tout););
SASSERT(tree_is_correct());
}
std::ostream& print_tree(std::ostream & out) const { std::ostream& print_tree(std::ostream & out) const {
for (auto & v : m_vertices) { for (auto & v : m_vertices) {
v.print(out); v.print(out);
@ -356,8 +396,65 @@ public:
impq offset; impq offset;
if (!is_offset_row(row_index, x_index, y_index, offset)) if (!is_offset_row(row_index, x_index, y_index, offset))
return; return;
add_row_edge(impq(0), row_index, x_index, y_index, offset); TRACE("cheap_eq", lp().get_int_solver()->display_row_info(tout, row_index););
vertex root(row_index, x_index, impq(0), 0 /* id */);
push_vertex(root);
vertex v_y(row_index, y_index, offset, 1);
root.add_child(v_y);
push_vertex(v_y);
SASSERT(tree_is_correct());
m_visited_rows.insert(row_index);
explore_under(root);
TRACE("cheap_eq", tout << "done for row_index " << row_index << "\n";); TRACE("cheap_eq", tout << "done for row_index " << row_index << "\n";);
} }
void go_over_vertex_column(vertex & v) {
lpvar j = get_column(v);
if (m_visited_columns.contains(j))
return;
m_visited_columns.insert(j);
for (const auto & c : lp().get_column(j)) {
unsigned row_index = c.var();
if (m_visited_rows.contains(row_index))
continue;
m_visited_rows.insert(row_index);
unsigned x_index, y_index;
impq row_offset;
if (!is_offset_row(row_index, x_index, y_index, row_offset))
continue;
TRACE("cheap_eq", lp().get_int_solver()->display_row_info(tout, row_index););
// who is it the same column?
if (lp().get_row(row_index)[x_index].var() == j) { // conected to x
vertex x_v(row_index, x_index, v.offset(), m_vertices.size());
v.add_child(x_v);
vertex y_v(row_index, y_index, v.offset() + row_offset, m_vertices.size() + 1);
x_v.add_child(y_v);
push_vertex(x_v); // no need to explore from x_v
push_vertex(y_v);
SASSERT(tree_is_correct());
explore_under(y_v);
} else { // connected to y
vertex y_v(row_index, y_index, v.offset(), m_vertices.size());
v.add_child(y_v);
vertex x_v(row_index, x_index, v.offset() - row_offset, m_vertices.size() + 1);
y_v.add_child(x_v);
push_vertex(y_v); // no need to explore from y_v
push_vertex(x_v);
SASSERT(tree_is_correct());
explore_under(x_v);
}
}
}
void explore_under(vertex& v) {
SASSERT(v.children().size() <= 1); // because we have not collected the vertices
// from the column, so there might be only one child from the row
check_for_eq_and_add_to_offset_table(v);
go_over_vertex_column(v);
for (unsigned j : v.children()) {
explore_under(m_vertices[j]);
}
}
}; };
} }